
 _____________________ 
 
*Work supported by Department of Energy contract DE-AC03-76SF00515. 

 

Imaging rings in ring imaging Cherenkov counters*
 

Blair N. Ratcliff 

Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309, USA 

 

Abstract 
 

The general concepts used to form images in Ring Imaging Cherenkov (RICH) counters are described and their 
performance properties compared. Particular attention is paid to issues associated with imaging in the time dimension, 
especially in Detectors of Internally Reflected Cherenkov light  (DIRCs). 
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1.  Introduction and Scope  

 
The most powerful information available for 

tracking and particle identification using the Cherenkov 
process lies in measurements of the ring-correlated 
angles of emission of the visible and UV Cherenkov 
photons with respect to the particle trajectory. Since 
low energy photon detectors can measure only the 
detection time and position of an individual photon (not 
the angles directly), the photons must be “imaged” onto 
a detector so that angles can be derived. This paper 
attempts to clarify some of the issues associated with 
this imaging process in Ring Imaging Cherenkov 
(RICH) counters. In an attempt to make the principles 
involved transparent, much of this discussion is 
pedagogical in tone and presented at a “schematic” 
level. Particular emphasis is placed on the utilization of 
the timing dimension for high-resolution imaging. 
Some of these issues have been discussed previously, 
e.g., at the last workshop in this series, RICH98 [1], 
and more completely elsewhere [2] for the particular 
case of Detectors of Internally Reflected Cherenkov 
light (DIRC). I regret that space limitations do not 
allow much of the explanatory material presented at the 
conference to be discussed here.  

2.  Fundamentals 

2.1. Basic Cherenkov Equations 

As is well-known, Cherenkov radiation is emitted at 
polar angle (θc), uniformly in azimuthal angle (ϕc), with 
respect to the particle path  
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where β = vp/c.  vp is the particle velocity, c is the speed 
of light, and n(λ) is the index of refraction of the 
material. Since the index of refraction is a function of 
the photon wavelength, in normal optical materials 
there is an “intrinsic” Cherenkov angle resolution limit 
that depends on the detected photon bandwidth. 

 The number of photoelectrons observed (Npe) 
is given by the Frank-Tamm equation, 
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where L is the length of the particle through the 
radiator in cm, ε(E) is the overall collection efficiency 
for the Cherenkov photons multiplied by the detection 
efficiency for observing these photons as 
photoelectrons, and E is the photon energy in eV. 

Although it was first discussed in a classical paper 
by Tamm in 1939 [3], it seems to be less appreciated 
that the conical Cherenkov radiation shell is not 
perpendicular to the Cherenkov propagation angle in a 
dispersive medium. The half-angle of the cone opening 
(η) is given by, 
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where the index of refraction n (ω0) is written as a 
function of the angular frequency of the Cherenkov 
light (ω0) and the frequency range is centered at ω. As 
Motz and Schiff pointed out in 1953 [4], the presence 
of the second term means that the cone angle (η) is the 
complement of the Cherenkov angle (θc) only for a 
non-dispersive medium where dn/dω= 0.  

 After emission, the photon propagates a length (Lp), 
in a time (tp),  

                        ,
c

gnpL

pt =                            (4) 

where the photon group velocity (vgroup = c/ gn ) must 

be used rather than the photon phase velocity (vphase = 
c/n) since, in a dispersive medium, energy propagates 
at the photon group velocity. The relationship between 
group and phase velocities, as a function of photon 
wavelength (λ), is usually derived in a simple one-
dimensional picture [5], and leads to the following 
relationship between the group and phase refractive 
indices:  

        ng(λ)   =  n(λ)-λ dn(λ)/dλ.               (5) 

For fused silica, ng(λ) is typically several percent larger 
than n(λ) for photons in the energy range detectable by 
a bi-alkali photo-cathode. As a particular example, the 
weighted averaged value is <n(λ)/ng(λ)> ~ 0.97 for 
photons from a Cherenkov spectrum impinging on a bi-
alkali photocathode after passing through a borosilicate 
window.  More importantly for the resolution 
performance of a counter that uses timing, the 
dispersion of ng is also substantially greater, about a 
factor of 3 in the same photon energy range.  
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2.2. Cherenkov Coordinate systems 

