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1 WHAT IS FLAVOR PHYSICS? WHY STUDY

IT?

The flavor sector is that part of the Standard Model which arises from the interplay of
quark weak gauge couplings and quark-Higgs couplings. The Standard Model physics
of the quark masses and matrix of quark weak couplings in the mass eigenstate basis
that encodes these effects will be briefly reviewed. From a theorist’s perspective, the
aim of the game in flavor physics today is to search for those places where Standard
Model predictions are clean enough that effects from physics from beyond the Stan-
dard Model could be recognized if indeed they occur. Along the way we also want to
refine our knowledge of the Standard Model parameters of this sector.

The Standard Model encodes the physics of weak decays of quarks. Predictions
at the quark level are clean and simple, since leading-order weak effects are all we
need. However we observe hadrons, not quarks. Hence we must explore how and
when the quark level physics can be studied at the hadron level. In particular we
search for those places where the (hard-to-calculate) hadronic physics effects can be
separated from the calculable quark-level predictions. This will direct our attention
to two classes of results: those on rare decays or effects suppressed by symmetries in
the Standard Model; and those on CP violation in the decays of neutral but flavor
non-singlet mesons. In the first case there is a possibility that new physics effects are
large compared to Standard Model contributions. In the second Standard Model pre-
dictions for a broad range of effects are related because there is only one CP violating
parameter in the quark sector of the Standard Model. These relationships provide
many tests of the theory. I will review this latter topic in some detail, particularly
for the case of B decays, because these are the topic much of current and planned
experimental programs. I will also discuss some examples of rare K decays, and the
issue of D-mixing, as examples of effects that are suppressed in the Standard Model
and hence provide other possible probes for new physics.

I will review the calculational tools that are at our disposal to control the un-
certainties that arise from hadronic physics. These include the use of symmetries,
perturbative QCD and the operator product expansion, heavy quark expansion, lat-
tice QCD calculations and QCD sum rules. I will discuss the roles of these techniques,
with some examples. This short lecture series will not teach you how to do any of
these calculations, my emphasis is rather to help you as experimentalists to become
informed consumers in the theory market.

There are some excellent textbooks available covering B physics and CP Violation
in much more detail that these four lectures can. I refer students to these texts for
further study [1]. Another useful reference is the BaBar Physics Book [2], which sum-
marizes a year long study effort planning the experimental program for that detector.
As well as some introductory chapters and appendices that cover general issues in
the theory, this report discusses in detail both the theoretical and the experimental
issues for a number of interesting B decay modes.
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2 LECTURE 1

2.1 Preliminaries

Gauge theories require universality in couplings. However, for the weak interactions,
this universality is masked because of spontaneous symmetry breaking. The down-
type quark and neutrino mass-eigenstates are admixtures of the states the couple
in a simple universal fashion to the distinct up-type quark or charged lepton mass
eigenstates respectively. This occurs because there is no universality constraint on
the Higgs-fermion couplings. All the richness and variety of the flavor sector is the
image in our world of the richness and variety of Higgs couplings, which give all but
four of the parameters in the Standard Model.

I will restrict my attention to quark flavor physics. Alvaro’s lectures on neutrino
physics [3] cover lepton flavor physics. The flavor parameters in the quark sector
are the quark masses, and the elements of the quark mixing matrix, the matrix that
specifies quark-W couplings in the quark mass-eigenstate basis. In a world without
strong interactions the measurement and definition of all these parameters would be
a simple matter. However, in the real world of quark confinement many challenges
arise, both in defining and in determining these parameters.

Putting those challenges aside for the moment, why is that task of such great
import? The answer is that the Standard Model is predictive, and thus testable, be-
cause there are so few parameters. Said another way, there are multiple measurements
that depend on the same few parameters in the Standard Model. The comparison of
values of the parameters obtained by different measurements provides a test of the
theory, or alternatively a probe for physics beyond the Standard Model. Interesting
tests also arise in cases where the Standard Model predicts that a particular effect
is either zero, or very small. Often these predictions can be dramatically altered in
extensions of the Standard Model containing new particles. Searches for such effects
thus provide another set of tests of the theory. The possibility that a test may fail is
what makes it interesting!

Because of strong interactions, neither the quark masses nor the mixing matrix
elements can be measured directly. In all cases theory must be used to connect a given
measurement to the relevant Lagrangian parameters. Ambiguities due to convention
dependence (such as subtraction method) can readily be taken care of, although of
course they require attention and commonly accepted conventions. Much more trou-
blesome ambiguities arise from the fact that strong interaction physics effects can
obscure the relationship between the measured quantities and the quark level param-
eters. In order to test the theory by comparing two measurements that should be
related to the same standard model parameter, we must be able to quantify the dif-
ferences that could be accounted for by hadronic physics effects. If we cannot do this
our test is lost. Hence, while the flavor parameters are weak interaction parameters
much of what one must think about in discussing measurements to determine these
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parameters is how to constrain or remove the impact of hadronic physics.

These lectures will likewise emphasize this issue. The challenge is to find cases
where hadronic effects are small, or where combinations of multiple measurements
plus predictions based on symmetries of the theory can be used to measure or con-
strain the impact of hadronic physics on the parameter of interest. As data improves,
we theorists must continue to improve calculational methods and our ability to quan-
tify the impacts of hadronic physics. Indeed that is a major focus of theoretical work
in flavor physics today.

Of course testing the Standard Model is not a new area of investigation; there
are already many tests of flavor physics predictions of the Standard Model. The
continued success of the theory in accommodating all results already enforces some
strong constraints on extensions of the theory. Any additional particles that could
affect new flavor physics measurements must also be consistent with all past results.

The Standard Model generation structure was indeed invented to explain one of
the strong constraints, to give a gauge theory of weak interactions that includes a Z
boson with no flavor changing neutral coupling. Such effects are strongly constrained
by the small mass difference between the Z neutral kaon mass eigenstates. Likewise
any CP -violating and thus, via CPT , T-violating effects in extensions of the Standard
Model are strongly constrained by the small upper bound on the neutron electric
dipole moment. The match between theory and experiment for the quantity (g-2)
of both the electron and the muon also provides constraints. All these effects put
lower bounds on the masses of additional particles, and hence, in general, on the size
of amplitude contributions involving such particles. New tests, the focus of much of
these lectures, will provide further constraints on model building, or, if we are lucky,
a glimpse of new physics.

What are the patterns of flavor physics? Where can we make incisive tests of the
Standard Model? Why are heavy quarks so interesting in this regard? To answer
these questions one must first step back and look at the hierarchy of mass scales that
enter the physics of flavor. Only after this can we understand what it means to say
a quark is heavy or light–heavy or light with respect to what scale? Aside from the
masses of the quarks themselves two other scales define the physics. The first of these
is the mass of the W boson, the other the scale ΛQCD, which is much smaller than
the W mass.

What is the physical meaning of ΛQCD? The formal definition as the scale where
perturbation theory gives an infinite coupling constant for the strong gauge inter-
actions is clearly not physical; no measurement can give infinity as its result, and
perturbation theory clearly breaks down well before the coupling grows so large. A
better definition is to say that ΛQCD is the scale that defines the running of the strong
coupling constant that should be seen in high energy jet physics, and in the binding of
massive “onium” type states. Indeed these are the measurements used to determine
it. But this is still a rather esoteric definition. What actually occurs at this scale,
what quantity in low-energy physics depends on it? One needs to understand this to
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see the role that ΛQCD plays in flavor physics. The answer is that this scale sets the
size of hadrons and thus also gives the scale of the kinetic energy of quarks confined
within these hadrons. For hadrons built solely of light quarks, which we can now
understand to mean quarks whose mass is small compared to the scale ΛQCD, it thus
also gives the scale of hadronic masses. The up and down quarks are light quarks,
but the strange quark is a borderline case.

Conversely, quarks with masses large compared to ΛQCD are heavy quarks. There
are two consequences of being heavy: the first and most obvious one is that the quark
mass dominates the mass of any hadron containing that quark, and thus such quarks
are effectively static components of hadrons (mass large compared to kinetic energy);
the second is that the strong interaction coupling at the scale of that quark mass is
small. Thus there are two small parameters for heavy quark physics ΛQCD/mq and
αs(mq). Expansions in both of these parameters are useful in calculating the impact
of hadronic physics on weak decay processes. This means that we have better control
over these effects for hadrons constraining heavy quarks that we do in the case of
light hadrons.

Weak interactions of hadrons are rare compared to electromagnetic because the
the masses of the W and Z bosons are large compared hadron masses. The exception
comes when we get to the extremely heavy top quark, with a mass greater than the
W . The weak decays of the top quark occur so rapidly that it decays before it ever
has time to form a hadron. Further, its decays are very strongly dominated by the
decay t→ b+W . All other decays are so suppressed that there is no chance we will
detect them any time soon (especially since the only way we can tell a top quark was
produced is via the signatures of the t→ b+W decay)! Thus there is no interesting
flavor physics that can be studied for the top quark, nor do we see hadrons containing
that quark.

Thus when we talk of the heavy quark limit for hadronic physics, we take that
limit while ignoring weak decays. One can ask how hadronic wave-functions and other
hadronic properties scale as the quark mass goes to infinity, without considering the
fact that any such hadron is never formed. The rigorous scaling properties derivable
in this limit can then be used to constrain models and to inform predictions about
the behavior of hadrons in the interesting heavy quark mass range—namely around
the mass of the b-quark, which is conveniently large compared to ΛQCD while still
small compared to MW .

It would be very convenient for the study of flavor physics if there were more than
one quark in this mass range. In fact there is a second quark that is almost so, the
charm quark. The ratio ΛQCD/mc is about 0.3, small, but not quite small enough.
The QCD corrections to weak decay patterns, and the leading order ΛQCD/mc effects
are both quite large for charm quark states, which limits our ability to make clean
predictions about charm decays. We can, and do, use heavy quark theory to simplify
the analysis of b → c decays, but must take care to allow for the leading order
ΛQCD/mc corrections to these predictions.
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At the opposite extreme, when quark masses are light compared to ΛQCD we
can use this fact to derive symmetries of the light hadrons. Since both mu and md

are small on this scale, both isospin symmetry, which is broken by their difference,
and chiral symmetry, which is exact in the zero mass limit, provide useful inputs for
the study of hadronic physics. The additional symmetries that involve the strange
quark as well—the full SU(3) flavor symmetry or its SU(2) subgroups U -spin (the
symmetry of interchange of s and d quarks) and V -spin (s and u quarks)—have
larger symmetry breaking effects. These are scaled by ms/ΛQCD, which is again
borderline as a small parameter. However, as we will see throughout these lectures,
these symmetries provide useful constraints on hadronic effects. The question of how
to quantify corrections to the symmetry limit dominates the discussion of theoretical
uncertainties for the relationship between measurement and Standard Model test in
many cases. But that is always a gain over trying to quantify uncertainties in a case
with no good limit known.

In addition to these flavor symmetries a set of discrete symmetries are of interest
here. Three discrete transformations can be defined for all fields. These are: C, charge
conjugation, which interchanges particle and antiparticle; P , parity, which reverses
all spatial co-ordinates; and T , time-reversal, which interchanges in-states and out-
states. The product of these three operations, CPT , is an exact symmetry in any
local Lagrangian field theory. This follows from the locality, Lorentz Invariance, and
hermiticity of the Lagrangian. This means that any two rates which are related to one
another by the operation of CPT must be equal in any field theory. Tests for CPT
violation are thus testing for physics which lies outside the realm of local Lagrangian
field theory.

