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Abstract

Soft-collinear effective theory is generalized to include soft massless quarks in addi-

tion to collinear fields. This extension is necessary for the treatment of interactions

with the soft spectator quark in a heavy meson. The power counting of the relevant

fields and the construction of the effective Lagrangian are discussed at leading or-

der in Λ/mb. Several novel effects occur in the matching of full-theory amplitudes

onto effective-theory operators containing soft light quarks, such as the appear-

ance of an intermediate mass scale and large non-localities of operators on scales

of order 1/Λ. Important examples of effective-theory operators with soft light

quarks are studied and their renormalization properties explored. The formalism

presented here forms the basis for a systematic analysis of factorization and power

corrections for any exclusive B-meson decay into light particles.
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1 Introduction

Processes involving energetic light particles play an important role in particle physics.
Examples are jet production in e+e− annihilation, B-meson decays into light particles,
and many other hard QCD processes. The theoretical description of such processes is
often complicated by the presence of soft and collinear singularities, which invalidate
the application of the (local) operator product expansion. In some cases factorization
theorems have been established, which provide a simplified description of the relevant ob-
servables at leading order in the limit E � Λ, where E is the characteristic energy of the
process, and Λ ∼ ΛQCD is the scale of non-perturbative hadronic physics. Formal proofs
of these factorization theorems are difficult and typically rely on a diagrammatic analysis
of different momentum regions giving rise to leading-order contributions to the ampli-
tude. It would be desirable to facilitate these proofs and make them more transparent.
Even more challenging is to develop a systematic framework for the parameterization
and classification of power corrections for observables that do not admit an expansion
in local operators.

The proposal of an effective field theory for collinear and soft particles by Bauer et al.
[1, 2, 3, 4] is an important step toward achieving this goal. This “soft-collinear effective
theory” (SCET) lets us discuss factorization theorems and power corrections in terms of
fields and operators rather than momentum regions of Feynman diagrams. While power
counting in the effective theory is non-trivial due to the fact that the relevant operators
are non-local, there is nevertheless hope for a controlled expansion of amplitudes in
terms of hadronic matrix elements of SCET operators (multiplied by perturbative Wilson
coefficient functions), whose structure is constrained by gauge invariance and Lorentz
symmetry.

SCET has been applied to prove factorization and resum Sudakov logarithms for
the endpoint region of the photon energy spectrum in B → Xsγ decays [1, 2], and
to prove QCD factorization as established in [5] for the weak decays B → Dπ [6].
Applications to hard processes outside B physics, such as deep-inelastic scattering, Drell–
Yan production, and deeply virtual Compton scattering, have been considered in [7].
Recently, the formulation of SCET has been extended beyond leading power [8, 9].
These analyses constitute a significant first step toward a theory of power corrections
that is more general than a local operator product expansion.

In this work we present an extension of the previous formulation of SCET, which is
necessary for the discussion of exclusive B decays into light particles, such as B → ππ,
B → K∗γ, and heavy-to-light form factors at large recoil. (The “soft contribution” to
heavy-to-light form factors has been discussed previously in the context of SCET, both
at leading order [2] and beyond [8, 9]. However, no systematic treatment of all leading-
power contributions has been presented so far.) For all these cases QCD factorization
theorems have been proposed [10, 11, 12, 13, 14], but have not yet been proved beyond
next-to-leading order in perturbation theory. In fact, factorization theorems for exclusive
B-meson decays into light particles are more complicated than those for the decays
into a heavy-light final state such as B → Dπ. In addition to a form-factor term, a
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hard-scattering contribution appears at leading power, which results from hard gluon
exchange with the spectator quark in the B meson [10, 11]. This contribution involves
a convolution of a hard-scattering kernel with light-cone distribution amplitudes for the
final-state hadrons and the initial B meson. A proof of factorization for such spectator
contributions has not been attempted so far. The formulation of SCET developed here
provides for the first time the framework for a systematic discussion of factorization in
all of these cases and others [15, 16, 17].

Whereas for highly energetic light mesons the relevance of light-cone distribution
amplitudes to the description of exclusive processes is familiar from many applications
of perturbative QCD, relatively little is known about the light-cone structure of heavy
hadrons. At first sight, even the appearance of light-cone distributions for the B me-
son seems surprising, because (in the B-meson rest frame) all characteristic momentum
scales are soft, of order Λ. Unlike for a fast light meson, there is thus no hierarchy
between the different components of the momenta of the B-meson constituents. How-
ever, the kinematics of heavy-to-light decay processes ensures that (in some cases) only
the projection of the soft spectator momentum along some light-like direction enters
the decay amplitudes at leading power in Λ/mb. Because of the softness of the rele-
vant momentum scales the notion of twist is not appropriate for the characterization
of B-meson light-cone distribution amplitudes, which instead should be categorized ac-
cording to their canonical dimension. Some distinctive features between B-meson and
light-meson distribution amplitudes have already been noted in the literature. Whereas
there exists a single leading-twist distribution amplitude for light pseudoscalar and vec-
tor mesons, two independent B-meson distribution amplitudes appear at leading order
in the heavy-quark expansion [18]. In the case of light mesons, the equations of motion
imply relations between higher-twist distribution amplitudes and connect them with am-
plitudes of lower twist (see, e.g., [19, 20]). For heavy mesons instead, the equations of
motion relate the leading-order two-particle amplitudes to certain three-particle ampli-
tudes (corresponding to quark–antiquark–gluon Fock components) of higher dimension
[14, 21].

The intrinsic softness of the B-meson internal dynamics complicates the understand-
ing of factorization properties of decay amplitudes. A new element is the appearance
of an intermediate scale of order mbΛ, which arises from the scalar product of the soft
spectator momentum l with a collinear momentum pc. While this scale is perturbative
(since formally pc · l � Λ2) and thus should be integrated out from the low-energy effec-
tive theory, it nevertheless depends on the B-meson dynamics and is not simply fixed by
kinematics. This is different from previous applications of heavy-quark effective theory
(HQET) and SCET, where the large scales were fixed in terms of the b-quark mass and
the large energy E ∼ mb carried by collinear fields. The appearance of an intermediate
scale naturally leads to non-local operators integrated along light-like directions, whose
matrix elements define the B-meson distribution amplitudes. The presence of three
widely separated scales (m2

b � mbΛ � Λ2) also complicates the perturbative structure
of decay amplitudes. Sudakov double logarithms appear at every order in perturbation
theory and must be resummed.
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The remainder of this paper is organized as follows: In Section 2 we present the
construction of the SCET relevant to exclusive B decays, introduce the relevant fields,
discuss their power counting and gauge transformations, and derive the effective La-
grangian. Interactions between soft and collinear fields are studied in Section 3, and are
shown to be absent at leading order. In Section 4 we discuss in detail the matching of
current operators containing a soft light quark and a collinear quark onto operators in
the effective theory. Several new features appear in this calculation, such as the emer-
gence of the intermediate scale, large non-localities of operators on a scale 1/Λ, and
non-trivial couplings between soft quarks and collinear gluons. In Section 5 we show
how reparameterization invariance can be used to constrain the functional dependence
of short-distance coefficient functions on the separation between the component fields of
non-local operators. The renormalization of such operators and the related resummation
of Sudakov logarithms are briefly discussed. The matching of local four-quark operators
onto operators in the SCET is studied in Section 6. This application is of relevance to
QCD factorization theorems for many exclusive B decays. A surprising result is that,
generically, higher-twist three-particle distribution amplitudes of a light final-state me-
son can contribute to the decay amplitude at leading power. In Section 7 we illustrate
the implications of these findings for the factorization properties of B-meson decay am-
plitudes in some toy models. We present two examples, one where a standard QCD
factorization formula can be established at leading power, and one where the factoriza-
tion formula must be generalized due to non-trivial interactions of the soft spectator
quark with collinear gluons. The results derived in this work suggest a new formulation
of the SCET, in which operators are composed out of gauge-invariant building blocks,
replacing the original quark and gluon fields. This formalism is developed in Section 8.
In the new formulation operators are automatically gauge invariant and their structure is
constrained only by Lorentz invariance. Finally, in Section 9 we explain how our power-
counting scheme can be applied to describe the soft overlap contribution to heavy-to-light
form factors, which in previous work was analyzed using a different formulation of the
SCET [8, 9]. A summary of our findings is given in Section 10.

2 Ingredients of the effective theory

We start by discussing in detail the properties of the fields present in the low-energy the-
ory, using the coordinate-space formulation developed by Beneke et al. [9] (and avoiding
the hybrid momentum–position space representation and label-operator formalism em-
ployed in earlier papers on SCET). Although part of this discussion is a repetition of
similar results presented in earlier work (see, in particular, the review [4]), our power
counting is different from the one employed in [9], and consequently our results for the
effective Lagrangian and external operators in SCET will be different from those already
discussed in the literature.