For pedagogical purposes, it may be useful to write 
down specifically how the measured quantities are 
related to Cherenkov angles. Consider a frame (q), as 
shown in Fig. 1(a), where the particle moves along the 
(z) axis. The direction cosines of the Cherenkov photon 
emission in this frame (qx, qy, and qz), are related to the 
Cherenkov angles [see Eq. (1)] by, 
 

 qx =  cos ϕc sin θc,    
 qy =  sin ϕc sin θc,        (6)   

 qz =  cos θc, 
       

and, defining the emission point (ze) and detection 
point (zd),   
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Of course, photon coordinates are measured in some 
laboratory frame, such as that shown in Fig. 1(b), and 
must therefore be transformed into the Cherenkov 
frame of the particle. Transforming between frames 
often makes use of externally derived tracking 
parameters. Though in principle this is straightforward, 
the transformation factors involved can be large and 
angle dependent. On the other hand, the individual 
photons from a given particle are strongly correlated 
(i.e., they all have the same Cherenkov polar angle), 
and the power of this ring correlation can be exploited 
either to reduce the required “dimensionality” of each 
photon measurement or even to allow independent 
tracking of the particle trajectory.    

As a specific example of several of these concepts in 
a rather complex system, consider the case of the DIRC 
shown schematically in Fig. 2. In the right-handed 
coordinate system attached to the indicated bar frame, 
we call the track polar and azimuthal angles (θt, ϕt). We 
align the q frame x-axis such that the direction cosines 
of the photon emission in the bar frame can be written 
as 
kx =-qx cos θt cos ϕt  + qy sin ϕt + qz sin θt cos ϕt ,  
ky =-qx cos θt sin ϕt   - qy cos ϕt+ qz sin θt sin ϕt,        (8) 
kz = qx sin θt + qz cos θt,  
     
while the photon propagation time (tp) and propagation 
length (Lp) down a bar length of (L) are given by, 
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Figure 1.  Schematic of typical Cherenkov reference frames. (a) with 
respect to the particle path, (b) in the lab coordinate system. 

Figure 2.  Schematic of a radiator bar illustrating the DIRC 
reference frame.  The particle trajectory is shown as a line 
connected by dots; representative trajectories of Cherenkov photons 
are shown by lines with arrows. 
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DIRC is intrinsically a three-dimensional imaging 
device. The three directly measurable quantities are 
typically a 3 space-position of each “hit” in a detector 
“pixel” (e.g., a PMT), and its associated time. The 
space-position provides a direct measurement of the 
two transverse angles with respect to the end of the bar 
(αx, αy), assumed here to be corrected for refraction so 
that they are the angles inside the bar material.  The 
third angle (αz) can be calculated from the geometrical 
constraint.  However, because of the long optical delay 
line, the photon propagation time down the bar [(tp), 
see Eq. (9)] is also directly related to the direction 
cosine of the photon angle along the bar z axis (and 
thus to αz). This over-constraint is quite powerful in 
rejecting backgrounds and ambiguous solutions. It is 
usually only necessary to instrument one end of the bar 
and reflect photons heading the “wrong” way back to 
the detector. The propagation time shift between the 
forward and backward going photons usually makes 
them easy to separate.  

2.3. Performance Limits 

In a simple model, the fractional error on the particle 
velocity (δβ) is given by, 

              cctan θσ∗θ=
β

βσ
=βδ ,     where       
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[ ] 〉〈 i is the average single photo-electron 
resolution, and C is a correlated component combining 
contributions from several sources including tracking 
and alignment errors and multiple scattering. Clearly, 
for the best resolution, it is best to maximize Npe while 
minimizing C and [ ]〉〈 i . However, for any given 
photon detection efficiency curve, in a fixed radiator 
length counter, the only way to increase Npe is to 
increase the photon detection bandwidth ( � λ) which 
also increases the chromaticity contribution to [ ]〉〈 i  
so there is an “intrinsic” chromaticity performance limit 
to attainable performance. In practice, there are many 
other “practical” limits due to photon detector 
availability and performance, geometrical and radiator 
length considerations, attainable radiator size, and 
production specifications, and costs. For a β ≈ 1 
particle of momentum (p) well above threshold entering 
a radiator with index of refraction (n), the number of σ 
separation (Nσ) between particles of mass (m1) and (m2) 
is approximately 
 

In practical counters, the attainable angular 
resolution term σ[θc (tot)] varies between about 0.5 and 
5 mrad depending on the size and radiator type of the 
particular counter. The momentum coverage range of a 
particular counter is largely determined by the radiator 
index. Low indices are required to cover high 
momenta, but the radiators must become very large to 
produce sufficient photons. 