The combination CP , and thus T , is also an automatic symmetry in pure gauge
theories, and hence, in particular in QED and QCD. These theories also have sep-
arate C and P conservation, as long as all quarks are massless. In this limit weak
interactions maximally violate C and P but conserve CP . The pattern of automatic
CP conservation applies for many theories beyond QED, and indeed was the only
one known to theorists prior to the experimental discovery of CP violation [4], which
explains why this discovery was such a shock to the physics community.

However we now understand that CP violation, unlike CPT violation, is readily
accommodated in field theories. CP violation can arise whenever there are complex
coupling constants in a theory that cannot be removed by any set of phase redefinitions
of the fields. (I will explain this point in more detail later in this lecture.)

In the Standard Model the quark-Higgs Yukawa couplings introduce a large num-
ber of additional parameters, and allow the possibility of CP violation. The quark
masses, as well as the W and Z masses, arise due to the spontaneous breaking of the
U(1) symmetry of the Higgs field. Quark masses come from the Higgs field vacuum
expectation value via the Yukawa couplings of the quarks to the Higgs field. These
couplings thus define what combination of quark weak eigenstates (states paired to
a given up quark in weak decays) form a definite mass down-type quark. Thus, in
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the quark mass-eigenstate basis, these couplings are the source of the quark mixing-
matrix parameters, which define the strength of the various W -emission transitions.

In a two generation Standard Model, all couplings can be made real by field
redefinitions, starting from the most general complex but hermitian Lagrangian with
the symmetries of this theory imposed. However, as one adds quark multiplets the
number of independent quark-Higgs Yukawa couplings grows faster than the number
of quark fields. A priori these couplings are allowed to take the most general complex
form. Hermitian conjugate couplings must also be included, these reverse the types
of quark and antiquark. Then all possible phase redefinitions of the fields can be used
to make as many couplings as possible real.

For three generations of quarks in the Standard Model, after field redefinitions
have removed as many phases as possible, and the constraints due to unitarity of
the theory have been imposed, the quark mixing matrix, known as the Cabibbo-
Kobayashi-Maskawa (CKM) matrix [5] contains four independent parameters, one of
which is a complex phase that causes CP violation. These are the basic parameters
of flavor physics, and the subject of these lectures. Our aim is to determine the CKM
parameters as cleanly as possible by many independent sets of measurement and to
search for effects that are not consistent with the predictions of this theory.

In K-decay physics, long-range hadronic effects are large, and thus there are few
precise predictions. The exceptions are decays that are very rare or forbidden in the
Standard Model. Searches for these decays provide interesting tests for new physics.
CP violation in the decays of neutral K mesons is one such rare effect that has been
studied in some detail. As we will show later it provides some interesting constraints
on the CP -violating parameter in the CKM matrix.

Charm decays suffer a similar fate, corrections to leading order predictions are
significant and difficult to quantify. Thus there are few clean tests of the Standard
Model to be found in studying these decays. Again rare effects are an exception. One
particularly interesting rare effect in the charm sector is D −D mixing. This is very
suppressed in the Standard Model, and so provides a search arena for new physics
effects.

The cleanest arena for flavor physics is b decay physics, because the mass of the
b-quark is large enough that we have some reliable small expansion parameters to
help control the impact of hadronic physics. This explains why this b-physics is such
a central part of the program of particle physics experiments at present, and will
continue to be so for the next ten years at least. Hence the major focus of these
lectures will be b-decay physics, and within that the physics of the Bd and Bs meson
systems. These neutral but flavored mesons, like K mesons, have interesting quantum
mechanics. The mass eigenstates cannot be the flavor eigenstates, but would be CP
eigenstates if that symmetry were exact. These systems thus provide sensitive probes
of the CP violation structure of the Standard Model, with multiple predictions that
depend on the same few Standard Model parameters.
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2.2 The CKM matrix

The parameters of interest are those that appear in the CKM matrix [5]. This matrix
defines the relative strengths of the quark flavor transitions that occur due to W
emission. The matrix elements Vij denote the transition between an up-type quark
i and a down-type quark j. The magnitudes of these matrix elements are physically
measurable quantities. We will discuss ways in which they can be determined in the
next lecture. The phase of any the matrix elements can be changed by phase redefi-
nitions of one of the quark fields that couples via that term. Under the redefinitions
qi → eiαiq′i the term VijqiγµW

µqj becomes

ei(αj−αi)Vijq
′
iγµW

µq′j = V ′
ijq

′
iγµW

µq′j . (1)

This redefinition has no physical consequences. Clearly, however, the relative phases
of two terms that involve the same quark field are not changed by a redefinition of that
field. So phase differences are the physically meaningful and measurable quantities,
whereas the phase of any one term is convention dependent and unphysical.

The weak interaction gauge symmetry requires that the CKM matrix is unitary,
unless there are additional quark types beyond the three generations of the Standard
Model. The relationships that arise from this requirement reduce the number of in-
dependent parameters in the matrix to four, including the one phase. One commonly
used way to define these parameters was suggested by Wolfenstein [6], namely

V =







Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb







=







1 − λ2/2 λ Aλ3(ρ− iη)
−λ 1 − λ2/2 Aλ2

Aλ3(1 − ρ− iη) −Aλ2 1





+O(λ4) . (2)

The parameter λ ≡ Vus is a small number, of order 0.2. The higher powers of this
parameter that appear in the more off-diagonal matrix elements Vcb and Vub have
no theoretical basis; they are simply a way of denoting the empirical fact that these
matrix elements are successively smaller. The powers of λ are chosen so that the
parameters A, defined by |Vcb| and ρ2 + η2, defined by |Vub|, are of order 1. The
matrix elements Vcd, Vtd and Vts are then fixed by unitarity to take the form given
here, up to corrections of order λ4. The Wolfenstein parametrization is also a choice
of phase convention for this matrix. The parameter η is a CP -violating parameter;
the couplings in which appears are complex. (We will see later how complex couplings
give rise to CP -violating effects.)

The unitarity constraints take the form

∑

(i=u,c,t)

VijV
∗
ik = δjk (3)
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and likewise
∑

(j=d,s,b)

VijV
∗
kj = δik . (4)

The off-diagonal relationships in Eq. (3) or (4) take the form of a sum of three complex
numbers equal to zero. They can be represented as a closed triangle of vectors in the
complex plane. These are called the Unitarity triangles. Notice that the angles in
any of these triangles, that is the relative phases of the terms in any one of the sum
relationships, cannot be changed by any set of phase redefinitions of the quark fields;
they are rephasing invariant quantities. In fact, all these triangles are related; the
true rephasing invariant statement that there is only one independent CP -violating
parameter in the matrix is the condition that all these triangles have the same area,
J/2, where J is called the Jarlskog invariant, for Cecilia Jarlskog who first proved
this fact [7]. Obviously J is zero if all couplings are relatively real.

While all the triangles have the same area they come in three distinct types.
Consider the case for Eq. (3) with i = d and j = s. Then two of the terms are of
order λ and the third is of order λ5. The area of this triangle is thus of order λ6; its
small angle is of order λ4. Asymmetries proportional to such a small parameter are
extremely unlikely to be measured. For the case i = s and j = b one finds two sides
of order λ2 and one of order λ4, again an area of order λ6. Here the small angle of
order λ2, difficult but perhaps not impossible to measure. Finally for the case i = d
and j = b we find all three sides are of order λ3 and thus all angles are of order 1.

This last is the interesting case for CP violation studies, which measure quantities
directly proportional to the angles of the triangle. While the overall effect is order
λ6 here we have CP asymmetries of order 1 in rare processes, as compared to the
first case where the CP asymmetries are of order λ4 but could occur in leading weak
decay rates. In B physics, when people talk of “the unitarity triangle” they mean
this last triangle. Conventionally it is drawn with the sides rescaled by the quantity
VcdV

∗
cb so the base is real and of unit length and the apex of the triangle is the point

ρ, η in the complex plane where ρ = ρ(1 − λ2/2), and η = η(1 − λ
2
/2).

The angles of this triangle have, unfortunately, two conventionally used sets of
names, they are either α, β, γ or φ1, φ2, φ3, where the first named is at the apex and
the order is clockwise around the triangle. One can of course determine this triangle
by measuring the lengths of its sides, all of which are CP -conserving quantities. The
match between the angles determined in that way and those found by measuring
CP -violating quantities is a test of the Standard Model. In the next lecture we will
discuss how, and how well these various quantities are measured.

2.3 Consequences of unitarity

The Unitarity relationships are the residual effect of the initial gauge symmetry. Thus
they serve to protect the theory from certain divergences that could arise in a less
tightly-constrained theory. The generational structure of the Standard Model was
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designed to cancel all anomalies in the theory and to give a theory which, at the
leading order, has no strangeness-changing neutral current couplings. At one loop
there are divergent diagrams of the form of Fig. 1 that introduce the process Z → sd
and similarly for other such flavor-changing currents.

Z

u,c,t
s

d–
10-2002

8657A1

Figure 1: Flavor changing Z-coupling induced at one loop in the Standard Model

The internal quarks in the loop in Fig. 1 can be any one of the three up-type
quarks. The sum of all such diagrams is given by

A(Z → sd) = Σi=u,c,tVisV
∗
idf(mi) . (5)

Here the quantity f(mi) represents the Feynman integral over loop momenta for the
diagram containing the i-th up-type quark in the internal lines of the loop. If all three
up-type quarks had equal mass, then the Unitarity condition (Eq. (3)) would say this
amplitude vanishes. Since the divergent term in the integral does not depend on the
quark mass the Unitarity relationship guarantees that the divergences cancel. Thus
one is left with a finite result. One way to see this explicitly is to use the unitarity
relationship to eliminate one set of CKM coefficients, say VcsV

∗
cd. This gives

A(Z → sd) = VusV
∗
ud[f(mu) − f(mc)] + VtsV

∗
td[f(mt) − f(mc)]. (6)

The divergence cancellation is now explicit in the differences of the f(mi). This shows
that there is no need to introduce a bare flavor-changing neutral current coupling.
Furthermore, the resulting finite effect is small. The first term in equation shows the
usual GIM mechanism suppression of the two-generation theory; it is proportional to
(mc −mu)/MW . The second term is suppressed by an additional four powers of the
small parameter λ.

This same unitarity pattern is used over and over again in the Standard Model to
combine terms from similar diagrams with different internal quarks. In addition to
demonstrating divergence cancellations it is a useful way to group terms to display
both the size of the resulting terms and any possible CKM phase structure. For
example consider the loop diagrams that contribute to mixing between a D0 and a

D
0

meson. The diagrams are shown in Fig. 2.
Any one continuous quark line in these diagrams can have any of the three down-

type quarks in the intermediate state. One can write the contribution of such a quark
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d,s,b d,s,b

u–


u

c–
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d,s,b

d–,s–,b–
u–


u

c–
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Figure 2: Diagrams that give D0-D
0

mixing in the Standard Model

line as a sum of propagator terms with their respective CKM coefficients. One can
then use unitarity to group the terms, this gives

Q(k,mi) = VcdV
∗
udD(k,md) + VcsV

∗
usD(k,ms) + VcbV

∗
ubD(k,mc)

= λ[D(k,md) −D(k,ms)] + terms of order (λ5) . (7)

Since there are two such quark lines in each diagram, this gives a finite loop integral
proportional to [λ(ms −md)/MW ]2.