Our focus in this paper is on exclusive B-meson decays into final states containing
light, energetic particles. The invariant masses of the final-state hadrons are of order Λ,
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and the momenta of their constituents are predominantly collinear. It is often convenient
to decompose momenta and gauge fields in the light-cone basis constructed with the help
of two light-like vectors

nµ = (1, 0, 0, 1) , n̄µ = (1, 0, 0,−1) , (1)

which obey n2 = n̄2 = 0, and n · n̄ = 2. An arbitrary 4-vector can be expanded as
pµ = 1

2
(p+n̄

µ + p−n
µ) + pµ

⊥ with p+ = n · p and p− = n̄ · p. The components (p+, p−, p⊥)
of a collinear momentum scale like pc ∼ E(λ2, 1, λ), where E ∼ mb is the large energy
release in the process, and λ ∼ Λ/E is the expansion parameter of the SCET. The
initial B meson, on the other hand, consists of soft partons with momenta scaling like
ps ∼ E(λ, λ, λ). (This assumes that we work in the B-meson rest frame and subtract
the static piece mb v

µ from the b-quark momentum.) Note that in kinematical situations
different from the ones considered here the scaling relations of soft and collinear momenta
(and of the corresponding SCET fields) can be different. For instance, when the photon
energy in inclusive B → Xsγ decays is near the kinematic endpoint, the hadronic final
state Xs has an invariant mass of order

√
EΛ, which is much larger than Λ. It is then

appropriate to introduce an expansion parameter λ ∼
√

Λ/E [2].
In the kinematical situation of relevance to our discussion, the fields appearing in the

low-energy effective theory are either soft or collinear. As in HQET, we introduce a soft
heavy-quark field hv defined in terms of the QCD field b by

hv(x) = eimbv·x 1 + /v

2
b(x) , with /v hv = hv , (2)

where v is the B-meson velocity. The Fourier modes of the field hv carry the soft residual
momentum kµ = pµ

b −mb v
µ. The two components of the spinor b projected out in the

definition of hv are integrated out in the construction of the HQET. The soft light-
quark field qs and soft gluon fields Aµ

s are simply given by the corresponding QCD fields,
restricted to the subspace of soft Fourier modes. Using the identity n · n̄ = 2, the Dirac
field ψc of a collinear quark can be decomposed into two 2-component spinors

ξn =
/n /̄n

4
ψc , ηn =

/̄n /n

4
ψc , with /n ξn = /̄n ηn = 0 . (3)

The components of ηn are suppressed with respect to those of ξn by a factor λ ∼ Λ/E
and are integrated out in the construction of the SCET. The collinear gluon fields Aµ

c,n

are defined as in QCD, restricted however to the subspace of Fourier modes with collinear
momenta. For the sake of simplicity, we will from now on drop the label v on heavy-
quark fields, and the label n on collinear quark and gluon fields. It is understood that
collinear fields always have their large momentum component in the n-direction, with
n̄ · pc > 0.

From the scaling behavior of the various two-point functions of two soft or two
collinear fields one can derive the scaling properties of these fields with the expansion
parameter λ. The strategy here is to define the kinetic terms in the action to have scaling
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λ0, so that factors of λ only appear in vertices of the effective theory. It follows that the
soft fields scale like h, qs ∼ λ3/2 and Aµ

s ∼ (λ, λ, λ), whereas the collinear fields scale like
ξ ∼ λ, η ∼ λ2, and Aµ

c ∼ (λ2, 1, λ). Note that the covariant derivatives iDµ
s ≡ i∂µ + gAµ

s

and iDµ
c ≡ i∂µ + gAµ

c have homogeneous scaling laws when acting on soft or collinear
fields, respectively.

Previous discussions of SCET have often introduced ultrasoft modes with momentum
scaling pus ∼ E(λ2, λ2, λ2), because these modes can be coupled to collinear particles
without taking them far off their mass shell. In cases where the expansion parameter
scales like λ ∼

√
Λ/E ultrasoft fields simply correspond to what we call soft modes in the

present paper. In our case, where λ ∼ Λ/E, there is no need to introduce ultrasoft modes
as degrees of freedom in the effective theory, because there are no external ultrasoft
particles present. Such modes would correspond to color fields extending over large
distance scales of order mb/Λ

2, which do not appear in QCD because of confinement.
Operators in the effective theory must be invariant under residual gauge transfor-

mations in the collinear and soft sectors (i.e., transformations that leave the scaling
properties of the fields unaltered). Under a collinear gauge transformation Uc(x) the
collinear fields transform according to ξ → Uc ξ and Aµ

c → Uc A
µ
c U

†
c + (i/g)Uc (∂µU †

c ),
whereas soft fields remain invariant. Likewise, under a soft gauge transformation Us(x)
we have h → Us h, qs → Us qs, and Aµ

s → UsA
µ
s U

†
s + (i/g)Us (∂µU †

s ), while collinear
fields remain invariant. Gauge invariance of operators built out of these fields can be
restored by the introduction of collinear and soft Wilson lines defined as

W (x) = P exp

(
ig

∫ 0

−∞

ds n̄ · Ac(x+ sn̄)

)
,

S(x) = P exp

(
ig

∫ 0

−∞

dt n · As(x+ tn)

)
,

(4)

which can be visualized as color strings attaching to a quark field at point x and extending
to infinity. (It does not matter whether the integrals in these expressions run from −∞
to 0 or from 0 to +∞.) The path-ordering symbol “P” is defined such that the gluon
fields are ordered from left to right in order of decreasing s or t values. We also need
the conjugate operators W †(x) and S†(x), which are given by analogous expressions
with ig replaced by −ig, and with the opposite ordering of the fields. Under a collinear
gauge transformation W (x) → Uc(x)W (x)U †

c (−∞), whereas S(x) remains invariant.
Similarly, under a soft gauge transformation S(x)→ Us(x)S(x)U †

s (−∞), whereas W (x)
remains invariant. If, without loss of generality, we agree that the fields do not transform
at infinity, then it follows that W †(x) ξ(x) is gauge invariant, as are S†(x) h(x) and
S†(x) qs(x). The Wilson lines satisfy several important properties, the most useful ones
being

W † in̄ ·Dc W = in̄ · ∂ , 1

in̄ ·Dc + iε
= W

1

in̄ · ∂ + iε
W † , (5)

and corresponding relations for S. Also note that (in̄ ·DcW ) = 0 and (in ·Ds S) = 0 by
definition.
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A particularly important object in our discussion below is the combination Aµ
c =

W †(iDµ
c W ), which is invariant under both collinear and soft gauge transformations. By

definition n̄ · Ac = 0, but the other components of Aµ
c are non-zero. In the light-cone

gauge n̄ · Ac = 0, we have W = 1 and hence Aµ
c = gAµ

c . In an arbitrary gauge, we find
the useful representation

A
µ
c (x) =

[
W †(iDµ

c W )
]
(x) =

∫ 0

−∞

dw n̄α

[
W †gGαµ

c W
]
(x+ wn̄) , (6)

which makes explicit that Aµ
c is a pure color octet, Aµ

c = Aµ,a
c ta. (Here and below

color indices on gluon fields will appear as superscripts, while subscripts “c” and “s”
always refer to “collinear” or “soft”, respectively.) To derive this formula one notes that
both sides are gauge invariant, and that the result is obviously correct in the light-cone
gauge. The reader should think of the object Ac as an insertion of a collinear gluon field,
remembering however that this quantity is gauge invariant.

The effective Lagrangian for soft and collinear fields can be derived by systematically
integrating out the hard modes (including the small-component fields for heavy and
collinear quarks) from the QCD Lagrangian, and expanding the result in powers of λ. It
is convenient to split up the answer into several terms,

LSCET = Lh + Ls + Lc + Lg + Lsc . (7)

The effective Lagrangian for heavy quarks is the familiar HQET Lagrangian [22]

Lh = h̄ iv ·Ds h+
1

2mb

[
h̄ (iDs⊥)2 h+ Cmag(µ) h̄

g

2
σµν G

µν
s h

]
+O(1/m2

b) . (8)

Let us note parenthetically that interactions between heavy quarks and soft gluons are,
strictly speaking, not allowed in the low-energy theory, since they put the heavy quark
off-shell by an amount (mbv + k)2 − m2

b ∼ EΛ. These interactions can be integrated
out, leading to the replacement h→ Sv h0, where Sv is a Wilson line defined in analogy
with (4) but with n replaced by the B-meson velocity v. The field h0 is sterile in the
sense that it does not couple to soft or collinear gluons. The heavy-quark Lagrangian
is then simply Lh = h̄0 iv · ∂ h0 + O(1/mb). In all expressions for operators containing
heavy-quark fields the replacement h → Sv h0 must be made as well. Since this has no
effect on the Feynman rule for the soft-gluon couplings, rather than introducing the new
string operator Sv we will follow the usual convention of using the HQET field h with
its soft interactions as given by (8).

The Lagrangian for a soft massless quark is the usual Dirac Lagrangian (it would be
straightforward to include a small mass term)

Ls = q̄s i /Ds qs . (9)

The effective Lagrangian for collinear quarks, which is obtained by integrating out the
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small-component field η, has a more interesting structure [2]. With our notations it reads

Lc(x) = ξ̄
/̄n

2
in ·Dc ξ + ξ̄

/̄n

2
i /Dc⊥

1

in̄ ·Dc + iε
i /Dc⊥ ξ

= ξ̄(x)
/̄n

2
in ·Dc ξ(x)− i

∫ 0

−∞

ds
[
ξ̄ i
←−
/D c⊥W

]
(x)

/̄n

2

[
W †i /Dc⊥ ξ

]
(x+ sn̄) . (10)

In [9] it has been argued that the choice of the +iε prescription is arbitrary and not
dictated by the QCD Lagrangian. A regularization of the inverse differential operator
is necessary but bears no physical implications. The Lagrangian Lc sums up an infinite
number of leading-order couplings between collinear quarks and (scalar or longitudinal)
gluons. In the absence of sources the collinear Lagrangian is related to the QCD La-
grangian by a Lorentz boost, and so the two must be equivalent. As a result, the collinear
Lagrangian is exact to all orders in λ, and it is not renormalized [9]. Finally, the pure-
glue Lagrangian Lg in (7) takes the same form as in QCD, including gauge-fixing and
ghost terms. However, it is understood that no term in this Lagrangian couples soft to
collinear gluon fields. Those couplings, if present, would be part of Lsc.

3 Soft-collinear interactions

As explained in [9], there are no vertices in the effective theory that connect the two
heavy-quark fields to any number of collinear fields, because such interactions are kine-
matically forbidden at tree level. By the Coleman–Norton theorem [23] they can therefore
not lead to on-shell singularities in any QCD diagram, and hence there is no need to in-
clude such interactions as part of the effective Lagrangian. However, the same argument
does not apply to the interactions between collinear particles and soft light fields. We
will now investigate these interactions in more detail.