3.  Imaging Methods 

3.1.  Introduction 

The following sections provide a brief, schematic 
review of imaging methods that can be used in RICH 
detectors. Though the DIRC is a sub-type of RICH, the 
presence of the light guides with long path lengths 
leads to somewhat different considerations, particularly 
for the timing dimension, than for more classical RICH 
designs; Thus for clarity, DIRC and RICH examples of 
the relevant methods will both be given. Unless it is 
essential for clarity, complications such as different 
refractive indices in the imaging and radiator regions 
are ignored. Imaging can be thought of as occurring in 
each of the 3 possible dimensions (two space and one 
time), and different imaging methods can be chosen in 
each dimension if desired. As the speed of light is so 
fast, precision imaging in the time dimension is 
practical only when the photon propagation paths are 
long (e.g., in DIRCs or large water Cherenkov 
counters). 

3.2. Proximity  

The classic “proximity” focusing scheme, typically 
used for liquid/solid radiator RICH counters, is shown 
in Fig. 3. In this scheme, the photon's angles are 
measured by comparing its detected position with 
respect to its emission point along the track. This 
requires knowledge of the position of the input track 
and the path of the photon to the detector. A simple 
estimate of the angular resolution on the measured 
angle α for this method is 
 

 
 
 
 
For a RICH of the SLD/DELPHI [9] type with [σx 

(track)~ 2 mm, σx (detector)~ 1 mm, and L~ 200 mm], 
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σα  ∼ 11 mrad/photon.  For a DIRC, the relevant 
“standoff” length (L) is the distance from the track to 
the detector which may be quite long. For example, a 
DIRC like that of BaBar [10] with  [σx (track)~ 4 mm, 
σx (detector)~ 6 mm, and L~ 4000 mm], σα  ∼ 2  
mrad/photon. The price paid for this excellent 
resolution is that the bar bounce ambiguities must be 
resolved. Excellent time resolution can help. 
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3.3. Pinhole 

The “Proximity” focusing scheme discussed above 
is related to, yet subtly different than, the “pinhole” 
focusing method used by the BaBar DIRC, shown in 
Fig. 4. This later imaging scheme is a direct analogue 
of the pinhole camera, hence the name, but has no 
simple analog in classical RICH counters. In this 
method, the path of the photon down the DIRC bar is 
ignored, and the resolution is independent of the 
precise track location in the bar. It does, however, 
depend directly on the size of the bar exit aperture tx.  

 
 
 
 
 
 
The relevant standoff length becomes the distance 

from the bar end to the detector plane, rather than the 
distance from the track to the detector plane.  This is 
normally shorter than for the “proximity” focused 
scheme of section 3.2. However, the multiple bar 
bounce ambiquities no longer need to be resolved. For 
example, for the BaBar DIRC with [tx(ty)~35(17.5) 
mm, σx or σy~ 7.5 mm, and L~1200mm],  σ(αx (αy)) ~ 
10.5 (7.5) mrad per photon if the standoff region were 
made from fused silica. Since this region is actually 
filled with water in the BaBar DIRC, the resolution is 

about 10% better than this estimate due to 
magnification at the interface.  
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Figure 4.  Pinhole imaging scheme. 

3.4. Lens 

Figure 5 shows one version (a single reflective lens) 
of “lens” focusing. Other versions of lens focusing 
could use refractive, gradient, or diffractive lens, but 
the reflective system has the advantage that it allows 
the same material in the focusing region as in the bars 
thus maximizing the overall efficiency for photon 
propagation. The advantage of a focusing scheme of 
this kind, compared to the pinhole scheme, is that the 
bar size can, in principle, be removed from the 
resolution equation and excellent resolution can be 
attained if the number of pixels is sufficiently large. 
One can also magnify or de-magnify the image to 
match the pixel size of a particular detector device.  
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Figure 5.  Lens imaging scheme. 

Neglecting aberrations, the angular resolution is 
given by, 
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Figure 3.  Proximity  imaging scheme. 
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For example, for a σx(detector) = 0.6 mm 
(equivalent to a detector with 2 mm pixels) and L= 250 
mm, σ(αx) ~ 2. 4 mrad per photon.  

3.5. Time 

Fig. 6 illustrates the principle of imaging in the 
timing dimension. In “classical” gaseous photocathode 
RICH counters, the distances are too short and/or time 
of propagation known too poorly for this method to be 
viable. The use of timing in very large water Cherenkov 
counter is discussed in the next section. For DIRC, 
Equation (9) shows that the direction cosine along the 
z-axis (kz) is inversely related to the photon 
propagation time, so that in the non-dispersive limit,   

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
and one might naively conclude that the resolution on 
the photon dip angle is inversely related to the distance 
the photon travels down the bar. Of course, it also 
depends on the dip angle. However, the dispersive 
component of the group refractive index is large 
enough to become a dominant component in many real-
world cases so that the resolution quickly reaches the 
dispersive limit.      