One ends up with a very small mixing effect, naively of order 10−5. This means
that the D mesons decay more rapidly than they mix in the Standard Model. Early
papers on this topic[8] therefore suggested that any observable mixing effect would
be a sign of new physics; that is of physics beyond the Standard Model. However
the first diagram of Fig. 2 has real intermediate states when both the two inter-
mediate quarks are either d or s quarks. Real intermediate states always bring in
long-distance hadronic physics effects; these are not completely accounted for in eval-
uating the quark-level Feynman integral. These real intermediate states contribute
to the width difference for the D mesons in the Standard Model. Furthermore, in
the operator product expansion, there are higher order operators which contribute
to the width difference without the same quark-mass suppression factors. Current
estimates suggest that the quantity y = ∆Γ/2Γ could be as large as a few percent,
while x = ∆M/Γ is probably less than 10−3 [9].

Experiments now set bounds at the few percent level on a linear combination of x
and y (different combinations in different experiments) [10]. The challenge now is to
untangle these two terms. Current experimental accuracy is insufficient to do so. If
it turns out y � x and of order a few percent one could not be sure that this is not
Standard Model physics, however if x� y with x at the few percent level that would
be difficult to understand without invoking new physics effects. So there is still some
discovery potential in this search. If the theorists could clean up the calculations
further, there may be even more.

This example illustrates the general problem in interpreting experimental results
in flavor physics. The goal is to search for effects that do not fit Standard Model
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calculations. Long range hadronic physics introduces contributions that cannot be
calculated with great accuracy. The uncertainty in the size of these effects becomes
the theoretical uncertainty of the Standard Model prediction. Our ability to see
physics from beyond the Standard Model is obscured if this uncertainty cannot be
well constrained.

This is generally the case in dealing with hadronic charm meson decays. The
overall patterns of charm decays clearly show that long-distance physics effects are
significant. Final state interaction effects, including those that involve qq annihilation,
must be invoked to fit the observations. It is difficult to make any tests of the Standard
Model in this context, as the predictions are simply not precise enough. There are,
however, a number of B-meson decays that can only be interpreted using precise
knowledge of certain D-decay rates, so those measurements are important. I will not
talk further about the interpretation of charm decays in these lectures, for a thorough
discussion of this topic see [11].

b q’’

q

q—’

W
W

b q

q’

q—’

g,z,γ

u,c,t

(a) (b)

11-2002
8657A3

Figure 3: Quark level tree (a) and penguin (b) graphs for weak decay.

Figure 3 shows what is meant by a tree diagram and a loop diagram at the level
of quark weak decays. These two types of quark-level process are the dominant
contributions for most weak decay amplitudes. Two factors govern the general size
of an amplitude contribution. One is the size of the CKM coefficient that appears
in it, the more factors of λ there are the smaller the contribution. The second is
whether it is a tree or a loop diagrams. Loop diagrams have an additional factor of
order αS(mq)/4π, due to the gluon emission. Thus, for heavy flavor decays they are
suppressed relative to trees.

One way around the hadronic physics impasse is to look for decays that are for-
bidden at the tree level and have CKM-suppressed one loop contributions. Since
any new physics process is, by definition, mediated by heavy particles, it is unlikely
to compete with unsuppressed tree-level Standard Model processes. However such
effects could be large compared to a rare or forbidden Standard Model contribution.
Hadronic corrections introduce uncertainty in the size of the Standard Model contri-
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bution, but for such channels the discrepancy arising from new physics effects could
be large even compared to this uncertainty.

In the terminology of weak decays the loop-diagrams are called penguin processes.
At the quark-level they are diagrams of the type shown in Fig. 3(b), in which the
W -boson is emitted and reabsorbed on a single quark line, and a gluon, photon or Z-
boson is emitted from the loop either as a real particle (photon case only) or produces
an additional quark-antiquark or lepton-antilepton pair. Examples in kaon physics
are decays such as K → πµµ and, even more rare, K → πνν. In B-decays processes
that occur only via loop diagrams are B → sγ, and b → sss (such as B → φKS).
In the latter case both the rate and the size of the time-dependent CP -violation are
interesting places to search for new physics.

A short comment on what channels are “pure penguin” may be helpful. It illus-
trates the general problem of hadronic physics effects. At the quark level it appears
that there are four pure penguin channels for b decays: b → sss, ssd, ddd, and dds.
In general the strong interactions readily mix dd or ss with uu—especially if these
quark pairs make a neutral pseudoscalar meson. The tree contributions b→ uud are
thus a possible contributor to many channels accessible via the ssd or ddd quark-level
process so these cannot be considered “pure penguin” channels. In the case where the
third quark is an s quark, the tree contribution b → uus is suppressed by the small
CKM factor VubV

∗
us and so does not create a large effect. Finally when the ss pair

makes a vector meson φ, the fact that this meson is almost pure ss further suppresses
any impact of the uu tree graph.

In what follows I will make a number of statements about graphs and the sizes
of certain processes. In the fourth lecture I discuss these estimates in a little more
detail. Students unfamiliar with weak decay physics should to sit down this afternoon
and draw all the types of graphs by which one quark can become three (two quarks
and one antiquark) and label all the quark lines to see how the various quark-level
final states are reached, that is how the three quarks from the b decay plus the second
quark of the original B meson combine to give the two final state particles. Try this
for at least three or four possible two-body hadronic decay channels for a B meson.

To go from quark-level final states to two body hadronic final states one usually
requires that the quarks existing after the b quark decay become the valence quarks
of the final hadrons. This is an assumption, it goes along with the idea that the
final-state hadronic processes are suppressed. Strong interaction scattering (meson
exchange) readily alters the quark composition, particularly that of the light quarks.
Quark pair annihilation to a gluon and regeneration with different flavor is also an
allowed strong interaction process. Thus one must take some care about interpreting
the quark level diagrammatics too literally. All the rescattering-type corrections to
quark-level rules of thumb are comprehended in the general term hadronic effects. For
each channel of interest theorists discuss just how well we can calculate or constrain
these effects. Once rescattering effects are allowed the distinction between tree and
penguin contributions becomes much more murky, as we shall presently see.
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3 LECTURE 2: DETERMINING CKM MATRIX

ELEMENTS

3.1 Magnitudes from B physics generalities

The Wolfenstein parametrization encodes some of what is known about the magni-
tudes of CKM matrix elements in terms of powers of the Cabibbo quantity Vus = λ,
which is well measured. The remaining parameters A , ρ and η (or equivalently

ρ = ρ(1 − λ2/2),and η = 1 − λ
2
/2) enter into b-physics. These are less well known.

This lecture is about how, and how well, one can determine them from the magni-
tudes of the CKM matrix elements in which they enter. An excellent review of this
subject is included in the particle data book [12].

In almost all cases the largest uncertainty comes from the theory. Theory uncer-
tainties have two unfortunate features, first they are difficult to quantify, and second
they are generally not statistical, so it is not clear that one treats them correctly by
adding them in quadrature. (These same two statements apply also to many types of
systematic errors in experiments.) This is why results are typically quoted nowadays
with three terms in the error: first the experimental statistical uncertainty; second
the systematic error that is intrinsic to the experimental measurement; and third the
systematic error that arises when one tries to interpret the result as a measurement
of some parameter in the theory. The difference between the second and third terms
is not always well-defined. For example one measures a particular branching fraction
but must impose some cuts to reduce backgrounds. The cuts introduce a theoretical
uncertainty already at the level of a branching fraction result because one must use
some theoretical input to determine the impact of the cut on the branching fraction.
Often a monte carlo model is used, but that model is built using some theory, as well
as data inputs. This kind of uncertainty is usually called an experimental systematic
uncertainty. When one makes the step of using a measured branching fraction to
extract the value of a CKM parameter another set of theoretical inputs are needed.
One must calculate the ratio of the branching fraction (or other measured quan-
tity) to the desired parameter. It is the uncertainty in this last step that is usually
called the theoretical uncertainty. (It too may depend on what cuts are used in the
measurement.)

3.2 Vcb

The transition b → clν can be used to extract the b → cW coupling and thus the
mixing matrix element Vcb. There are two ways to approach this, inclusive measure-
ments and exclusive decays to particular channels. As a first guess you might think it
obvious that the inclusive hadronic semileptonic decay rate measures the quark level
semileptonic decay rate; after all, if the quark decays then the hadron must. This
is called quark-hadron duality, or to be more precise local quark hadron duality (as
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opposed to the more rigorously defendable “global quark hadron duality” that applies
for example for the energy-averaged cross-section for e+e− → hadrons) [13].

The fact that this logic is a completely wrong in nuclear physics should give you
some pause. Try to measure the neutron half-life by studying the beta decays that
occur for a lump of iron (Fe56). You would conclude that the neutron is a stable
particle. So it is clear that the environment in which a particle finds itself can affect
its decay rate; in this extreme example the decay becomes forbidden, due to the
exclusion principle, because all lower-energy allowed states for the decay product
proton are occupied. The question is then how much does the environment affect
the decay for a b-quark in a hadron. Here the naive guess—not much—seems a good
one, one would not expect the energetics of the decay to be greatly changed by the
confinement of an additional light quark around the heavy b-quark, and certainly no
exclusion principle forbids the decay. This argument is compelling but not rigorous.
Its biggest flaw is that it does not tell us how to calculate the size of the error we are
making in carrying out an approximate treatment of the effect of the environment.
How big is “not much”?

The formal treatment that gives some improvement over the naive statements
goes by the name of the operator product expansion. The physical idea behind this
game is that we can separate the hard or short-distance physics and its time scale
from the soft or long distance effects. This is a weak form of the quark hadron duality
assumption, it assumes that the environment is properly accounted for in the matrix
elements, and does not affect the short-distance or hard part of the physics. The hard
physics gives us a set of local operators (products of fields and their derivatives) that
are generated by the quark-level weak decay vertex and the hard QCD corrections
to that vertex. At each order in an expansion in αS(mq) and ΛQCXD/mq further
operators can appear. The coefficients of these operators are calculated from the weak
decay and hard QCD corrections to it; these are quark and gluon level diagrams. The
soft physics gets lumped into the matrix elements of the operators. These are not
perturbatively calculable. However, there are a finite number of such matrix elements
that appear in inclusive B decays at each order in ΛQCD/mq. The hope is that these
can be determined by combining several sets of measurements that, according to this
theory, depend on the same set of matrix elements.

The same quantities that enter into the meson semileptonic decay rate, weighted
integrals over quark distributions in the B meson, also govern the moments of the
charmless hadronic spectra seen in the decay B → Xsγ. Here Xs denotes any final
states containing non-cancelled strangeness. So eventually, with enough data, and
assuming the expansions in ΛQCD/mq and αS(mb) converge well enough, we should
be able to fit for the leading set of matrix elements and Vcb simultaneously. The terms
we have dropped via our heavy-quark and QCD expansions can be estimated on the
basis of the sizes of the terms that we have kept. Indeed with sufficient data the
parameters of the leading and next-leading terms are over constrained, so the basic
assumptions of the method can be tested by checking for self-consistent results.
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In defining the operator matrix elements and their coefficients we introduced an
artificial scale, the division between what we call a hard gluon and what we call
a soft one. Both the operator coefficients and the matrix elements depend on this
scale. If we could treat both exactly there should be no dependence on it in the final
result. The calculations also depend on a second scale, which is the scale at which
we choose to renormalize the strong coupling constant. Again this scale should not
enter into the final result if the calculation is done consistently, but can do so when
approximations are made. Both scales appear in a similar form in the results; they
are usually chosen to be equal. Scale dependence appears both because we truncate
the perturbative calculation of operator coefficients at some low order, and because
we do not have exact methods to determine the matrix elements of the operators.