It is kinematically allowed to couple soft fields to collinear fields only if the total
soft momentum ptot

s satisfies the condition n · ptot
s = O(Eλ2), and the difference between

the ingoing and outgoing collinear momenta is such that n̄ · (pout
c − pin

c ) = O(Eλ).
These constraints imply a power counting for the measure d4x in the soft-collinear action∫
d4xLsc that is different from that for the interactions of soft or collinear fields among

themselves. Usually the measure d4x is counted as λ−4, since it eliminates either a
collinear or a soft momentum, with d4pc ∼ d4ps ∼ λ4. As a result, the operators
appearing at leading order in the Lagrangians Lh, Ls, Lc and Lg scale like λ4. On the
other hand, when a term in the soft-collinear Lagrangian Lsc is integrated over d4x, this
produces δ-functions

δ(n̄ · pout
c − n̄ · pin

c − n̄ · ptot
s ) δ(n · pout

c − n · pin
c − n · ptot

s ) δ(2)(pout
c⊥ − pin

c⊥ − ptot
s⊥) . (11)

In each term we must eliminate one of the largest momentum components, so that the
remaining momenta are unconstrained. It follows that the first δ-function eliminates
an integral over a minus component of a collinear momentum, the second δ-function
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C C

S S

(λ,1,λ)

C C

S S

+ →

Figure 1: Effective four-gluon coupling obtained after integrating out the off-
shell gluon in the first diagram and adding the corresponding local QCD vertex.
The resulting SCET operator is denoted by a crossed circle. Collinear gluons
in SCET are drawn as springs with a line. Soft and collinear gluons in full
QCD are labeled by S and C.

eliminates an integral over a plus component of a soft momentum, and the last δ-function
eliminates two components of a transverse momentum. It is important that the second
δ-function must not be used to eliminate a plus component of a collinear momentum
such as n · pout

c , since for generic soft momenta the combination n · pin
c +n · ptot

s would not
be of order Eλ2. The eliminated momenta combined scale like E4λ3, and hence we must
count the measure in the soft-collinear action as λ−3. It follows that, at leading order in
λ, only operators scaling like λ3 can appear in the soft-collinear interaction Lagrangian.

We start by discussing soft-collinear interactions induced by the exchange of off-shell
modes with momentum scaling like E(λ, 1, λ), which are generically produced when soft
fields are coupled to collinear ones. In order to find the exact form of the corresponding
terms in the Lagrangian one would have to integrate out the off-shell modes in the path
integral. This is a difficult problem, whose solution we leave for future work. In the
following we choose a “pedestrian” approach and match the resulting interaction terms
involving two soft and two collinear fields perturbatively. We find that at leading order in
λ there are interactions between two soft quarks and two collinear gluons, two collinear
quarks and two soft gluons, and two soft and two collinear gluons. In the first two cases
an off-shell quark propagator is integrated out, while in the latter case an off-shell gluon
propagator occurs. As shown in Figure 1, in this case one must also include the local four-
gluon vertex present in full QCD. We find that the resulting soft-collinear interactions
connecting two collinear and two soft partons are obtained from the Lagrangian

L(induced)
sc = −g2 q̄sAc−

/n

2

1

i∂−
Ac− qs − g2 ξ̄ As+

/̄n

2

1

i∂+
As+ ξ

− g2

4
fabefmne

{
Am

s+

1

i∂+

An
s+

[
Aa

c− i∂+A
b
c− − Aa

c⊥µ i∂−A
µ,b
c⊥ + 2Aa

c⊥µ i∂
µ
⊥ A

b
c−

]

+ Aa
c−

1

i∂−
Ab

c−

[
Am

s+ i∂−A
n
s+ − Am

s⊥µ i∂+ A
µ,n
s⊥ + 2Am

s⊥µ i∂
µ
⊥A

n
s+

]

− 1

2
i∂⊥µ

(
Am

s+

1

i∂+

An
s+

)
i∂µ

⊥

(
Aa

c−

1

i∂−
Ab

c−

)}
, (12)
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C C

S S

(λ2,λ,λ)

Figure 2: Example of a long-distance soft-collinear interaction induced by the
exchange of a soft messenger gluon.

where we use the short-hand notationA+ = n·A andA− = n̄·A etc. for brevity. Note that
this Lagrangian is symmetric under the exchange of soft and collinear fields combined
with n↔ n̄. That this is a symmetry of the soft-collinear interaction Lagrangian follows
from the fact that a longitudinal Lorentz boost can be used to turn collinear fields into
soft ones and vice versa.

It is also possible to couple a single soft field to two or more collinear fields. In that
case the δ-functions in (11) enforce that the momentum of the soft field must scale like
E(λ2, λ, λ). The smallness of the plus component of this momentum implies a phase-
space suppression, which however is already taken into account by assigning scaling λ−3

rather than λ−4 to the measure d4x in the action. Note that the soft parton is still off-
shell by an amount of order Λ2, as is any other soft mode. As illustrated in Figure 2, the
soft field produced in such an interaction can interact with other soft particles, thereby
acting as a messenger between the soft and collinear sectors of SCET. Let us add that,
alternatively, we could study couplings of a single collinear field to two or more soft fields.
In that case the δ-functions in (11) enforce that the momentum of the collinear field must
scale like E(λ2, λ, λ), and the phase-space suppression is now reflected in the smallness
of the minus component of this momentum. In order to avoid double counting, let us
agree that collinear fields always have a large momentum component, so a field with
momentum scaling like E(λ2, λ, λ) is considered part of a soft mode, not a collinear one.
This convention breaks the “soft-collinear symmetry” mentioned at the end of the last
paragraph. It is nevertheless reasonable, since the B meson defines a particular Lorentz
frame, in which it is natural to consider a (λ2, λ, λ) mode as part of a soft mode. The
asymmetry introduced by this choice could be avoided by introducing separate “soft-
collinear” fields for the (λ2, λ, λ) modes and studying their interactions with soft and
collinear particles. But since we will show that these modes are irrelevant at leading
order, this would only lead to an unnecessary proliferation of notation.

There are three elementary vertices in QCD which are of order λ3 and couple a soft
field to collinear fields: the coupling of a soft gluon to two collinear quarks, the coupling
of a soft gluon to two collinear gluons, and the coupling of a soft gluon to three collinear
gluons. These interactions follow from the Lagrangian

L(direct)
sc = g ξ̄

/̄n

2
As+ ξ +

g

2
fabmA

m
s+A

a
cµ

(
2∂µAb

c− − ∂−Aµ,b
c

)

− g2

4
fabefmneA

a
cµA

µ,m
c Ab

c−A
n
s+ . (13)
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An important observation following from the calculations presented above is that at
leading order in λ the soft-collinear interactions involve at least one As+ or Ac− gluon
field. We expect this feature to pertain also to interactions involving more than four
partons. These interaction terms are “unphysical” in the sense that they involve scalar
or longitudinal gluon polarizations and can be made to vanish by choosing the light-cone
gauge conditions n · As = 0 and n̄ · Ac = 0. We will argue in Section 8 that any gauge-
invariant operator in SCET can be constructed out of gauge-invariant building blocks,
which are non-zero in light-cone gauge. This suggests that the interactions in (12) and
(13) can be removed by field redefinitions (i.e., they vanish by the equations of motion).
Let us demonstrate this explicitly for the terms involving quark fields. Consider the
first term in (12), which couples two collinear gluons to two soft quarks. Since we have
derived this term by matching an amplitude with two external gluons, we are free to
replace i∂− in the denominator by a covariant derivative. Next we use the identity

gn̄ · Ac qs = −in̄ ·Dc (W − 1) qs + (W − 1) in̄ · ∂ qs , (14)

which follows from (5). The second term on the right-hand side is suppressed with
respect to the first one by a power of λ and can be neglected. Repeated application of
this identity (and its Dirac conjugate) yields, to leading order in λ,

− g2 q̄s
/n

2
Ac−

1

i∂−
Ac− qs → −q̄s

/n

2
(W † − 1) in̄ ·Dc (W − 1) qs

= −q̄s
/n

2
(W † in̄ ·DcW − in̄ ·Dc) qs − 2 q̄s

/n

2
gn̄ ·Ac qs

= −q̄s
/n

2
gn̄ · Ac qs . (15)

This vanishes by momentum conservation (enforced by the integration over d4x in the
action), since with our convention for collinear fields it is impossible to couple a single
collinear particle to soft fields. A derivation analogous to (15), but with all soft and
collinear fields interchanged, can be used to show that the terms in (12) and (13) coupling
two collinear quarks to one or two soft gluons vanishes at leading order:

−g2 ξ̄ As+
/̄n

2

1

i∂+
As+ ξ + g ξ̄

/̄n

2
As+ ξ → 0 . (16)

Similar arguments should apply for the pure-glue interactions. We conclude that the soft-
collinear Lagrangian in (7) vanishes to leading order, L(LO)

sc = 0, and that the (λ2, λ, λ)
messenger modes of the type shown in Figure 2 are irrelevant to leading power in λ.
These observations will be of crucial importance to the discussion of factorization in
Sections 6 and 7.

We stress at this point that non-trivial soft-collinear interactions do occur at next-
to-leading order in λ. For instance, a gauge-invariant coupling of two soft quarks to two
collinear gluons can be written in the form

−q̄s S /Ac⊥
/n

2

1

in · ∂ /Ac⊥ S
†qs , (17)
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which cannot be made to vanish in any gauge. A similar interaction (with soft and
collinear fields interchanged) can also be written for the coupling of two collinear quarks
to two soft gluons. These terms are of order λ4 and contribute at subleading power to
the Lagrangian Lsc. Because the soft and collinear Lagrangians (9) and (10) are exact,
and the heavy-quark Lagrangian (8) is known beyond the leading order, a complete
derivation of the soft-collinear interaction terms of order λ4 is the last missing step
in the construction of the SCET Lagrangian at next-to-leading order. We leave this
derivation for future work.

4 Soft-collinear currents

An important application of the SCET formalism concerns the representation of external
current operators (such as the flavor-changing operators arising in weak interactions) in
terms of effective-theory fields. For the case of heavy-light currents the corresponding
matching relation is [4]

[
ψ̄(x) Γ b(x)

]
QCD
→ e−imbv·x

∑

i

Ci(mb, E, µ)
[
ξ̄ W

]
(x) Γi

[
S†h

]
(x) + . . . , (18)

where E = n̄ · ptot
c is the large component of the total collinear momentum, which is

fixed by kinematics, and the dots represent higher-order terms in λ. The Dirac matrices
Γi have the same transformation property as the original matrix Γ. For instance, in
the case of a vector current we have Γ = γµ and Γi = {γµ, vµ, nµ}. The SCET current
operators are manifestly invariant under soft and collinear gauge transformations. Note
that the string operators W and S sum up an infinite set of couplings (involving collinear
and soft gluons) allowed at leading power. That this is done correctly can be checked
explicitly by perturbative matching [2]. When a soft gluon couples to a collinear quark
it produces a fluctuation with momentum scaling like E(λ, 1, λ), which is off-shell by
an amount of order EΛ. Similarly, when a collinear gluon couples to a heavy quark it
produces a fluctuation that is off-shell by an amount of order E2. These modes remain
off their mass shell when further soft or collinear gluons are coupled to them. When
the off-shell modes are integrated out in the path integral, one reproduces the product
of the two Wilson lines in (18) [4]. It is sufficient to keep the leading terms in the λ
expansion at any stage in this derivation. The propagator for an off-shell collinear quark
scales like 1/Λ, and it combines with the soft gluon field n · As ∼ Λ to give a leading-
order contribution (other components of the soft gluon field do not contribute at leading
power, since ξ̄ /As /n = 2 ξ̄ n · As). Similarly, the propagator for an off-shell heavy quark
scales like 1/E, and so only the leading component n̄ ·Ac ∼ E of the collinear gluon field
must be kept.

Let us now study the analogous situation in which the soft heavy quark is replaced
by a soft light quark. (We have been unable to find a phenomenological application of
the resulting light-light soft-collinear current, so that this example is of academic value.
Nevertheless, it will elucidate the novel features encountered in the presence of soft light
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quarks. The results derived in this section can readily be generalized to more realistic
situations.) The naive guess ξ̄ W Γi S

†qs for the resulting current operators in SCET
is wrong for two reasons: first, the presence of an intermediate mass scale will lead to
a non-locality of the resulting operators at large scales of order 1/Λ; secondly, a more
complicated structure of collinear fields will be induced in the matching process.

The appearance of an intermediate scale can already be seen at one-loop order in per-
turbation theory. When the matching is performed using on-shell external quark states
(which is legitimate, since the Wilson coefficients are insensitive to infrared physics) with
momenta l (soft) and pc = En (collinear), the only non-zero invariant is l · pc = E n · l,
which is a perturbative scale of order EΛ. However, the value of this scale depends
on non-perturbative hadronic physics through its dependence on a component of a soft
momentum. A one-loop matching calculation yields an expression of the form (the Dirac
structure is preserved, so there is no need for a summation over matrices Γi)

CΓ

(
El+
µ2

)
ūξ(pc) Γ uqs

(l) , (19)

where l+ = n · l − i0. In order to write this as the matrix element of an operator we
replace l+ by a derivative on the light-quark field and obtain

∫
dl+ CΓ

(
El+
µ2

)
ξ̄ Γ δ(l+ − in · ∂) qs . (20)

The δ-function indicates that the resulting operator is non-local on a scale of order 1/Λ.
Introducing the Fourier transform of the Wilson coefficient, the above result can be
rewritten as ∫

dt C̃Γ(t, E, µ)
[
ξ̄ W

]
(x) Γ

[
S†qs

]
(x+ tn) , (21)

where

C̃Γ(t, E, µ) =
1

2π

∫
dl+ e

il+t CΓ

(
El+
µ2

)
. (22)

The string operators W and S have been inserted here so that the resulting expression
is gauge invariant. Note that by definition l+ is now the plus component of the total
momentum carried by the soft fields S†qs. Likewise, 2E is the minus component of the
total momentum carried by the collinear fields ξ̄ W . The non-locality of the soft-collinear
current operator in SCET is a novel feature, which makes (21) more complicated than the
corresponding expression (18) for heavy-light currents. (At tree level, however, CΓ = 1

and C̃Γ = δ(t), so the non-locality is absent.) In the discussion of four-quark operators
in Section 6, this will naturally introduce gauge-invariant soft quark bilinears of the
form [h̄ S](0) . . . [S†qs](nt). The B-meson matrix elements of such operators define the
leading-order light-cone distribution amplitudes [18].

Surprisingly, eq. (21) is still not the final answer for the representation of the current
in SCET. In order to understand this, let us study in more detail what happens when a
collinear gluon hits a massless soft quark. As indicated in Figure 3, the resulting off-shell
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l

En+p⊥

l+En+p⊥

Figure 3: Attachment of a collinear gluon to a soft light quark.

mode has momentum l+En+p⊥ scaling like E(λ, 1, λ). Keeping terms up to subleading
order in λ, the corresponding propagator and vertex yield

i(E/n+ /p⊥ + /l)

2En · l ig

(
/n

2
n̄ · Ac + /Ac⊥

)
qs = −g

(
n̄ ·Ac

2E
+

/n

2l+

[
/Ac⊥ − /p⊥

n̄ · Ac

2E

])
qs ,

(23)
where we have used the equation of motion /l qs = 0 for the light quark. The key point
to note about this result is that the off-shell propagator scales like 1/Λ, while the largest
component of the collinear gluon field scales like E. The superficially largest term of
order E/Λ (which would upset power counting) cancels. However, leading contributions
arise from the subleading terms in both the propagator and the gluon field. While the
first term in the above result corresponds to the expansion of the Wilson line W , the
remaining terms correspond to the object (i /Dc⊥W ). The factor 1/l+ associated with
these terms gives rise to a non-locality even at tree level. A careful analysis (using
perturbative matching) reveals that there is a second type of current operator in the
effective theory, given by

−
∫
dt ds D̃Γ(t, s, E, µ)

[
ξ̄ W

]
(x) Γ

/n

2
/Ac⊥(x+ sn̄)

[
S†qs

]
(x+ tn) , (24)

where Aµ
c is the gauge-invariant object defined in (6). The Wilson coefficient D̃Γ is

related by a double Fourier transformation to a momentum-space coefficient function,

D̃Γ(t, s, E, µ) =
1

(2π)2

∫
dl+ dp− e

il+t e−ip−sDΓ(l+, p−, E, µ) , (25)

where p− = n̄ ·pg is the minus component of the collinear momentum carried by the field
Ac, and E = 1

2
n̄ · ptot

c is the large energy carried by all collinear fields. At tree level, we

find DΓ = 1/l+ and hence D̃Γ = iθ(t) δ(s). We have checked by explicit calculation that
the sum of the two expressions in (21) and (24) reproduces (at tree level) the current
matrix elements with an arbitrary number of collinear gluons and no soft gluon, an
arbitrary number of soft gluons and no collinear gluon, and one soft and one collinear
gluons. The relevant diagrams for the latter case are shown in Figure 4. One must
add to these graphs a contribution from the equation of motion i/∂ qs = −g /As qs for the
soft quark applied to the graph with only one external collinear gluon. Note that the
transverse collinear gluon field in (24) appears together with a factor of /n. We will show
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C SC S

l pc

Γ
C S

C S C S

→

Figure 4: Diagrams contributing to the matching calculation for the soft-
collinear current for the case of one soft and one collinear external gluon, and
the resulting non-local operator in the SCET. The dashed line represents the
current insertion.

in the next section that this is, in fact, required by reparameterization invariance. It is
therefore not possible to obtain more than one insertion of the product /n /Ac⊥. Eq. (24)
then gives the most general operator with a transverse collinear gluon insertion that is
allowed by gauge and reparameterization invariance.

A formal argument justifying the result (24) for an arbitrary number of soft and
collinear gluons would have to be based on integrating out the off-shell (λ, 1, λ) modes
of quarks and gluons in the path integral, generalizing the discussion presented in Ap-
pendix A of [4]. This is more complicated in the present case, however, because the
transverse components and transverse derivatives of the gauge fields cannot be ignored.
For the sake of simplicity we consider here only the case of an arbitrary number of
collinear gluons attached to a soft quark, ignoring soft gluons. We then need to inte-
grate out off-shell (λ, 1, λ) modes ψX of the light quark, but there is no need to consider
off-shell gluon fields. The QCD Lagrangian gives rise to the following interactions be-
tween the relevant on-shell and off-shell fields:

LX = ψ̄X i /Dc ψX + ψ̄X g /Ac qs + q̄s g /Ac ψX . (26)

In the kinetic term for the off-shell field the full covariant derivative should appear, but
within the approximation just described we need to keep only the collinear gauge field.
Since the off-shell field carries a large momentum in the n direction it is useful to split
it up into two 2-component fields ψn and ψn̄ defined such that /nψn = 0 and /̄nψn̄ = 0.
The equations of motion satisfied by these fields are

in ·Dc ψn +
/n

2
i /Dc⊥ ψn̄ +

/n

2

(
g /Ac⊥ +

/̄n

2
gn · Ac

)
qs = 0 ,

in̄ ·Dc ψn̄ +
/̄n

2
i /Dc⊥ ψn +

/̄n

2

(
g /Ac⊥ +

/n

2
gn̄ · Ac

)
qs = 0 .

(27)

Solving the equation for ψn̄ to leading order in λ we obtain

ψn̄ = − /̄n /n

4

1

in̄ ·Dc
gn̄ · Ac qs + · · · = /̄n /n

4
(W − 1) qs + . . . , (28)
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Figure 5: Multiple attachments of collinear gluons to a soft light quark, and
the resulting non-local interaction in SCET.

where the dots denote higher-order terms, and to arrive at the second equality we have
used the identity (14). Inserting the solution for ψn̄ into the first equation in (27) yields

in ·Dc ψn = −/n

2
(i /Dc⊥W ) qs −

/n

2
(W − 1) i/∂⊥ qs + . . .

= −/n

2
(i /Dc⊥W ) qs +

/n /̄n

4
(W − 1) in · ∂ qs + . . . , (29)

where in the last step the equation of motion i/∂ qs = 0 for the light quark (in the absence
of soft gluons) has been used. Because the off-shell field has momentum n·pX ∼ λ, which
is larger than n · Ac ∼ λ2, we can replace the covariant derivative on the left-hand side
of this equation by an ordinary derivative. Combining then the two results in (28) and
(29), and using that the derivative in · ∂ commutes with collinear fields to leading order
in λ, we obtain

ψX = (W − 1) qs −
/n

2
(i /Dc⊥W )

1

in · ∂ qs + . . . . (30)

Figure 5 illustrates that this result can be understood as a tree-level matching relation
for a light quark (in the absence of soft gluons),

q(x)
∣∣
QCD
→

[
qs + ψX

]
(x) = W

(
1− /n

2

[
W †(i /Dc⊥W )

] 1

in · ∂ − iε

)
qs

= W (x)

[
qs(x)− i

/n

2
/Ac⊥(x)

∫ ∞

0

dt qs(x+ tn)

]
, (31)

where we have chosen a −iε prescription to regularize the inverse derivative on the light-
quark field. This choice is consistent with the Feynman prescription for the propagator of
an off-shell quark obtained by coupling a final-state collinear gluon to an initial state soft
quark. Performing this replacement, along with ψ → ξ, in the QCD current operator
ψ̄ Γ q precisely reproduces the tree-level structure of collinear fields in (21) and (24).
The extension of this argument to include soft fields is left for future work. Note that
the integro-differential operator on the right-hand side of the first equation in (31) is
nilpotent in the sense that exp(1− . . . ) = (1− . . . ). Therefore, insertions of transverse
collinear gluons on a soft light-quark line do not exponentiate.