Additional scale dependence appears because of the dependence of the rate on
another unphysical parameter, the mass of the b-quark. Quark masses cannot be
directly measured. There are a number of different prescriptions used to define them.
These prescriptions can introduce some scale dependence if used in leading or next-
to-leading order in perturbation theory. In addition, care is needed to ensure that a
consistent definition is used for all parts of an analysis of data.

If you recall the calculation for muon decay, which I hope you have all seen at some
point in your education, semileptonic decay rates scale as the mass of the decaying
particle to the fifth power. The situation is not quite that bad, as three of the five
powers of mass are actually phase-space factors, which scale as the mass difference
mb − mc. This is more readily determined; it is given by the difference of meson
masses up to corrections suppressed by ΛQCD/mc.

The true answer for any physical parameter should not depend on the artificially-
introduced scales at all. However, all calculations yield results that do have some scale
dependence because approximations are made that do not correctly treat these details.
What scale should we choose to define the answer? What theoretical uncertainty
arises because of this choice? The usual prescription in b-decay physics is to say the
right scale is the mass of the b quark, since this sets the physical scale of energy release
in the problem. The uncertainty due to scale-dependence is typically estimated from
the amount the answer changes as the scale is varied from mb/2 ≤ µ ≤ 2mb. Clearly
this prescription is quite arbitrary! Fortunately, scale-dependence is much decreased
when higher-order QCD effects are calculated. Then there is a range of choices for
the scale around mb over which the result is quite stable. It is generally assumed that
this gives the correct scale-independent result with small uncertainty.

The upshot for all this is that extraction of Vcb from inclusive data has an un-
certainty of order 10% when only the total rate and the leading order perturbative
calculation are used. This is the story as I told it in Greece. More recent work in-
cludes calculation of the higher order perturbative corrections and the use of moments
of the hadronic spectral distribution to determine the non-perturbative parameters
(the operator matrix elements that appear up to the first two powers of the ΛQCD/mq

expansion). The parameters so determined include mb. This approach shows promise
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of giving a very accurate value (less than 5% uncertainty) for Vcb. However as yet not
all the details of this method are fully worked out and understood. At present there
appear to be some inconsistencies between details of data and theory. More work is
needed to clarify this situation [14].

The alternative determination of Vcb comes from an exclusive decay to D∗lν or
D lν. In this case the fact that both the b and c quarks are massive on the scale of
ΛQCD gives us a very nice situation. (For the moment let us put aside the concern
that the charm quark is not really so very massive on this scale, and talk as if this is a
good limit.) In this limit both the B and the D mesons can be pictured as a massive
static quark around which the light quark is located in a distribution with a size
(and thus a light-quark momentum) scaled by ΛQCD. We don’t know a lot about this
distribution; so it is often referred to as “the brown muck”. However we do know that
QCD is flavor blind, so, up to terms of order ΛQCD/mq, the light-quark distribution
is independent of which massive quark is at its core. Indeed, it is also independent of
the spin orientation of the massive quark, so, in the heavy quark limit, it is the same
for the B, B∗, D and D∗ mesons. Now consider the weak B → D(orD∗)lν decay
at the kinematic point where the D-type meson is at rest in the B rest frame. The
rate is the quark decay times the matrix element of the operator between the meson
wave functions. But the heavy quark limit tells us that the meson wave functions are
identical at this particular kinematic point! So we know the matrix element. The
operator simply switches the core quark type (and perhaps also its spin) and the wave
function overlap is 1. Of course there are corrections to this statement, for finite mass
quarks. It turns out that for the transition B → D∗lν the corrections begin at order
(ΛQCD/mq)

2, while for Dlν the first correction is of order ΛQCD/mq [15]. This makes
the D∗lν decay a particularly good way to fix the parameter Vcb, since even for the
charm quark the second order correction is small. In addition there are calculable
perturbative QCD corrections.

There is a catch however. The situation in which the leptons carry off all the energy
of the b → c transition is clearly a kinematic endpoint. The cross sections vanishes
at this point, because of phase space factors going to zero! So, in actuality, one
must measure at some distance from this end point and then extrapolate to it. This
introduces some theoretical uncertainty in the relationship between the measurement
and the parameter Vcb because we must postulate and fit how the wave-function
overlap changes as we move away from the known end-point. The uncertainty from
this fitting can be reduced if the measurement is made closer to the end-point, but
of course the rate is smaller there. So there is an interplay here between theoretical
uncertainty and statistical uncertainty. In such a case more data can shift the result to
smaller uncertainty. Currently the accuracy obtainable by this method is also at the
5− 10% level, with the range depending on how one combines various non-statistical
sources of error.
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3.3 Determinations of Vub

The situation for the parameter Vub is in principle quite similar to that for Vcb; one
can pursue either an inclusive or an exclusive semi-leptonic measurement to fix this
quantity. Additional difficulties arise in both cases.

In the inclusive case the problem is to discriminate the b → u decays from the
much more copious b → c decays (including the effects where the c-quark decays to
a d-quark, so no strange particles flag its presence). This requires kinematic cuts
to exclude the region reachable via a charm quark decay. Then one must determine
what fraction of the b→ u events is excluded by this cut. This determination depends
on theoretical modelling of the spectrum. At the quark level the spectrum is readily
calculated, but the hadron level spectrum has a different end-point and there are also
noticeable effects from hadronic resonant states near the end-point. These do not
appear in the quark-level calculation.

As in the case of decays to charm the assumption of quark-hadron duality can be
more reasonably applied for a set of a few moments of the spectral function, than
for the detailed spectrum itself. The calculation of Vub can be given in terms of
such moments. The moments of the quark distribution in the B meson obtained
from B → Xsγ can also be used to fix some of the non-perturbative quantities that
enter the extraction of Vub. In addition, because of the unseen neutrino, there are
several different choices for how to impose the cut to exclude charm decays. One
can use the charged lepton momentum, or the hadronic invariant mass, or some
combination of these two. Like the inclusive determination of Vcb this method is
based on the assumption that quark-hadron duality correctly gives the total rate
and leading moments of the spectrum, though not the all details of the spectrum.
It is difficult to quantify the residual theoretical uncertainty that comes from that
assumption. One test is to check whether the result is stable as the choice of cuts
is varied. Again this is currently a work in progress; it holds promise for accurate
results [16].

For exclusive decays such as B → ρ`ν or B → π`ν one cannot use the heavy
quark limit to constrain the transition matrix element. The heavy quark theory
suggests that one could use comparison with the corresponding D decays in matched
kinematic regions for the transition matrix element, but the ΛQCD/mc corrections
can be large and, at least to date, are not well-controlled. Furthermore data on both
the B and D decays is quite limited at present. The alternative approach is to fix
the transition matrix element by a lattice calculation. At present such calculations
have only been done in the “quenched” approximation, which means that the effect
of internal light-quark loops is set to zero. Furthermore, the quark mass used for the
light quarks is generally large compared to the physical value, so an extrapolation in
that parameter is also needed. Both effects are sources of theoretical uncertainties.
Both these issues can be clarified with sufficient computing time available. Methods
to treat the quark-loop effects, and the computing power to calculate with lighter
quark masses are beginning to appear, and certainly will be developed over the next
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few years. Perhaps by the time there is sufficient data to give a statistical accuracy of
order of 5% for these decays there will also be sufficiently good lattice determinations
of the transition matrix elements to give an overall 5% level accuracy for Vub. However
that day is at least a few years in the future.

3.4 The third side of the triangle

Like Vub, the quantity Vtd is of order λ3, so the prospect of measuring it directly in
top-quark decays, where it must compete with the order 1 leading t → b decays is
remote at best! Instead one must find loop effects that are dominated by top-quarks
in the loop and use these to fix the magnitude of Vtd and likewise Vts. Fortunately
these are common, the most readily measured being the mass (and width) differences
in the neutral B meson systems, in other words the effects due to B-B mixing. These
are mediated by diagrams like those of Fig. 3, but now with external b and d quarks
for Bd and b and s quarks for Bs instead of the c and u quarks of the D meson case,
and internal up-type quarks.

As in the D-mixing case we can look at any one quark line and write the contri-
bution to the loop integrand for this line, summing over all three up-type quarks in
the intermediate state. This gives

Q(k,mt,mc,mu) = VtbV
∗
tiD(k,mt) + VcbV

∗
ciD(k,mc) + VubV

∗
uiD(k,mu) (8)

where the functions D(k,m) are the quark propagators, and i can be either d or s.
Again we use the unitarity relationship Eq. (3) to eliminate the term proportional to
VcbV

∗
ci, giving

Q(k,mt,mc,mu) = VtbV
∗
ti (mt −mc)D(k,mt)D(k,mc)

+VubV
∗
ui(mu −mc)D(k,mu)D(k,mc). (9)

Since the top quark mass is so much larger than the others and the typical loop
momentum k is large compared to the charm quark mass, the first term dominates
(in the case i = s the second term is also CKM suppressed). There are two such
quark lines in each diagram, so the dominant contribution to the mixing amplitude
is proportional to V 2

ti . This quantity multiplies a known coefficient times the matrix
element of a local four-quark operator between the B and B meson states.

For the Bd system the mass-difference between the two mass-eigenstates is well-
measured, so the dominant uncertainty in the extraction of Vtd comes from the uncer-
tainty in the theoretical calculation of the operator matrix element. Lattice calcula-
tions for this quantity are steadily improving, but the resulting theoretical uncertainty
is still quite large.

Since Vts is strongly constrained by unitarity, a precise measurement of the Bs

system mass difference can give Vtd from the ratio of Bd to Bs mass differences. In this
ratio much of the uncertainty in the matrix element cancels, since, up to the effect of
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the mass difference between an s and a d quark, the two matrix elements are the same.
The correction is an SU(3)-breaking effect, where the SU(3) in question is the flavor
symmetry of the three light quarks. Naively one might expect this effect to be of order
(ms−md)/mb, but care must be taken to ensure that any (ms−md)/ΛQCD corrections
are properly included. (There are also calculable perturbative QCD corrections; these
are well understood.) For the Bs only an upper limit on the mass difference has so far
been established [17]. It is hoped that the next round of experiments at the TeVatron
will yield an actual value for the Bs mass difference. Even the upper limit currently
available significantly improves the constraints on Vtd.

The three measurements Vcb, Vub and Vtd are in principle, sufficient to determine
the unitarity triangle, but the uncertainties in their values at present are quite large.
In particular, if these measurements were all we had, it would be difficult to say with
certainty that the CP -violating parameter is non-zero in the Standard Model. Of
course, we know from observation of CP violating effects in both K and B decays
that this is the case. The K decay result gives a constraint on a combination of ρ
and η. The constraint has a large theoretical uncertainty, but excludes η = 0 which
would give a vanishing rate for KL → ππ. The theoretical uncertainty arises from
the matrix element for the K-mixing operator, which is calculated on the lattice. It
would however provide a very nice test of the Standard Model to see the result η 6= 0
appear from measurement of the CP conserving quantities only, and consistent with
the result given by combining the CP violating measurements in K and B decays.
All that takes is an improvement in the theoretical uncertainties, reducing them in all
cases to the few percent level. The current progress, both in lattice calculations and
in applications of the moment method of operator product calculations is certainly
bringing that day closer.

3.5 Determining the triangle from K decays alone

Another way to test the Standard Model predictions would be to determine the uni-
tarity triangle parameters in two separate sets of processes, the B decay processes
discussed above and then, independently, from K decay processes. As I stated earlier,
in general there are large long-distance hadronic physics effects in K decays, so the
relationship between measurement and parameters is fraught with large theoretical
uncertainties in many cases. Nevertheless one can search for cases where the rela-
tionship is somewhat cleaner, and use these measurements to fix the values of ρ and
η and thus the shape of the unitarity triangle [18].