It is, at first sight, surprising that the operator in (24) is of leading order in SCET
power counting, because the extra transverse gluon field /Ac⊥, which is absent in (21),
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scales like a power of λ. However, this suppression is compensated by the different
behavior of the Wilson coefficient functions, C̃Γ ∼ λ and D̃Γ ∼ 1. (In momentum space,
the transverse derivative is compensated by the factor 1/l+ associated with the transverse
terms in (23).) It is evident from this example that the presence of large non-localities
on the scale 1/Λ can upset naive SCET power counting. From our discussion so far it
follows that one needs to know the t-dependence of the short-distance coefficients (or
the l+ dependence of the corresponding coefficients in momentum space) before one can
decide whether a non-local operator such as (21) or (24) contributes at leading order
in power counting. Fortunately, it is possible to deduce the t-dependence of the Wilson
coefficients to all orders in perturbation theory without an explicit calculation. This is
discussed in the next section.

5 Reparameterization invariance

Operators in SCET must be invariant under redefinitions of the light-cone basis vectors
n and n̄ that leave the scaling properties of fields and momenta unchanged [8, 24]. This
property is referred to as reparameterization invariance, and it can be used to derive
constraints on the Wilson coefficients of SCET operators, often relating the coefficients
of some operators to those of others. Reparameterization invariance is a consequence
of the invariance of QCD under Lorentz transformations, which is not explicit (but still
present) in SCET because of the introduction of the light-cone vectors.

It is useful to distinguish between three classes of infinitesimal transformations, cor-
responding to two different transverse boosts and a longitudinal boost:

Type I: nµ → nµ + εµ⊥ , n̄µ invariant (with εµ⊥ ∼ λ)

Type II: n̄µ → n̄µ + eµ
⊥ , nµ invariant (with eµ

⊥ ∼ 1)

Type III: nµ → nµ/α , n̄µ → αn̄µ (with α ∼ 1)

(32)

In parenthesis we give the scaling properties for the parameters of the corresponding
finite transformations, which are relevant for power counting. Using the properties of
the fields and Wilson lines under these transformation, as compiled in Table I of [24],
it is straightforward to show that the current operators in (21) and (24) are separately
invariant under type I and type II transformations to leading order in λ. In other
words, reparameterization invariance links these operators with operators that appear at
subleading order in λ. The only non-trivial point in this analysis concerns the transverse
collinear derivative Dµ

c⊥, which has non-vanishing variations at leading order in λ under
both type I and type II transformations,

Dµ
c⊥

type I→ Dµ
c⊥ −

εµ⊥
2
n̄ ·Dc +O(λ2) , Dµ

c⊥

type II→ Dµ
c⊥ −

nµ

2
e⊥ ·Dc⊥ +O(λ2) . (33)

However, in both cases the object /nW †(i /Dc⊥W ) = /n /Ac⊥ is left invariant. For type I
transformations this follows from (n̄ ·Dc W ) = 0, whereas for type II transformations it
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l pc

Γ
l u pc

(1-u) pc

Figure 6: One-loop diagrams required to determine the matching coefficients
CΓ and DΓ. The first diagram suffices to find the coefficient CΓ, while the
evaluation of the remaining graphs with an external collinear gluon is required
to obtain DΓ.

follows since /n2 = 0. We stress that, without the extra factor of /n, the operator in (24)
would not be invariant under a type II reparameterization.

The type III transformations have non-trivial consequences. We find that the current
operators are invariant under these transformations only if their Wilson coefficients obey
the homogeneity relations

C̃Γ(t, E, µ) = α C̃Γ(αt, αE, µ) , D̃Γ(t, s, E, µ) =
1

α
D̃Γ(αt, s/α, αE, µ) . (34)

Taking into account the canonical dimensions of these coefficients, it follows that

C̃Γ(t, E, µ) = δ(t) c
(1)
Γ [αs(µ)] +

1

t
c
(2)
Γ

[
µ2 t/E, αs(µ)

]
,

D̃Γ(t, s, E, µ) = δ(s) d
(1)
Γ

[
µ2 t/E, αs(µ)

]
+

1

s
d

(2)
Γ

[
µ2 t/E, sE, αs(µ)

]
,

(35)

where the coefficient functions c
(i)
Γ and d

(i)
Γ are dimensionless. Since the dependence of

the Wilson coefficients on the renormalization scale is logarithmic, we conclude that to
all orders of perturbation theory C̃Γ(t, E, µ) ∼ 1/t ∼ Λ and D̃Γ(t, s, E, µ) ds ∼ 1 modulo
logarithms. With this information, it is now evident that the two types of current
operators contribute at the same order in power counting.

The above argument based on longitudinal boost invariance determines the behavior
of the momentum-space coefficients on the soft momentum l+ to all orders in perturba-
tion theory. This provides valuable information about the convergence of convolution
integrals of hard-scattering kernels (Wilson coefficients) with the B-meson light-cone
distribution amplitudes, which will be an important ingredient to factorization proofs.

It may be instructive to illustrate our results for the soft-collinear current with a
concrete example. For the case of the vector current, the explicit expressions for the
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matching coefficients CV and DV obtained at one-loop order (in the MS scheme, but
before subtraction of the pole terms in ε = 2− d/2) read

CV = 1 +
CF αs(µ)

4π

(
2El+
µ2

)−ε (
− 2

ε2
− 3

ε
− 8 +

π2

6

)
,

DV =
1

l+

{
1 +

αs(µ)

4π

(
2El+
µ2

)−ε [
CF kF (u, ε)− CA

2
kA(u, ε)

]}
,

(36)

where

kF (u, ε) = − 2

ε2
− 1

ε

(
1− 2 lnu

1− u

)
− ln2 u

1− u +
4 ln u

1− u − 3 +
π2

6
,

kA(u, ε) =
1

ε

2 ln u

1− u −
ln2 u

1− u +
4 lnu

1− u +
2 ln(1− u)

u
. (37)

The coefficient DV depends in a non-trivial way on the fraction u of the total collinear
momentum carried by the collinear quark (we define n̄ ·pq = 2uE and n̄ ·pg = 2(1−u)E).
To obtain these results we work with on-shell external quark and gluon states and use
dimensional regularization to regulate both ultraviolet and infrared divergences. This
ensures that all SCET loop diagrams vanish (since there is no large scale left in the low-
energy theory), and so the matching calculation is reduced to the calculation of vertex
graphs in the full theory [25, 26]. While the computation of CV is a simple exercise, to
obtain DV requires evaluating the vertex and box diagrams with an external collinear
gluon shown in Figure 6. A subtle point in this calculation is that there is a contribution
to DV resulting from the application of the equation of motion for the collinear quark in
the first diagram. It is a highly non-trivial check of our result that the sum of the seven
diagrams with an external gluon can be represented as the sum of two contributions
corresponding to the two operators in (21) and (24), with the coefficient CV of the first
operator fixed by the u-independent expression in (36) obtained from the first diagram
shown in the figure.

Taking the Fourier transforms of these results, we find the position-space coefficient
functions

C̃V = δ(t) +
CF αs(µ)

4π

θ(t)

t

(
µ2 it eγE

2E

)ε

ε

(
− 2

ε2
− 3

ε
− 8 +

π2

6

)
,

D̃V = iθ(t)

{
δ(s) +

αs(µ)

4π

(
µ2 it eγE

2E

)ε

× E

π

∫
du e−2iEs(1−u)

[
CF kF (u, ε)− CA

2
kA(u, ε)

]}
,

(38)

in accordance with the general forms in (35) predicted by reparameterization invariance.
When taking the limit ε → 0 in the first result the pole at t = 0 must be regularized,
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e.g. by using a plus distribution. Also, integrals of C̃V and D̃V with the t-dependent,
non-local renormalized operators in (21) and (24) may require additional subtractions of
power divergences at t =∞ [18].

The scale dependence of the Wilson coefficient functions (in momentum or position
space) is governed by renormalization-group equations, for instance

∂

∂µ2
CV (µ) =

[
CF αs(µ)

4π

(
−2 ln

µ2

2El+
− 5

)
+O(α2

s)

]
CV (µ) . (39)

The “anomalous dimension” in this equation contains logarithms involving the ratio of
µ2 to the intermediate scale El+. This is a characteristic feature of amplitudes involving
Sudakov logarithms. The integration of the renormalization-group equation in such cases
leads to the exponentiation of the leading Sudakov double logarithms [1, 2].

6 Matching of four-quark operators

The discussion of the soft-collinear current presented in the previous two sections has
elucidated many new features encountered in the interactions of a soft light quark with
collinear gluons. We will now consider a slightly more complicated example of a matching
calculation, which however is of greater phenomenological importance. Our goal is to
match a local color-singlet four-quark operator of the type O4q = ψ̄ Γ1 T1 ψ b̄Γ2 T2 q onto
operators in SCET, in a kinematical situation where the quarks q and b̄ are soft, while
ψ and ψ̄ are collinear. Here Γ1,2 are arbitrary Dirac structures, and T1 ⊗ T2 = 1⊗ 1 or
ta ⊗ ta are color structures. The resulting operators in SCET have the spinor content
ξ̄ . . . ξ h̄ . . . qs. Such operators would arise, e.g., in the discussion of factorization for the
hard-scattering term in the exclusive decay B → K∗γ. (However, in general they are
obtained by matching a non-local full-theory amplitude onto a four-quark operator in
the SCET.)