The CP violation in the decayKL → ππ is one such quantity. This decay gives the
parameter εK which defines how the kaon mass eigenstates differ from CP eigenstates.
This can be calculated as a function of CKM parameters times an operator matrix
element as was described for D-mixing above. The matrix element can be evaluated
using lattice calculation. The result is that the known value of εK defines a broad
allowed band in the ρ, η-plane. and clearly excludes the choice η = 0. This result is
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usually presented in combination with the B-decay results as discussed above.
Further constraints can, at least in principle, come from the measurements of

certain rare K-decays. The decay K0 → π0νν is a CP -violating effect that is directly
proportional to η in the Standard Model. The problem is that the proportionality
constant is so small that the rate has yet to be measured; the prediction is well below
current limits. (Of course, if we are talking about testing the Standard Model, rather
than defining the unitarity triangle, the search for this decay provides an interesting
window for new physics effects.) The decays K+ → π+νν and KL → µ+µ−, once
both are well-measured, can be combined to give a determination of ρ and η albeit
with significant residual theoretical uncertainties. Eventually the match between the
values obtained from B-decays and those from K decays can provide a test of the
Standard Model, but it seems to me unlikely that the theoretical uncertainties that
obscure this comparison can be reduced much below the 10% level.

4 LECTURE 3. CP VIOLATION

“... I would like to have the asymmetry between positive and negative electricity in the
laws of nature (it does not satisfy me to shift the empirically established asymmetry
to one of initial conditions)” Wolfgang Pauli, in a letter to Heisenberg, June 1933.

This remarkable quote from Pauli shows he felt that matter-antimatter asymmetry
in the equations, the asymmetry we now know as CP violation, is preferable to an
initial condition for understanding the matter-antimatter asymmetry of the Universe.
Pauli aside, it seems that most physicists accepted a complete symmetry in the laws
of physics between those for matter and those for antimatter as a natural condition
of their theories until the empirical discovery that this could not be true with the
observation of the two pion decay of the long-lived neutral kaon (the supposed odd-
CP eigenstate).

Now, almost forty years later, not only do we have a theory that accommodates
CP violation, namely the three-generation Standard Model, but also we have observa-
tions of new CP -violating effects in B meson decays, and the expectation that further
such effects will soon be observed. This puts us in the exciting position of being able
to test whether the observed patterns of CP -violation fit the tightly-constrained pre-
dictions of the Standard Model.

In this lecture I will first develop a general discussion of why and how CP -violation
occurs in field theories, and then review what we now know, and what further tests are
likely. I have already stated that CP violation arises when there is a phase difference
between two couplings in the theory that cannot be removed by any set of phase
redefinitions of the fields. But why do complex couplings give CP violation? The
basic answer is that they set up a situation where two amplitudes which interfere with
one another in contributing to the same process do so with opposite sign for a decay
and the CP -conjugate decay—leading to CP -violating rate differences. We will see
that such phase differences of couplings can also lead to a situation where there is no
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choice of phase conventions under which certain mass eigenstates can be defined as
CP -eigenstates. Either of these two effects is an explicit violation of CP symmetry.

4.1 Types of CP violation

In generality, we can define three types of CP violation. The first is a CP -violating
difference in the magnitude of the amplitude A for any process and the amplitude
A for the CP -conjugate process (and thus a difference in the rates). This can occur
for both charged and neutral particle decays. It requires that there there are two
non-zero phase differences, both in the phases of the Lagrangian couplings, and in
the absorptive parts of the two amplitude contributions. The Lagrangian phases are
generally called “weak phases” because, in the Standard Model, they arise in the weak
interaction parameters, namely in the CKM matrix. The absorptive phases are called
“strong phases” because they arise from rescattering effects that are dominated by
the strong interactions. Strong phases occur because multiple channels, as labelled
by particle content, are mixed by the strong interactions. As you should remember
from whenever you learned scattering theory, such mixing can make the transition
matrix element for a given channel complex.

The rate difference can be seen by the following algebra. Let the amplitude for
the decay of interest be

A = A1e
iφ1eiδ1 + A2e

iφ2eiδ2 (10)

where the Ai are real amplitudes, the φi are the coupling constant phases (weak
phases), and the δi are the phases from absorptive parts in the amplitude (strong
phases). Now the CP conjugate amplitude is given by

A = A1e
−iφ1eiδ1 + A2e

−iφ2eiδ2 . (11)

The weak phases reverse sign between A and A because the CP -conjugate rate is
governed by the complex conjugate couplings. The strong phases, however, stay the
same as before, because whatever absorptive parts contribute them are matched by
the CP -conjugate absorptive parts. One then readily sees that the difference in rates
is given by

|A|2 − |A|2 = 2A1A2 sin(φ1 − φ2) sin(δ1 − δ2) . (12)

Clearly then such a CP -violating rate difference requires that both the weak and
strong phases are different for the two terms in the amplitude. This is called direct
CP violation, or CP violation in the decay amplitude.

Note also that since the terms that gave the two phases φ1 and φ2 contribute to
the same rate they must correspond to the same overall set of quark fields for the
external particles of the diagram. Thus any rephasing of the fields changes them
both in the same way; the difference is rephasing invariant. (This must be true
for any physically observable quantity.) Direct CP violation has been a topic of
considerable theoretical and experimental attention, chiefly because it distinguishes
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between a class of theories called “superweak” that predict no such effect, and all
others. However, because of its dependence on strong interaction phases, which are
notoriously difficult to calculate in most situations, it is generally very difficult to
use an observation of direct CP violation to pin down theoretical parameters or
otherwise test the Standard Model theory. One exception is obvious, those cases
where the Standard Model predicts no, or very small, direct CP violation effects. In
such cases observation of significant direct CP violation would be a clean signature
that some new physics effect is contributing to the amplitudes. Hence such channels
are important to identify and to study.

The remaining two types of CP violating effect are peculiar to the systems of neu-

tral but flavored pseudoscalar mesons, K0, K
0
; D0, D

0
; B0, B

0
; and Bs, Bs. In each

case there are two distinguishable quark flavor eigenstates. Let us use the notation

P 0, and P
0

to denote any such pair of particles, with the phase convention chosen

so that (CP )P 0 = P
0
. If CP were an exact symmetry then the two CP -eigenstates

(P 0 ± P
0
)/
√

2 would have to be the mass eigenstates. Note that a mixing amplitude

between P 0 and P
0

would exist, as we showed for the case of the D mesons in Lecture
1, it can give both a mass and width difference between these two states. In general
the mass eigenstates can be written as

PL(H) = pP 0 ± qP 0 (13)

with the constraint p2 + q2 = 1. The subscripts H and L denote the two mass
eigenstates—H for the heavier and L for the lighter, with mass difference ∆M . A
second type of CP violation occurs if |q/p| 6= 1. In that case it is clear that the mass
eigenstates cannot be the CP eigenstates. This is called CP violation in the mixing.
It is seen in the kaon system where q/p−1 is of order εK . A similar effect is expected
also for the Bs system, in the Bd system it is very small.

The third type of CP violation can occur even when |A/A| = 1 and |q/p| = 1.
It occurs for decays of neutral pseudoscalar mesons to a CP eigenstate f . Such a

state is accessible both from decay of P 0 (with amplitude Af ) and that of P
0

(with
amplitude Af = ηfAf where CP |f >= |f >= ηf |f >). The CP quantum number
ηf = ±1 depends on the particular state f under study. A particle that is (somehow)
known to be P 0 at time t = 0 can decay to f either directly, or by first mixing to

P
0

and then decaying to the final state. These two paths can interfere to give a CP
violating effect, a difference in the (time-dependent) rate for an initial P 0 and that

for an initial P
0

to produce the state f . Let us define

λf =
q

p

Af
Af

. (14)

As will be shown later, one finds a contribution to the rate difference that is propor-
tional to
|Af |2 sin(∆Mt)Imλf . This third type of CP violation occurs whenever the weak
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phase of the decay amplitude is different from the weak phase of the mixing ampli-
tude that is when Imλf 6= 0. (In addition there is a possible direct CP violation
contribution to this rate difference, proportional to |Af |2 cos(∆Mt)(1 − |λf |2).) The
quantity λf appears over and again in discussions of CP violation in neutral B decays,
so it worthwhile remembering its definition.

What final states are CP eigenstates? Obviously the quark content of the state
must be CP self conjugate, every quark matched by its own antiquark type. However
that is not sufficient. In general any such state can include a mixture of CP -odd and
CP -even states. One clear exception is when the decay is to a two-body or quasi-
two-body state of definite orbital angular momentum. (Here quasi-two-body simply
means any state dominated by two particle contributions, even if one or both of the
two particles is an unstable hadron). If at least one of the two particles has spin zero
then the orbital angular momentum must match the spin of the other particle. Then
the state is a CP eigenstate; some examples are J/ψKs, π

+π− and ρ0π0. For two
higher-spin particles one can often separate out contributions of even and odd relative
angular momentum (and thus those of even or odd CP ) by angular analysis of the
decays of one of the particles [19]. For multi-hadron final states it is more difficult to
isolate contributions of definite CP . This is why much of the attention in searches
for CP violation in B-decays is on the two-body or quasi-two-body final states.

This third type of CP violation is particulary interesting in the case |λf | = 1. Then
the imaginary part of λf directly measures the phase difference between the mixing
and the decay amplitudes, a quantity that is cleanly predicted in the Standard Model.
In this case the magnitudes and strong phases of the decay amplitudes do not enter
the asymmetry result (the difference of rates divided by the sum), so there are no
hadronic physics uncertainties in extracting CKM phases from such a measurement.

The case ψKS (where ψ stands for any cc resonance, including the ηc type) is an
example of this type; in this case the asymmetry is proportional to sin2β where β (or
φ2) is the bottom left hand corner of the b-decay unitarity triangle, the angle between
VcbV

∗
cd and Vtb, V

∗
td. This will be explained in more detail a little later.

All three types of CP violation have been observed. In K decays the quantity ε′ is
the first type—direct CP violation or |A/A| 6= 1. The quantity Re ε measured in the
decays KL → ππ is the second type, CP violation in the mixing or |q/p| 6= 1, and the
asymmetry in B decays to ψKS (and ψKL) is of the third type, asymmetry due to
interference between decay with and without mixing, or Imλf 6= 0. For an up-to-date
review on current and prospective tests of the Standard Model via CP violation see
[20].

4.2 Formalism for B decays

Let us now examine this general situation more specifically for the case of B decay,
since this is the topic of much current and future experimental attention. I will
develop the formalism in some detail for the case of the B factories, that is, for an
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asymmetric e+e− collider running at the Υ4s.
To dispel any thought that this is the only interesting way to do B physics I first

make a few comments on the case of hadron colliders. The two types of experiments
have different advantages and disadvantages; both are needed to carry out the full
program of B physics measurements. One can produce many more B-mesons per
hour in a hadron collider, but along with them one also produces many other hadrons,
and many more events that contain only other hadrons. The question that must be
considered for each decay mode is whether one can devise a way to trigger on the
events of interest, separate the particles produced in the B decay from other hadrons,
and from backgrounds that fake a B event, and tag the initial flavor of the B meson.
Each of these steps is somewhat more difficult, and less efficient, in the hadronic
environment. How much more difficult depends on the mode in question. However
since one is starting with a much higher production rate, lower efficiencies can be
acceptable. In addition, all types of b-hadrons are produced, so a hadronic collider
can study processes that are inaccessible at an e+e− collider-based B factory, which
makes only Bd type mesons when running at the Υ4s resonance. Most importantly,
the Bs mesons are not accessible to the current B-factories, and their decays are as
interesting for testing the Standard Model as those of Bd mesons. Conversely, the
mode B → π0π0 is important and cannot be readily studied except at the e+e− B
factories. [These are examples to show why both approaches are needed; they are not
the only cases.]