The matching calculation for four-quark operators proceeds in analogy to the match-
ing for the soft-collinear current discussed in Section 4. We find that again two types
of operators appear at leading order in λ. At tree level, the result is (setting x = 0 for
simplicity)

O4q(0) →
[
ξ̄ W Γ1 T1W

†ξ
]
(0)

[
h̄ S Γ2 T2 S

†qs
]
(0)

− i

2

∫ ∞

0

dt
[
ξ̄ W Γ1 T1W

†ξ
]
(0)

[
h̄ S Γ2 T2 /n /Ac⊥

]
(0)

[
S†qs

]
(tn) . (40)

For final states containing up to two external gluons, we have checked the correctness
of this expression explicitly using perturbative matching. Note, in particular, that the
structure of collinear gluon fields follows from the matching relation (31).

When radiative corrections are included, the above result gets generalized in several
ways. First, Dirac structures different from those of the original operator can be induced.
Secondly, both color structures arise, since they mix under renormalization. Finally, the
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various components of the SCET operators become non-local. The most general gauge-
invariant matching relation at leading order in λ is of the form

O4q(0) →
∑

i,j

∑

C=S,O

{ ∫
dr dt C̃

(C)
ij (r, t, E,mb, µ)Q

(C)
ij (r, t)

− 1

2

∫
dr ds dt D̃

(C)
ij (r, s, t, E,mb, µ)R

(C)
ij (r, s, t)

}
, (41)

where

Q
(C)
ij (r, t) =

[
ξ̄ W

]
(−rn̄) Γi T1

[
W †ξ

]
(rn̄)

[
h̄ S

]
(0) Γj T2

[
S†qs

]
(tn) ,

R
(C)
ij (r, s, t) =

[
ξ̄ W

]
(−rn̄) Γi T1

[
W †ξ

]
(rn̄)

[
h̄ S

]
(0) Γj T2 /n /Ac⊥(sn̄)

[
S†qs

]
(tn)

(42)

are non-local operators, and the color label C = S or O refers to the color singlet-singlet
and color octet-octet structures, respectively. As in the case of the soft-collinear current
both operators contribute at the same order in λ, since C̃

(C)
ij ∼ λ while D̃

(C)
ij ∼ 1.

The form of the operators in (41) is determined by gauge invariance. To see this,
note that instead of working in the singlet–octet basis of operators with flavor structure
ξ̄ . . . ξ h̄ . . . qs we could have chosen instead to work with operators containing only prod-
ucts of color-singlet currents. Gauge invariance would then require that these operators
be of the type [

ξ̄ W
]
Γi

[
W †ξ

] [
h̄ S

]
Γj (/n /Ac⊥)

[
S†qs

]

or
[
ξ̄ W

]
Γ′

i (/n /Ac⊥)
[
S†qs

] [
h̄ S

]
Γ′

j

[
W †ξ

]
,

(43)

where each bracket [. . . ] can be located at a different point, and the factor (/n /Ac⊥)
may or may not be present. Note that the second operator consists of a product of a
soft-collinear current considered in Section 4 with a heavy-collinear current derived in
[2]. With these results at hand, one can now perform a Fierz transformation to the
flavor basis ξ̄ . . . ξ h̄ . . . qs and express the result in terms of color singlet-singlet and color
octet-octet operators, as shown in (41).

Consider now the hadronic matrix elements of the resulting SCET operators between
an initial-state B meson and a light, highly energetic final-state meson M . Since at
leading order in λ there are no QCD interactions between soft and collinear fields, it
follows that these matrix elements factorize into two parts, one containing only soft
fields and one containing only collinear fields. Using the fact that matrix elements of
color-octet currents between physical states vanish, and recalling from (6) that the object
Aµ

c is a pure color octet, we obtain

〈M |Q(S)
ij (r, t) |B〉 = 〈M |

[
ξ̄ W

]
(−rn̄) Γi

[
W †ξ

]
(rn̄) | 0 〉 〈 0 |

[
h̄ S

]
(0) Γj

[
S†qs

]
(tn) |B〉

〈M |R(O)
ij (r, s, t) |B〉 =

1

2Nc

〈M |
[
ξ̄ W

]
(−rn̄) Γi A

µ
c (sn̄)

[
W †ξ

]
(rn̄) | 0 〉

×〈 0 |
[
h̄ S

]
(0) Γj /n γ⊥µ

[
S†qs

]
(tn) |B〉 , (44)
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while
〈M |Q(O)

ij (r, t) |B〉 = 0 , 〈M |R(S)
ij (r, s, t) |B〉 = 0 . (45)

The matrix elements of the singlet operators Q
(S)
ij have precisely the form expected from

familiar applications of QCD factorization. The two matrix elements of bilocal currents
define the leading-twist light-cone distribution amplitude of the light meson M [19, 20]
and the leading-order (in the heavy-quark expansion) distribution amplitudes of the B
meson [18], respectively. The fact that there may appear a non-vanishing, leading-power

contribution from matrix elements of the octet operators R
(O)
ij is a surprising result of our

analysis, which has not been anticipated in the literature. These matrix elements corre-
spond to higher-twist projections onto the light meson M , which contribute at leading
power because (in momentum space) they are enhanced with respect to the singlet-
operator matrix elements by a factor of 1/l+, where l is the soft spectator momentum.
Introducing the definition W (x, y) ≡W (x)W †(y) for a collinear Wilson line connecting
two points x and y, and using relation (6), the corresponding matrix element can be
recast into the form

〈M |
[
ξ̄ W

]
(−rn̄) Γi A

µ
c (sn̄)

[
W †ξ

]
(rn̄) | 0〉

=

∫ s

−∞

dw 〈M | ξ̄(−rn̄)W (−rn̄, wn̄) Γi n̄α gG
αµ
c (wn̄)W (wn̄, rn̄) ξ(rn̄) | 0 〉 , (46)

which involves the conventional definition of a higher-twist, three-particle light-cone
distribution amplitude [19, 20]. It remains to be seen whether such higher Fock-state
contributions will also arise in cases where a non-local amplitude is matched onto four-
quark operators in the SCET.

The momentum-space Wilson coefficients corresponding to the coefficients C̃
(C)
ij and

D̃
(C)
ij in (41) are, in general, complicated functions of the scales m2

b , mbE, El+, and µ2

(where E ∼ mb), and of dimensionless variables u and v measuring the longitudinal

momentum fractions of the collinear quark and gluon (in the case of the operators R
(C)
ij )

inside the light final-state meson. It is impossible to eliminate all large ratios of these
scales by a choice of the renormalization point µ. In such a case the resummation of large
logarithms of the type ln(E/Λ) can be achieved by performing the matching onto the
low-energy effective theory in two steps. First one integrates out hard modes as well as
the couplings of collinear gluons to the heavy quark. This yields (non-local) operators in
an intermediate effective theory which still contains (λ, 1, λ) modes as dynamical degrees
of freedom. The Wilson coefficients arising in this step are functions of m2

b , mbE and µ2

(as well as u). They can be calculated perturbatively at a scale µ2 ∼ m2
b and evolved

down to a scale µ2 ∼ EΛ using the renormalization group. In the second step the off-
shell (λ, 1, λ) modes are integrated out, yielding the SCET as constructed in this work.
This gives rise to Wilson coefficients that depend on the scales El+ and µ2 (as well as u
and v). Solving the renormalization-group equations in SCET these coefficients can then
be evolved down to scales µ2 � EΛ, at which the operators in SCET are renormalized.
Concrete examples of such a two-step matching procedure will be discussed elsewhere.
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We stress that, while the resummation of large logarithms arising from the evolution
between the two hard scales m2

b and mbΛ is necessary to obtain reliable perturbative
predictions for the Wilson coefficient functions, it is not required for the discussion of
the factorization properties of matrix elements in the low-energy effective theory.

7 Implications for factorization theorems

The presence of non-trivial interactions between the soft spectator quark and collinear
gluons complicates the understanding of the factorization properties of B-meson decay
amplitudes. We will now illustrate this fact with the help of some toy examples. Realistic
examples such as B → K∗γ or B → ππ are more complicated and will be discussed
elsewhere.

Consider the effective weak Hamiltonian

Heff = C(S) Φ ūΓ1 s b̄Γ2 u+ C(O) Φ ūΓ1 ta s b̄Γ2 ta u (47)

mediating the exclusive decay B+ → K(∗)+Φ, where the color-singlet field Φ can be
a scalar, vector, or any other field, depending on the quantum numbers of the Dirac
matrices Γ1,2. This interaction is simpler than in the Standard Model since it is local,
but otherwise it shares many similarities with terms that occur in the effective weak
Hamiltonian of the Standard Model.

Based on the fact that the outgoing kaon contains a highly energetic, collinear (s̄u)
pair and so decouples from soft gluons (“color transparency”), one would expect, follow-
ing [10, 11], that at leading power in Λ/mb the decay amplitude should obey the QCD
factorization formula

A = Φ

∫
du

∫
dl+ φK(∗)(u)φB(l+)T (u, l+) , (48)

where φK(∗) and φB are leading-order light-cone distribution amplitudes defined, e.g.,
in [5], and T is the hard-scattering kernel, which in the context of the SCET would be
identified with a Wilson coefficient function. It is evident from our discussion in the
previous section that for the simple result (48) to be correct the matrix elements of the

operators R
(C)
ij would have to vanish. Otherwise, the factorization formula would have

to be generalized to include a term involving higher-twist distribution amplitudes of the
kaon.

Matrix elements of the operators R
(C)
ij in (42) are zero if the product Γj /n of Dirac

matrices vanishes, or if theB-meson matrix element of the structure h̄Γj /n γ⊥µ qs vanishes
by rotational invariance in the transverse plane. We believe that in many cases of
phenomenological interest this is indeed what happens. Consider, as an example, the
decay B+ → K+Φ0, where Φ0 is a fictitious light scalar. In this case the Lorentz indices of
Γ1 must always be contracted with those of Γ2. Let us, for simplicity, work at tree level, so
that the Dirac structures Γi⊗Γj appearing in the SCET operators are the same as those
in the original operators. Between the collinear quark spinors ξ̄ and ξ the Dirac basis
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matrices {1, γ5, γ
µ, γµγ5, [γ

µ, γν ]} are projected to {0, 0, 1
2
nµ /̄n, 1

2
nµ /̄nγ5, /̄n(nµγν

⊥−nνγµ
⊥)}.