4.3 B decay formalism

Let us define M = (MH +ML)/2, and ∆M = MH −ML, and similarly for Γ and ∆Γ,
where the subscripts H and L denote the heavier and lighter mass eigenstates respec-
tively. Another warning about conventions is in order here; there are, unfortunately,
two of them floating around. With the convention defined above ∆M is obviously
positive, however the sign of q/p is a physical quantity to be explored. The other
convention labels the two states as 1 and 2 and defines q/p to be positive (where 1
is the state with +q, and 2 has −q in the superposition Eq. (13)). In this alternate
convention the sign of ∆M is a priori undefined.

Now, using the first convention, let us define the states B0(t) (B
0
(t)) as the time-

dependent superposition of a B0 and a B
0
, (or, equivalently, of a BH and a BL) which

at time t = 0 is a pure B0 (or B
0

respectively).

B0(t) = g+(t)B0 +
q

p
g−(t)B0

B0(t) =
p

q
g−(t)B0 + g+(t)B0 . (15)

The functions g±(t) can readily be found by writing the state B0(t = 0) as a super-
position of BH and BL and then allowing that state to time evolve. A little algebra
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gives

g+(t) =
1

2
e−(Γt/2)eiMt (16)

×
{

cos
∆Mt

2

(

e−(∆Γt/4) + e+(∆Γt/4)
)

+ i sin
∆Mt

2

(

e−(∆Γt/4) − e+(∆Γt/4)
)

}

→ e−(Γt/2)eiMt cos
∆Mt

2
for ∆Γ = 0

and

g−(t) =
1

2
e−(Γt/2)eiMt (17)

×
{

i sin
∆Mt

2

(

e−(∆Γt/4) + e+(∆Γt/4)
)

+ cos
∆Mt

2

(

e−(∆Γt/4) − e+(∆Γ|t|/4)
)

}

→ ie−(Γt/2)eiMt sin
∆Mt

2
for ∆Γ = 0 .

Note that the states B(t) are perfectly well-defined for t < 0. What this means

physically is that superposition of B0 and B
0

which, if it does not decay, would evolve

to be pure B0 (or pure B
0
) at time t = 0. (Note however that the state so defined

has norm greater than 1 at t < 0 in order to arrive at time t = 0 with norm 1. This is
a bit artificial, in any real case we normalize the state for any particle at production
time and then evolve that state with a decaying exponential.)

In an e+e− B factory the initial system is produced in a coherent state which

remains exactly B0B
0

until such time as one of the particles decays. (Better said,
both particles oscillate, but they do so coherently, so that the probability of finding

two B0 particles or two B
0
particles vanishes at all times, as long as both are present.)

However once one particle decays the other continues to oscillate until such time as it
decays. If one B decays to a flavor-tagging mode and the other decays to a CP -study
mode we have an event that can be used to reconstruct the time dependence of the
asymmetry. We find the rate for the production of such events is given by

R(ttag, tf ) ∝ e−Γ(ttag+tf )/2
∣

∣

∣Atag

∣

∣

∣

2 |Af |2 (18)

×
{

1 + |λf |2
2

∓ cos ∆m(tf − ttag)

(

1 − |λf |2)
2

)

± sin ∆m(tf − ttag) Imλf

}

.

The CP asymmetry for a final state f is thus

af =
R(Btag) −R(Btag)

R(Btag) +R(Btag)
=

− cos(∆Mt)(1 − |λf |2) + 2 sin(∆Mt)Imλf
1 + |λf |2

. (19)

In this last equation we have set t = tf − ttag. In an asymmetric B factory we can
measure this time from the physical separation of the two B-decay vertices, since the
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pair is produced with known large momentum in the direction of the higher-energy
beam. (Note that this time difference is negative when the tagging decay occurs later
than the CP -eigenstate decay.) One CP -violating term survives in the case |λf | = 1.
It is proportional to an odd function of time, and hence would vanish if one were
to integrate over all times. This quantity is particularly interesting because it gives
us a result that directly measures the difference of weak phases of the mixing and
decay terms, and thus the relative phases of certain CKM matrix elements, with no
uncertainties from hadronic physics effects.

An example of this type is the decay f = ψKS. At the quark level this is a
b→ ccs decay. There are both tree graph and penguin graph contributions that give
this quark content. The tree graph CKM coefficient is VcbV

∗
cs. We can use unitarity

to write the penguin graph contributions as two terms, one with the same CKM
coefficient as the tree graph and the other proportional to VubV

∗
us. This term is small,

it is both a penguin only term and furthermore suppressed by λ2 compared to the
other (tree+penguin) term. Thus for this channel |λf | = 1 at the level of few percent
accuracy. For the two decay paths to interfere we need both a B mixing and a K
mixing. Thus the phase measured here is

− arg(q/p)B arg
A(ψKS)

A(ψKS)

arg(q/p)K = −2 arg V ∗
tbVtb arg(VcbV

∗
cs) arg(VcsV

∗
cd)

= −2 arg V ∗
tbVtbVcbV

∗
cd = 2β . (20)

This decay is a particularly attractive one to study. It is clean both theoretically and
experimentally, a rare situation! The channel is readily recognized, for example by
the two-lepton decay of the ψ-type resonance and the two-charged-pion decay of the
KS.

The results from both BaBar and Belle now show a clear CP violation in this
channel. The extracted value for sin(2β) is in good agreement with the value given
by measuring the sides of the triangle. Figure 4 shows these results, and that from CP
violation in K decays, as well as the allowed regions for the apex given by measuring
the sides. The figure is taken from the Particle Data Group report on the CKM
Triangle [12]. That report describes in detail what measurements have been used for
each quantity in this figure. You can see that there is a common region for the apex
that is consistent with all these measurements. The Standard Model has survived yet
another test!

It will take some years more work on B decay physics to complete the next set
of tests to a comparable level of accuracy. There are many interesting channels to
study. Few of them have sufficient statistical accuracy as yet to give refined tests
of the theory. Modes where a similar analysis predicts no CP violation because the
decay weak phase cancels the mixing weak phase provide a good test of the theory.
This is the case for example, up to few percent corrections, for the channel Bs → ψφ.
A large observed CP violation this channel would be a clear indication of physics
beyond the Standard Model. However the existing B factories cannot study it, so this
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Figure 4: Figure taken from Particle data group review, showing the consistency of
all measurements with a single choice of CKM parameters.

and other Bs results await a good B-physics detector at a hadron collider. Another
interesting case is B → φKs, here the argument is similar to that for ψKS, except
that there is no tree diagram contribution. This makes the ratio of the dominant
and sub-dominant terms smaller, but the subdominant term is still suppressed by λ2

compared to the dominant one. Ignoring the sub-dominant terms, the asymmetry
in this channel should be the same as that for ψKS. As yet statistics are poor, the
results seem to disagree with that prediction at about the two standard deviation
level [21]; further statistics are needed to clarify this situation.

As an example of a case where |λf | 6= 1, consider the channel B → D+D−. Here
the b quark must decay to give ccd. This can be done with either a tree diagram,
which enters with CKM coefficient VcbV

∗
cd, or via a W -loop transition b → d where a

gluon or Z-boson emitted from the loop creates the cc pair. Inside the loop the quark
line can be either a top, charm or up quark, giving three terms. Once again we use
the unitarity condition to rewrite the coefficient of one of these terms as the negative
of the other two, thereby grouping the three terms into two. In this case none of the
three terms is small, so it is quite arbitrary which one we eliminate. I choose to keep
one that has the same form as the tree term, and one that has the same weak phase
as the mixing diagram. Thus I eliminate VubV

∗
ud to get a contribution from the loop

diagrams of the form

VcbV
∗
cd[f(mc) − f(mu)] + VtbV

∗
td[f(mt) − f(mu)] (21)

where the function f(mi) denotes the result of the Feynman loop-integral with an
internal i-type quark (with i = u,c, or t). The final amplitude thus has two terms
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that have different weak phase factors because they have different CKM coefficients;
these two terms also possibly have different strong phase factors. The operators that
enter for the tree term and the penguin term are different. The combination of those
operators that appears is different for the two terms with different CKM factors.
Thus there is no reason why the strong phases of those two amplitude contributions
must be the same. This means that we have a situation for which |Af/Af | is not
necessarily 1, there can be direct CP violation in this channel. The argument of λf
in such a case is not given directly by the phases of the CKM factors that enter. One
can write the measured quantity proportional to sin(∆Mt) as

Imλf=D+D− = Im[(q/p)BAf/Af ] = |λf | sin(2β + θf ) . (22)

The magnitude of λf can be measured from the coefficient of cos(∆Mt), but the
unknown angle θ is not determined by this measurement. It depends on the relative
magnitudes and strong phases of the two amplitude contributions. The uncertainty
in the size of θf must be accounted for in assigning the theoretical uncertainty to the
value of β extracted in this way. One can argue that the tree contribution dominates
over the penguin one, in which case |λf | should be close to unity and θf should be
small. Even if the measurement agrees with the first of these statements this does
not guarantee the second is correct. We need further inputs to give us a more reliable
numerical constraint on θf .

There are many other channels where this pattern of tree plus penguin amplitudes
leaves us with a shift between the measured phase quantity and the CKM phase dif-
ferences that we want to evaluate. In some cases we can use further inputs, measured
in other related channels, to determine or constrain these shifts. Tomorrow’s lecture
will focus on calculational methods. We will discuss some examples that show how
symmetries of the strong interactions can be used to relate measurements for different
channels and thereby constrain theoretical uncertainties such as the value of the shift
θf in some cases.

5 LECTURE 4: THE THEORISTS’ TOOLKIT

Up until now I have not discussed any details of what theorists calculate and how
the calculations proceed. Clearly in this one remaining one lecture we can only brush
the surface of that topic. My intention today is that you become familiar enough
with the jargon of theory for B decays that you can tell when theorists are talking
about solid calculations and when they are talking about estimates. Even when you
think you know that much, you should always ask any theorist to try to quantify the
uncertainty in his or her result; and then you should go ask several more theorists to
give their assessment of the uncertainty in that particular calculation. Human nature
comes into the game, because there is seldom any rigorous way to evaluate theoretical
uncertainties once we are dealing with hadronic physics effects. It is human nature for
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people working on a problem for a long time to believe that the work they have done
is definitive, and hence to tend to underestimate the uncertainties in it. However it is
just as true that people who have thought little about the same problem will tend to
be skeptical about the work they have yet to examine and understand and so perhaps
overestimate the uncertainties in it. The only way we can get out of this bind is to
apply the method in enough cases that we learn from empirical results how well it
works in general. Then if we see a discrepancy much larger than expected we can
begin to investigate it as a possible evidence for new physics. As you can see this is
dangerous ground, logically speaking. What if the evidence we start with in testing
how well the theory works has new physics effects in it, how could we tell? Unless
the effect is clearly larger than our uncertainties, we cannot. Over and again we meet
this issue. There is no way out except for theorists is to try to quantify uncertainties
as reliably and as honestly as possible. As soon as any apparent discrepancy arises,
everyone will re-examine the possible theoretical uncertainties. Only when we have
solid methods to constrain the theoretical uncertainties can any discrepancy tell us
about new physics. Frustrating as it is, that is the world in which we live.

5.1 Terminology for diagrams

Figure 5 shows a large collection of diagrams for two body decays of a meson. These
diagrams are not really Feynman diagrams, they are a hybrid picture where the weak
interaction and possibly one or two hard gluons are drawn as a Feynman diagram and
the way valence quarks combine to make hadrons is indicated by a circle connecting a
quark and antiquark line. Of course there are many soft gluons and quark-antiquark
pairs that can contribute that are not indicated in these diagrams. In addition I have
drawn dotted loops to indicate color index connectivity within each diagram. The
same Feynman diagram at the quark level can become more than one diagram in
Fig. 5.

Let us examine first Diagrams (a) and (b). At the quark weak-interaction level
these are both the same, the b-quark to become some up-type quark (u, or c) and
the W then produces an additional quark (down type) and antiquark (u or c). (That
is for decay of a B meson which contains, by the peculiarity of our conventions, a b-
type quark. For a B meson, you can follow the same pictures, but reverse the roles of
quark and antiquark.) That topology for the weak decay makes both these diagrams
tree contributions. However they differ in the topology of how the quarks combine in
the final mesons. Depending on the particular final state one or the other or both of
these diagrams might contribute to the amplitude.

In diagram (a) the quark and antiquark coming from the W end up in the same
final meson. This is called a color-allowed tree contribution, because the color singlet
nature of the W completely separates the color flow loops of the two parts of the
diagram, so one sums over possible colors twice in this diagram, once for each color-
loop. In diagram (b) the quarks from the W end up in two different final mesons.
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Figure 5: Diagrams for two-body B decays.
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This has the consequence that there is only a single color-flow loop. Thus there is only
a single sum of colors in this diagram. Since that gives diagram (a) a color advantage
over diagram (b) of one factor of NC (the number of terms in the color sum) one
expects contributions of type (a) to be larger than those of type (b) by something like
a factor of NC . Thus the second diagram is called a “color suppressed” contribution.
This is not a rigorous calculation of the ratio of the two contributions, they are differ
by more than the color flow. If one writes the short-distance part of these diagrams
as a sum of operators the relative coefficients of the operators are different in the two
cases. Since operator matrix elements are not perturbatively calculable, one cannot
give any perturbative prescription for the ratio of the two contributions. So the 1/NC

color suppression is a rule of thumb for making estimates of expected branching ratios,
not a precision prediction.

Diagrams (c), (d) , (e)and even (f) all have the common feature that the W -boson
is emitted and reabsorbed from a single quark line. Any such diagram is called a
“penguin diagram”. What can we say about these various pictures? First note that
diagram (f) is in fact no different (in Feynman diagram terms) from diagram (c), it is
simply a distorted copy of the same diagram which emphasizes the fact that there is
a possible time-ordering of this picture which looks like a tree process plus a strong
interaction rescattering, and which, for u or c type quarks inside the loop, can have an
real intermediate states with different quark content from the final states. Diagram
(d) has no color flow loops shown, because there is no consistent way to draw them.
A gluon cannot produce a single meson, because a gluon is an octet and a meson is a
singlet under the color SU(3). Diagram (d) therefore vanishes for a gluonic penguin.
There is a possible contribution that looks like this for an electroweak penguin—that
is if I replace the gluon by a Z or a photon. But all I have to do to correct the color
problem is exchange another gluon, as shown in diagram (e). Furthermore there is
no argument that tells me a priori that this additional gluon is a hard gluon, so
I cannot say that diagram (e) is suppressed (at least not without some significant
further work.) Thus as far as which quarks end up in which meson, I have two types
of penguins just as I have two types of tree diagrams. For penguins there not any
simple rule of thumb about which contribution is larger. Further, as I have shown
by drawing diagram (f) the conventional separation of tree and penguin is not even
so clear when I include rescattering. Of course when the quark in the loop is the
same as the final quarks produced by the gluon this part of a penguin diagram enters
with the same CKM factors as a tree contribution to that process. If all we are doing
is tracking weak phase factors we do not need to distinguish the tree and penguin
parts of that term. However we certainly need to recognize both are there if we want
to try to estimate the size of any such contribution. In all these diagrams the light
quark in the B meson does not participate in the hard interactions, so it is called the
“spectator” quark.

Finally we have a set of possible diagrams where the second quark in the B meson
participates in the weak interaction. This are called annihilation (g), exchange (h)
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and penguin annihilation (i). Diagram (g) is possible only for charged B mesons,
diagrams (h) and (i) contribute only for neutral B decays. In all three cases the
second quark-antiquark pair needed to make the final mesons is somehow created
from the soup of gluons in the final state. This does not require a hard gluon, so I
do not draw one, nor do I attempt to illustrate color flow for these diagrams. All
three of these diagrams are expected to give very small contributions because they
are suppressed by the need for the two quarks in the B meson to come together.
(This is so even in the exchange case, since the W is far off shell and hence the weak
interaction is effectively point-like.)

To turn these diagrams into rule-of-thumb estimates from amplitudes, the first
factor to consider in the size of a contribution is the size of the CKM coefficient that
enters. For tree diagrams one then counts whether the contribution is color allowed
or color suppressed, with a factor of 1/NC = 1/3 for the latter case. Beyond that
penguin diagrams are expected to be suppressed relative to any tree contribution
because they have both a loop integral (giving a factor 1/16π2 and a hard gluon
(giving two powers of a strong coupling constant, defined at a hard scale of order
mb). Thus such a diagram is suppressed by a factor of αS(mb)/4π compared to the
tree diagram. Finally all the diagrams that directly involve the spectator quark in
the hard interaction are suppressed by the probability for overlap of the spectator
quark with the heavy quark in the hadron wave function. Any such suppression may
of course be partially compensated by kinematic or dynamical factors which are not
so readily estimated.

5.2 Operator product calculations

All these diagrams are useful for two reasons, first because they allow us to keep track
of CKM factors that contribute for a given process, and second because they do give
us some rules of thumb about relative sizes of amplitudes for various channels. More
rigorous calculations replace the weak interaction part of these diagrams as a sum
of operators plus coefficients and the hadronization part by a set of operator matrix
elements. One then must add the impacts of additional hard gluons which can both
rescale the operator coefficients and add additional operators into the picture.

Then the question becomes how to determine the operator matrix elements. If
the same matrix element enters in more than one process we may be able to fit
for them along with the theoretically interesting parameters such as CKM elements.
The ability to do this, even in an approximate fashion, is based on the fact that the
decaying quark is massive, a fact that we can use in three ways. We have already
mentioned that the massive quark gives us two useful expansions in ΛQCD/mq and
in αS(mq), both of which are small parameters. The first of these expansions orders
the operators by dimension, with higher dimension operators relatively suppressed
by powers of this factor. The second expansion counts hard gluons; here the energy
release in the heavy quark decay gives us a meaningful sense of what is meant by a
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hard gluon in the problem, and thus a way to pick the hard/soft separation scale in
our operator-coefficient separation that makes physical sense. Furthermore it gives
a suppression of high-dimension operators and hence limits the number of matrix
elements than must be determined.

The large mass of the B quark does even more than that for two body decays. It
gives us a sensible separation of time scales in the problem that matches the operator
product formalism but also goes a bit beyond it. The hard/soft gluon separation can
be thought of as a “factorization” of the time scale of short distance processes vs the
time scale of long distance or hadronization processes. Intermediate between these
scales is another time we could define for a two body process, that is the time that
the two final state mesons are close enough (in the B rest frame) to interact strongly.
Because they are produced with a large relative momentum in a heavy quark decay,
this time scale is short compared to the hadronization time scale.

So what can we learn from that observation? Let us first think about a tree
diagram process. Because the weak interaction is essentially a point-like four fermion
vertex the two quarks that combine to form the meson that does not contain the
spectator quark are produced very close to one another. Only in the configuration
where these two quarks happen to move off almost parallel with similar momenta are
they likely to combine to form a single meson. All other phase-space configurations
for these two quarks will tend to give multiple final state mesons.

Notice, however, that in the case when the quark and antiquark are moving close
to parallel they quickly fly far from the “brown muck” of the spectator quark, and
the third quark of the b-decay flies rapidly in the opposite direction. As the pair
of quark and antiquark travel through space they evolve from a local color-singlet
to a color-singlet the size of a physical hadron. However, because at the time they
pass through the “brown muck” they are a local color singlet, small in transverse size
compared to ΛQCD, they escape with essentially no strong interaction with it [22].
This idea goes by the name of “color transparency”—it says that a local color-singlet
system does not interact as strongly as one that is spread out.

In the context of B decays this argument says that final state interactions should
be small for color-allowed tree-dominated processes. This then gives a way to de-
termine matrix elements for these processes, because they can be “factorized.”. For
example you might use the semileptonic decay B → πlν to fix the transition matrix
element for B → π and then set the W → π transition to fπ thus evaluating dia-
gram (a) for B → π+π−. This is called the “factorization approximation” because
it ignores any possible final state (hadronic) interactions between the two pions, and
also because it factorizes the four quark operator matrix element into two distinct
two quark matrix elements.

What about the penguin diagram, or a color-suppressed tree diagram? Again
one can write the process in terms of a sum of local four-quark operators. One can
always Fierz transform these operators into a form where the two quarks that finish
up in one meson are paired and the other quark field is paired with the b-quark.
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However one can only apply the factorization argument if this arrangement also pairs
the color-index of the quark and antiquark in the same way. Otherwise the thing
that is automatically a local quark-antiquark pair is not automatically a color singlet,
in which case the color transparency argument does not apply. For color-suppressed
tree diagrams and for penguin diagrams this is generally the situation. Final state
interactions effects are sometimes ignored in estimating these terms anyway, but the
approximation is less well-justified in these cases.

There are two sets of papers in the literature that go beyond the sort of hand-
waving argument I have presented here and try to build these ideas into a predictive
formalism for decays to two pseudoscalars, using both the heavy quark expansion,
and the operator product expansion with QCD perturbation theory corrections [23].
The treatment gives the factorization result as a leading term, but finds that there
are further operators that contribute at higher orders in the expansions. For example,
if a hard gluon is exchanged to the spectator quark then this gives a local six-quark
operator in addition to the local four quark operators of the leading terms. The
coefficient of this operator is suppressed by a factor of ΛQCD/m

3
b as well as by the

factor of αS(mq). However differences in the operator matrix elements may make
up for these powers of ΛQCD/mq. For the leading operator the spectator quark is
soft but must form a meson by combining with a fast-moving quark from the b-
decay vertex. This gives a suppression of the matrix element. With the six-quark
operator the two quarks that form each final-state meson can be produced moving
together, giving an unsuppressed matrix element. One major difference between the
two groups who attempt to apply this formalism is how much they assume about the
suppression for the formation of a meson from one soft and one hard quark. This and
other important but detailed differences in assumptions gives significant numerical
differences in the results. For both groups certain ΛQCD/mq suppressed contributions
turn out to be numerically significant, because the are “chirally enhanced” by factors
of pseudoscalar meson mass over the sum of the relevant quark masses. This too
reduces the predictive power of the formalism.

The more operators that enter, the more unknown operator matrix elements must
be determined. This means that the predictive power of the method is best when
it can be seen that the leading few terms dominate the result, and when several
different pieces of information can be related. The pieces of information can be rates
in channels related by symmetries, which I will discuss later in this lecture, or they can
be moments of a spectrum, as described previously in the discussion of magnitudes
of CKM parameters.