It follows that after contraction of Lorentz indices the product Γi ⊗ Γj can only take
the forms /̄n(γ5) ⊗ /n(γ5) or [/̄n, γν

⊥] ⊗ [/n, γ⊥ν ]. This guarantees that Γj /n = 0 for all

possible Dirac structures, and hence the operators R
(C)
ij vanish. We conclude that for

this particular process the factorization formula (48) would hold, at least at tree level.
The mechanism just described does not appear to be universal, however. Consider,

as a counter example, the case where Φ = Fαβ is the electromagnetic field, and where the
Dirac matrices in (47) are chosen to be Γ1⊗Γ2 = σαβ⊗γ5 for the color singlet-singlet term
and γα⊗γβγ5 for the octet-octet term. This effective Hamiltonian mediates the radiative
decay B+ → K∗+γ (but not in the Standard Model). At tree level, the corresponding

operators Q
(C)
ij and R

(C)
ij in SCET have Dirac structures Γi⊗Γj = /̄n γβ

⊥⊗γ5 times nαFαβ

and Γi ⊗ Γj /n γ⊥µ = /̄n⊗ γβγ5 /n γ⊥µ times nαFαβ, respectively. After projection onto the
B meson, the resulting Lorentz structures in the two cases are

∫
dr dt C̃

(S)
ij 〈K∗|Q(S)

ij |B〉 ∼ E
1
2 Λ

3
2 nαFαβ 〈K∗| ξ̄ /̄nγβ

⊥ ξ | 0 〉 ∼ E
3
2 Λ

5
2 nα ε∗β⊥ Fαβ ,

∫
dr ds dt D̃

(O)
ij 〈K∗|R(O)

ij |B〉 ∼ E
1
2 Λ

1
2 nαFαβ g

β
⊥µ 〈K∗| ξ̄ /̄nA

µ
c⊥ ξ | 0 〉 ∼ E

3
2 Λ

5
2 nα ε∗β⊥ Fαβ ,

(49)
where ε⊥ is the transverse polarization vector of the K∗ meson, and we have used the
well-known scaling relations for current matrix elements of heavy and light mesons [22].
It is evident that for this example both operators contribute at the same order in power
counting, and hence the simple QCD factorization formula in (48) must be generalized
to include a term involving twist-3 light-cone distribution amplitudes of the kaon.

It follows that the question of factorization for the hard-spectator term in a QCD
factorization formula is far from trivial. Whether a simple QCD factorization formula
holds, or whether it must be generalized to include higher-twist distribution amplitudes,
requires a case by case study. It is conceivable that in many cases of phenomenological
importance it will be possible to exclude the presence of the operators R

(C)
ij based on some

symmetry, such as rotational invariance in the transverse plane or reparameterization
invariance. It remains to find a general argument supporting this assertion.

8 Gauge-invariant building blocks for operators in

SCET

The careful reader will have noticed that, as a result of gauge invariance, the external
current and four-quark operators in SCET discussed in the previous sections always con-
tain products of the Wilson lines W and S with soft or collinear quark fields, respectively.
This suggests introducing new fields

H = S†h , Qs = S†qs , X = W †ξ , (50)
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which are manifestly gauge invariant and have the same scaling relations in λ as the
original fields. In the case where one chooses the light-cone gauge conditions n · As = 0
and n̄ ·Ac = 0 the new fields agree with the original ones. In terms of the new fields, the
four-quark operators in (42) take the simple form

Q
(C)
ij (r, t) = X̄(−rn̄) Γi T1 X(rn̄) H̄(0) Γj T2 Qs(tn) ,

R
(C)
ij (r, s, t) = X̄(−rn̄) Γi T1 X(rn̄) H̄(0) Γj T2 /n /Ac⊥(sn̄) Qs(tn) ,

(51)

and similar simplified expressions hold for the current operators in (18), (21), and (24).
While the definition of these new fields seems merely a matter of convenience of

notation, we will now argue that, in fact, any operator in SCET can be built from a small
set of gauge-invariant fields. Once these fields are known, gauge invariance of operators
containing them is guaranteed, and the only remaining rules for the construction of SCET
operators are Lorentz and reparameterization invariance. Therefore, the formalism we
will introduce in this section will simplify the construction of SCET operators, which is
important, in particular, for going beyond the leading order in λ.

The QCD Lagrangian contains, besides quark (and ghost) fields, the gauge-covariant
derivative. In SCET we have distinguished between the collinear and soft covariant
derivatives Dµ

c and Dµ
s . We can construct gauge-invariant objects from these quantities

by using the field Aµ
c introduced in (6) and a corresponding object defined in the soft

sector:

A
µ
s (x) =

[
S†(iDµ

sS)
]
(x) =

∫ 0

−∞

dw nα

[
S†gGαµ

s S
]
(x+ wn) . (52)

The gauge-invariant fields Aµ
c and Aµ

s obey the constraints n̄·Ac = 0 and n·As = 0 in any
gauge. (Recall that in the light-cone gauge these fields coincide with the corresponding
gluon fields gAµ

c and gAµ
s .) It follows that the scaling relations of the new fields are

Aµ
c ∼ (λ2, 0, λ) and Aµ

s ∼ (0, λ, λ). We finally define new, gauge-invariant objects

iDµ
c = W † iDµ

c W = i∂µ + A
µ
c , iDµ

s = S† iDµ
s S = i∂µ + A

µ
s . (53)

With the help of these definitions, the different parts of the leading-order SCET
Lagrangian can be rewritten in the form

Lh = H̄ iv ·Ds H , Ls = Q̄s i /Ds Qs ,

Lc = X̄
/̄n

2
in ·Dc X + X̄

/̄n

2
i /Dc⊥

1

in̄ · ∂ i /Dc⊥ X .
(54)

The appearance of an ordinary derivative in the expression for Lc is not in conflict with
gauge invariance, since all the component fields are gauge invariant by themselves. Fi-
nally, also the pure-glue Lagrangians for soft and collinear fields take a simple form. Since
we can replace Gµν

c by W †Gµν
c W = (i/g) [Dµ

c ,D
ν
c ] and Gµν

s by S†Gµν
s S = (i/g) [Dµ

s ,D
ν
s ]

in the Lagrangian (using the cyclicity of the color trace), the resulting pure-glue La-
grangians are simply obtained by replacing all gluon fields in the usual QCD Lagrangian
with the new fields Ac and As.
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Let us briefly summarize the properties of the gauge-invariant building blocks under
the three types of reparameterizations discussed in Section 5. We find that the redefined
quark fields as well as the soft gluon field Aµ

s are invariant up to higher-order terms in
λ. However, the collinear gluon field has non-trivial transformations at leading order.
Under a type I transformation n · Ac → n · Ac + ε⊥ · Ac while Ac⊥ remains invariant.
Under a type II transformation A

µ
c⊥ → A

µ
c⊥− 1

2
nµ e⊥ ·Ac⊥ while n ·Ac remains invariant.

The corresponding transformation properties of the “collinear derivative” are n ·Dc →
n ·Dc + ε⊥ ·Dc and D

µ
c⊥ → D

µ
c⊥ − 1

2
εµ⊥ n̄ · ∂ (type I), and D

µ
c⊥ → D

µ
c⊥ − 1

2
nµ e⊥ ·Dc⊥

while n · Dc remains invariant (type II). Invariance under type III reparameterizations
requires that every occurrence of a vector n in the numerator must be accompanied by
that of a vector n̄, or by a factor of n · ∂ in the denominator (and vice versa). From
these rules it follows, e.g., that the sum of the two terms in the collinear Lagrangian Lc

in (54) is reparameterization invariant, but not the two operators separately.
After the introduction of the new fields the expression for any operator in SCET looks

like an expression in the light-cone gauge; however, we have not imposed light-cone gauge
but rather redefined the fields by a unitary transformation. In the new formulation the
Wilson lines have disappeared, and all fields in the theory scale like at least one power
of λ (the large collinear field n̄ · Ac ∼ 1 has been removed). Finally, gauge invariance is
no longer a constraint on the construction of operators in the effective theory.

9 Kinematics of heavy-to-light form factors

Our goal in this paper was to find a formulation of SCET suitable for the systematic
study of the factorization properties and power corrections for any exclusive B-meson
decay into light particles. It is important, then, to have a theory that describes the
form-factor term and the hard-scattering term in a factorization formula in terms of the
same fields and scaling rules. However, previous work on the soft component of exclusive
heavy-to-light form factors has been based on the scaling assumption λ ∼

√
Λ/E [8, 9],

which is different from our hypothesis. In this case soft fields carrying momenta of order
Λ scale like E(λ2, λ2, λ2) and are thus called “ultrasoft”. The main difference with our
approach is that the “collinear modes” in this formulation have momenta scaling like
(Λ, E,

√
EΛ). The resulting effective theory thus appears to be different from the one

constructed here.
The challenge is to understand the soft contribution to heavy-to-light form factors,

in which the B-meson spectator quark enters the light final-state meson as a soft (or
ultrasoft) quark, so that this meson is produced in a highly asymmetric state. Consider
a B → π transition for concreteness. The scaling λ ∼

√
Λ/E was assumed based on the

following kinematical consideration. The pion emitted in a heavy-to-light decay at large
recoil carries momentum scaling like pπ ∼ (Λ2/E,E,Λ), and making this up by combining
a soft quark with momentum ps ∼ (Λ,Λ,Λ) and a collinear jet requires that this jet have
invariant mass squared p2

c ∼ EΛ. Given that for a collinear particle p2
c ∼ λ2E2, it then

follows that λ ∼
√

Λ/E. Although this argument might seem compelling, it has the
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{
Figure 7: How to make a pion in a highly asymmetric configuration? The
drawing illustrates the scaling of the collinear and soft components proposed
in the present work, where λ ∼ Λ/E is assumed. In earlier papers a different
scaling of collinear momenta was used.

unattractive feature that the external pion momentum now scales like pπ ∼ E(λ4, 1, λ2),
which cannot be built up from the combination of a generic ultrasoft momentum ps ∼
E(λ2, λ2, λ2) with a generic collinear momentum pc ∼ E(λ2, 1, λ). In other words, the
plus component of the collinear jet must cancel the plus component of the soft spectator
quark with a relative precision of order λ2 ∼ Λ/E, and the transverse component of the
jet has to be smaller than its generic size by a factor λ ∼

√
Λ/E. These two constraints

combined imply that the soft overlap mechanism is strongly suppressed in this picture
(which a priori is no problem, since heavy-to-light form factors are suppressed in the
heavy-quark limit). This discussion can also be summarized in more physical terms by
saying that it is unlikely that a collinear jet of particles with invariant mass of order√
EΛ will absorb a soft quark and become a light meson with mass of order Λ.
Here we wish to suggest a different possibility for interpreting the soft overlap contri-

bution to heavy-to-light form factors. As illustrated in Figure 7, we assume the scaling
λ ∼ Λ/E adopted throughout this work, so that the pion momentum scales like any
other collinear momentum. In order to make a light meson out of collinear particles and
soft particles, the only thing that is required is that the plus component of the total
soft momentum, which generically would scale like Eλ, is accidentally small, of order
Eλ2. This implies a phase-space suppression of order Λ/E. It appears more intuitive to
us to assume that only a jet of particles with invariant mass of order Λ can ultimately
hadronize into a single light meson.

It is not evident whether the choice of λ is simply a matter of convenience, or whether
it corresponds to a different kinematical situation. Naively, we would expect that our
predictions for heavy-to-light form factors would differ from the ones obtained in [8, 9].
For instance, we expect that violations of heavy-quark symmetry relations between form
factors start at order Λ/mb, while the power counting adopted in these papers would
allow for the presence of

√
Λ/mb corrections.

10 Summary and conclusions

The development of an effective field theory for the strong interactions of soft and
collinear partons is a significant step toward the systematic study of factorization and
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a field-theoretical description of power corrections for observables that do not admit an
operator product expansion. Power counting in this soft-collinear effective theory is non-
trivial due to the presence of non-local operators integrated along light-like directions,
but it appears feasible to construct a controlled heavy-quark expansion of amplitudes in
terms of hadronic matrix elements of effective theory operators.

In this paper we have constructed the extension of the previous formulation of soft-
collinear effective theory necessary for the description of exclusive B-meson decays into
light particles. QCD factorization theorems for such processes are complicated, because
in addition to a form-factor term a hard-scattering contribution appears at leading power.
It results from hard gluon exchange with the soft spectator quark in the B meson. The in-
trinsic softness of the B-meson dynamics complicates the understanding of factorization
properties of decay amplitudes. A new intermediate mass scale of order mbΛ arises and
leads to large non-localities of effective-theory operators on a scale 1/Λ, thus upsetting
naive power counting. Power counting can be restored, however, using reparameteriza-
tion invariance, which gives control over the dependence of Wilson coefficient functions
on the light-like separation between the component fields of non-local operators.

The version of soft-collinear effective theory relevant to the discussion of exclusive B
decays into light particles contains soft and collinear fields. We have constructed the ef-
fective Lagrangian at leading order in Λ/mb, finding that it does not contain soft-collinear
interaction terms. Such interactions would, however, appear at subleading order. We
have then discussed in detail the matching of current and four-quark operators from the
full theory onto their effective-theory counterparts. This matching is complicated by
the presence of non-trivial interactions between the soft spectator quark and collinear
gluons. The most surprising finding of our analysis is that, generically, there are two
types of four-quark operators present in the effective theory, one of which contains an
insertion of a transverse collinear gluon field. Upon evaluating hadronic matrix elements
of such operators between a B meson and a light, energetic meson, one finds that in ad-
dition to the leading-twist distribution amplitude of the light meson also three-particle
distribution amplitudes of subleading twist contribute at leading power. This suggests
that, in some cases, QCD factorization formulae may have to be generalized. We have
presented a toy example where this extension is indeed necessary.

Our results for the matching of currents and four-quark operators suggest a refor-
mulation of soft-collinear effective theory in terms of operators composed out of gauge-
invariant building blocks replacing the original quark and gluon fields. In the new for-
mulation gauge invariance is automatic, and the form of operators is only constrained
by Lorentz invariance. We anticipate that this observation will facilitate the extension
of our results beyond the leading order.

The formalism developed in this work provides for the first time the basis for a system-
atic discussion of factorization and power corrections for any B-meson decay into light
particles. Phenomenological applications of this framework will be discussed elsewhere.
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Note added: While this paper was in writing the work [27] appeared, in which fac-
torization for the leptonic radiative decay B → γeν is discussed in the context of soft-
collinear effective theory. The formalism used in that work differs from the one developed
here and would not be applicable (at least not in an obvious way) to exclusive decays
with light hadrons in the final state. Nevertheless, part of the discussion presented by
these authors realizes the idea of two-step matching mentioned at the end of Section 6.

Acknowledgment: We are grateful to Martin Beneke, Peter Lepage, Ben Pecjak, Björn
Lange, Farrukh Chishtie and Stefan Bosch for many useful discussions. The research of
R.J.H. was supported by the Department of Energy under Grant DE-AC03-76SF00515.
The research of M.N. was supported by the National Science Foundation under Grant
PHY-0098631.

References

[1] C. W. Bauer, S. Fleming and M. E. Luke, Phys. Rev. D 63, 014006 (2001) [hep-
ph/0005275].

[2] C. W. Bauer, S. Fleming, D. Pirjol and I. W. Stewart, Phys. Rev. D 63, 114020
(2001) [hep-ph/0011336].

[3] C. W. Bauer and I. W. Stewart, Phys. Lett. B 516, 134 (2001) [hep-ph/0107001].

[4] C. W. Bauer, D. Pirjol and I. W. Stewart, Phys. Rev. D 65, 054022 (2002) [hep-
ph/0109045].

[5] M. Beneke, G. Buchalla, M. Neubert and C. T. Sachrajda, Nucl. Phys. B 591, 313
(2000) [hep-ph/0006124].

[6] C. W. Bauer, D. Pirjol and I. W. Stewart, Phys. Rev. Lett. 87, 201806 (2001)
[hep-ph/0107002].

[7] C. W. Bauer, S. Fleming, D. Pirjol, I. Z. Rothstein and I. W. Stewart, Phys. Rev.
D 66, 014017 (2002) [hep-ph/0202088].

[8] J. Chay and C. Kim, Phys. Rev. D 65, 114016 (2002) [hep-ph/0201197].

[9] M. Beneke, A. P. Chapovsky, M. Diehl and T. Feldmann, Nucl. Phys. B 643, 431
(2002) [hep-ph/0206152].

[10] M. Beneke, G. Buchalla, M. Neubert and C. T. Sachrajda, Phys. Rev. Lett. 83,
1914 (1999) [hep-ph/9905312].

[11] M. Beneke, G. Buchalla, M. Neubert and C. T. Sachrajda, Nucl. Phys. B 606, 245
(2001) [hep-ph/0104110].

[12] S. W. Bosch and G. Buchalla, Nucl. Phys. B 621, 459 (2002) [hep-ph/0106081].

28

http://arXiv.org/abs/hep-ph/0005275
http://arXiv.org/abs/hep-ph/0005275
http://arXiv.org/abs/hep-ph/0011336
http://arXiv.org/abs/hep-ph/0107001
http://arXiv.org/abs/hep-ph/0109045
http://arXiv.org/abs/hep-ph/0109045
http://arXiv.org/abs/hep-ph/0006124
http://arXiv.org/abs/hep-ph/0107002
http://arXiv.org/abs/hep-ph/0202088
http://arXiv.org/abs/hep-ph/0201197
http://arXiv.org/abs/hep-ph/0206152
http://arXiv.org/abs/hep-ph/9905312
http://arXiv.org/abs/hep-ph/0104110
http://arXiv.org/abs/hep-ph/0106081


[13] M. Beneke, T. Feldmann and D. Seidel, Nucl. Phys. B 612, 25 (2001) [hep-
ph/0106067].

[14] M. Beneke and T. Feldmann, Nucl. Phys. B 592, 3 (2001) [hep-ph/0008255].

[15] G. P. Korchemsky, D. Pirjol and T. M. Yan, Phys. Rev. D 61, 114510 (2000) [hep-
ph/9911427].

[16] S. W. Bosch and G. Buchalla, JHEP 0208, 054 (2002) [hep-ph/0208202].

[17] S. Descotes-Genon and C. T. Sachrajda, preprint hep-ph/0209216.

[18] A. G. Grozin and M. Neubert, Phys. Rev. D 55, 272 (1997) [hep-ph/9607366].

[19] V. M. Braun and I. E. Filyanov, Z. Phys. C 48, 239 (1990).

[20] P. Ball, V. M. Braun, Y. Koike and K. Tanaka, Nucl. Phys. B 529, 323 (1998)
[hep-ph/9802299].

[21] H. Kawamura, J. Kodaira, C. F. Qiao and K. Tanaka, Phys. Lett. B 523, 111 (2001)
[Erratum: ibid. B 536, 344 (2002)] [hep-ph/0109181].

[22] For a review, see: M. Neubert, Phys. Rept. 245, 259 (1994) [hep-ph/9306320].

[23] S. Coleman and R. Norton, Nuov. Cim. 38, 438 (1965).

[24] A. V. Manohar, T. Mehen, D. Pirjol and I. W. Stewart, Phys. Lett. B 539, 59
(2002) [hep-ph/0204229].

[25] E. Eichten and B. Hill, Phys. Lett. B 243, 427 (1990).

[26] M. Neubert, Phys. Rev. D 49, 1542 (1994) [hep-ph/9308369].

[27] E. Lunghi, D. Pirjol and D. Wyler, preprint hep-ph/0210091.

29

http://arXiv.org/abs/hep-ph/0106067
http://arXiv.org/abs/hep-ph/0106067
http://arXiv.org/abs/hep-ph/0008255
http://arXiv.org/abs/hep-ph/9911427
http://arXiv.org/abs/hep-ph/9911427
http://arXiv.org/abs/hep-ph/0208202
http://arXiv.org/abs/hep-ph/0209216
http://arXiv.org/abs/hep-ph/9607366
http://arXiv.org/abs/hep-ph/9802299
http://arXiv.org/abs/hep-ph/0109181
http://arXiv.org/abs/hep-ph/9306320
http://arXiv.org/abs/hep-ph/0204229
http://arXiv.org/abs/hep-ph/9308369
http://arXiv.org/abs/hep-ph/0210091