Unfortunately there are not always a sufficient number of related channels to fix all
independent non-perturbative quantities. Furthermore the question of how well the
heavy-quark expansion works, that is how dominant the leading terms are compared
to formally (ΛQCD/mq)-suppressed terms, can have different answers for different
channels. Thus the power of the formalism must be investigated on a case by case
basis. This is still a work in progress. One thing is already clear, the application
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of this formalism requires close interaction of theorists and experimentalists, to deal
with both the complexity of the formalism and experimental issues such as correlated
errors in data when evaluating a fit to several moments of the same spectrum.

5.3 Symmetries of hadronic physics

The couplings of QCD are flavor-blind. Thus in hadronic physics the only thing that
distinguishes quark flavors are the quark masses and charges. Up until now we have
used heavy quark symmetry, which applies for masses large compared to ΛQCD. But
there are several “old fashioned” symmetries that apply for quark masses that are
small compared to ΛQCD. The best of these is isospin, which is the SU(2) symmetry
of interchange of u and d quarks in hadrons. (It is called a spin because of SU(2)
structure was best known to physicists as the mathematics of spin, not because it
has anything to do with angular momentum.) Isospin breaking effects come from
electromagnetism as well as from the phase space differences and other impacts of
the different quark masses. One can also apply a full SU(3) symmetry of interchange
among the three lightest quark flavors. Since the strange quark mass is not very
small on the scale of ΛQCD, SU(3) breaking effects can be significant. In B physics
many interesting results arise from the SU(2) subgroup of SU(3) known as U -spin,
symmetry under interchange of s and d quarks. Here there are no electromagnetic
breaking effects as the two quarks have equal charges, but the mass effects are still
an issue. A third class of symmetries arise from the mq → 0 limit; these are chiral
symmetries which constrain the couplings of soft pseudoscalar mesons. In two-body
B decays there are not really any soft mesons, so this symmetry is useful only as a
theoretical limit, for example for the process B → Dπ in the limit that the charm
quark mass approaches the b-quark mass. Such limits often provide useful constraints
on models for a given process, as any good physical model must incorporate the correct
behavior in this limit, as well as in the heavy quark limit. (The chiral limit is also
useful in relating multibody decay channels that differ by one pion.)

Isospin is particularly useful when it allows us to distinguish a pure tree amplitude
contributions from those arising from penguin diagrams. A pure tree amplitude can
have no direct CP violation. As we saw above, CP violating effects involving such
amplitudes with no direct CP violation allow us to determine certain combinations
of CKM phases. In the decays mediated by the quark process b→ uud isospin can be
used to distinguish a pure tree part. For the tree diagram the three quarks arising from
the B decay can have total isospin of either 1/2 or 3/2. Adding the spectator quark
gives final states with isospin 0, 1 or 2. However for a penguin diagram mediated by a
gluon the gluon has isospin zero and thus so must the quark-antiquark pair produced
by it. Thus this diagram gives only I = 1/2 for the three quarks from the b-decay,
and only I = 0 or 1 when the spectator quark is added. Hence, if we can isolate the
pure I = 2 amplitudes, we have essentially a pure tree amplitude (up to corrections
from Z-penguins) and hence a single CKM coefficient.
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This idea has been investigated in detail for the case of B → ππ [24]. With-
out isospin analysis the situation is similar to that discussed for D+D− above; the
measured CP -violating phase has an unknown contribution because there are two
different hadronic amplitudes with different weak phases contributing. One finds

Im λπ+π− = |λπ+π− | sin(2α + θ) . (23)

With an isospin analysis one can, in principle, cleanly extract from the data the CKM
phase α = π − β − γ, the angle that sits at the vertex of the unitarity triangle. The
shift θ can be determined, up to a four-fold ambiguity, once one measures the rates
for the charged B± → π±π0 and the neutral B → π0π0 as well as the rates and CP
asymmetries for the B → π+π− channel.

As always, there are a few caveats. The first is that the same argument does
not apply for the contribution of a Z or a photon in the penguin diagram. Both
these particles have isospin 1 parts as well as isospin zero. Their contributions are
a priori small, except that the Z contribution is enhanced by a factor of (Mt/MZ)2,
so one must check its importance as a correction to the analysis. A small theoretical
uncertainty arises from this effect. The second problem is an experimental one, the
rate for B → π0π0 is small. One can however use the analysis to bound the unknown
shift θ, and thus the theoretical uncertainty in α, even when only an upper limit on
this branching ratio is available [25].

An important feature of this analysis is that the isospin of the two pion final
state produced from a B decay can only be even, hence all Ifinal = 1 contributions
vanish. This follows from Bose statistics for two pions in final state of total angular
momentum zero. (Note that in the context of isospin we treat two pions as identical
particles, independent of their charges, as they differ only by interchanges of u and d
type quarks.) The restriction from Bose statistics is crucial as it reduces the number
of independent amplitudes to the point where there are enough measurements to
determine them (including determining the strong phases between them).

Another piece of old fashioned physics, known as a Dalitz plot, is added to the
isospin decomposition of amplitudes when the same three-quark decay of the b gives
a three pion final state. If the three pion final state is dominated by resonant (quasi-
two-body) contributions, such as ρπ, then we can use these channels to fix the CKM
parameter α. Here we do not have the Bose statistics argument to eliminate the
Ifinal = 1 amplitudes, so there are more amplitudes and relative phases to determine,
though again there are some, with Ifinal = 2, that have no gluonic-penguin contri-
bution. There are also more neutral B channels to study, as ρ+π− is different from
ρ−π+.

A Dalitz plot is a plot of the kinematically allowed region for the three pions from

the decay of the B0 (or B
0
). Each recorded event is a point on this plot. Quasi-two-

body states show up as dense bands of events, because they are constrained to have
two pions with an invariant mass close to that of the resonant state, in this case a ρ
meson. Each charge of ρ can be formed, so there are three ρπ bands in the plot. The
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crucial point for the analysis is the we assume that the various isospin amplitudes
for B → ρπ are constant over any such band. However the decay of a the ρ adds a
characteristic Breit-Wigner factor, which gives an additional known complex factor
that varies across the plot. The phase of this factor is thus a known (and large)
strong phase effect. A further critical point is that there are regions in the corners of
the plot where two different charges of ρ are both kinematically allowed; their bands
overlap. This means that their amplitudes can interfere in this region. This is crucial
to the analysis; there is information about the relative phases of the amplitudes in
this interference behavior.

We use unitarity as usual to write the penguin terms as those that have the same
weak phase of the tree, which we combine with the same-isospin tree amplitudes, and
those that have the same as the weak phase as the mixing in the Standard Model,
which we treat as an independent but isospin-restricted set of amplitudes. We do not
use the diagrams to calculate anything beyond the CKM coefficient structure relevant
for each isospin amplitude. There is (again in principle) enough information in the
plot to fix the relative magnitudes and strong phases of all the independent isospin
amplitudes and at the same time determine the parameter α, the difference of CKM
phases at the vertex of the unitarity triangle. This angle is the difference of weak
phases between the tree graph and the B −B mixing term for b→ uud.

I say “in principle”, because such a multiparameter fit requires a lot of data. Fur-
ther one must consider both backgrounds from non-resonant B decays and non-B
backgrounds, and possibly also fit for other resonances, such as f0, if these contribute
significantly to the Dalitz plot. Additional resonances are not background, in the
sense that their amplitudes too have the same CKM structure, and their CP proper-
ties are well-defined, but they do add more parameters to be fitted. The channel ρ0π0

is essential to this analysis, one must at least be able to detect it via its interference
effects. As in π0π0 case, the rate for this doubly neutral channel is expected to be
small because it is color-suppressed. So in the real world this analysis will probably
need about ten times the data currently available from the B factories to yield reliable
results. No matter how good the data, there remain some small theoretical uncertain-
ties introduced by the effects of electroweak penguins, particularly those mediated by
a Z.

An example of application of SU(3) symmetry is its use in analyzing B decays
to two pseudoscalars. Here is is the U-spin subgroup of SU(3) that comes into play,
relating the penguin contributions to B → ππ to those that dominate the decay
B → Kπ. Notice that the SU(3) argument is applied to relate the contributions
of similar diagrams in different but SU(3)-related channels. It cannot be applied
to the rate as a whole, because the relative CKM magnitude of tree and penguin
contributions changes under the U -spin quark substitution (weak interactions do not
respect the symmetry).

In the operator-product-based calculations mentioned earlier, the SU(3) relation-
ships reduce the number of independent operators that enter for the set of related
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decays, and so make the technique more predictive. One then has the problem of
estimating the impact of the corrections to SU(3) symmetry relationships, but this
on the whole gives smaller theoretical uncertainties than any attempt to constrain
the operator matrix elements without the use of SU(3).

Again and again in these lectures I have stressed the point that an essential issue
for any theoretical calculation in heavy flavor physics is the estimation of theoretical
uncertainties. The tools that theorists have at their disposal to constrain these effects
are limited, and there is a lot of subjectivity in how various estimates of uncertainty
are made. My general point here is that the uncertainties are best understood in
cases where some systematic approximation is used. Heavy quark expansion, QCD
perturbation theory and symmetries are all important tools in this respect. It is
always better to be estimating the size of a non-leading or symmetry-breaking effect
than it is to be estimating the entire effect.

Further constraints on non-perturbative quantities come from QCD sum rules,
and also from lattice calculations. QCD sum rules provide another set of rigorous
limits by which models can be constrained [26]. Lattice calculations can evaluate
certain non-perturbative matrix elements with good precision. Since they are done
in the Euclidean region they are not useful for evaluating physical strong interaction
phases which appear in matrix elements for scattering or hadronic decay processes.
However the method is very powerful for 1 → 1-body or 0 → 1-body transition
matrix elements. For accuracy, one needs the so-called “unquenched” calculations
that explicitly include the effect of light-quark loops. One also needs good control
over the extrapolation needed to reach physical quark masses for light quarks. This
requires that the calculations are done for a range of masses sufficiently close to
physical values. Both these requirements can be met, it is chiefly a matter of paying
the high price for them in computing time. Such calculations are beginning to appear
for a few quantities, and more are promised in the next few years [27].

Eventually all these tools run out and we are forced to resort to models to calculate
expected rates for some processes. Even when all the limits are correctly reproduced
by a model there is no guarantee that its application gives accurate estimates. The
usual way that the uncertainty in model estimates is obtained is to vary model pa-
rameters, or even to compare two or three different models, and see how the result
varies. This can be instructive but it is hardly rigorous. Whenever a measurement
disagrees with such an estimate most physicists will conclude that there is something
wrong with the models used before they will conclude that they are seeing physics
beyond the Standard Model theory—and rightly so. Thus while such calculations are
a useful guide as to what to expect in first investigating an area they do not, to my
mind, provide any basis for testing the Standard Model. To do that we must look
for cases where the theoretical uncertainty can be well constrained, and then look for
discrepancies that are large compared to those Standard Model uncertainties.

None of my emphasis on theoretical uncertainties should be construed as saying
one cannot test the Standard Model in heavy flavor decays. One can do so, but one
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must to it carefully. Many so-called clean predictions made in early papers rely on
simple rules of thumb to drop so-called suppressed contributions to an amplitude and
thereby remove the complications of hadronic physics. As the field matures more
careful work has been done, as the limitations of these early approximations have
become relevant. Experimental information also helps. One finds empirically that
some of the rules of thumb cannot be trusted. That gives the theorists motivation to
re-examine their calculations and to make more reasoned estimates of uncertainties.
So far no indication of non-Standard Model physics has been seen that has stood
the test of better statistics and more careful theory work. But there are many chan-
nels with interesting predictions, and only a few have so far accumulated sufficient
statistics to be make the interesting tests. There is plenty still to do!
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