The fractional resolution on ng 

[ g)/ng(n  )g(n = ] is about 0.015 for bi-alkali 
tubes, averaged over the Cherenkov emission spectrum.  
So, if the time resolution per photon is assumed to be 

so small that the dispersion dominates the resolution of 
the photon “dip” angle αz , the error σαz

~ 0.015/tan αz   

varies from a practical minimum of about 9 mrad for 
large transverse photon propagation angles (αz  ~ 60o) 
in the bar to an infinite maximum at αz  = 0o, where the 
photon travels along the bar axis. For a typical αz  of ~ 
30o, the angular error from dispersion alone is ~ 25 
mrad.   

3.6. Ring Correlated  

Full tracking (and event) reconstruction is 
performed with a fitting optimization procedure in large 
water Cherenkov counters [11] by combining the space 
position and time of each photon together with the 
constraint that the individual Cherenkov photons are 
emitted from each track at a constant polar angle (see 
figure 1b). As these devices are very large, the 
propagation distances and times for individual photons 
are correspondingly large. Thus, reasonable tracking 
precision can be attained even with rather modest space 
point and time resolution on each photon. The 
individual tracks can be tied together in an event, and 
tracking and event parameters such as vertex position, 
number of tracks, track momenta, number of 
Cherenkov photons per track, and the particle type (as e 
or muon using the ring width) can be determined. 
Though individual tracks are generally not determined 
solely in this way in the PID type detectors used in 
most HEP accelerator experiments, fit optimization 
using the ring correlation is still often done to improve 
the parameters of the track as it passes through the 
radiator, and thus to reduce the correlated component 
of the Cherenkov angular determination. 

3.7. Some examples 

It may be helpful to list a few examples of some 
counters that use of the imaging principles discussed 
above. Proximity imaging is used by CLEO-III (12), 
and the DELPHI-RICH and SLD-CRID liquid radiators 
(9).  Pinhole imaging is used by BaBar-DIRC (10), 
while lens imaging has been used in many different   
devices including the OMEGA gas radiators for 
DELPHI-RICH and SLD-CRID (9); OMEGA RICH 
(13); gas and aerogel radiators in HERMES (14); and   
HERA-B RICH gas (15).  Time imaging has been used 
in the BaBar DIRC (10) and several R&D devices (see 
section 4.3 below).  Correlated imaging is a staple 
feature of the large water or ice Cherenkov counters 
such as Super-Kamiokande (11) and AMANDA (16). 

,
zsinLgN
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2
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(16) 

Figure 6.  Time imaging scheme. 

(15) 
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4.  Time Imaging In DIRCs 

4.1. Conceptual Issues 

We now turn to a more detailed look at some 
specific issues associated with time-dimension imaging 
in DIRCs. As discussed earlier, the chromatic 
dispersion that is relevant to the variation in the 
produced Cherenkov angle is the index of refraction 
dispersion δn = σ(n)/n, so that for the “i’th” photon 
with track β=1, 

For a typical bi-alkali PMT (e.g., the BaBar DIRC 
EMI 9125 with a fused silica radiator), σ(θc(i))~4.9 
mrad. On the other hand, the fractional chromatic time 
dispersion during photon propagation (tp) is controlled 
by the value and dispersion of the group index (ng), the 
propagation length (Lp), and a correlated term C, so 
that,  

 
The correlated term depends on the photon dip angle, 
and its measurement accuracy. For simplicity, in fused 
silica it is useful to write the resolution in the form,  
 

 
where F depends on the photon dip angle and its 
measurement accuracy. Typically, F ranges between 
about 2/3 and 4/3 and is smallest for large photon dip 
angles (i.e., for those that bounce many times in the 
bar).  

With an intrinsic photon detector chain resolution of  
(σ(t0)), the measured time resolution (σ(tm)) is,  
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Figure 7.  Cherenkov Polar Angular Resolution versus photon 
propagation length for several values of detector time resolution. 

  
The most favorable track dip angle for using timing 

to measure the Cherenkov angle is near 0 degrees (i.e, 
for (θt,φt) = ( 90ο,90ο)) where, 
 

σ(θc) = tan θc*(sqrt[δ2(ng)+ 2C(ng, tp δ(ng)δ(tp) 

             +δ2(tp)]).                           (21)     
 

Fig. 7 shows the Cherenkov polar angle resolution 
attainable in this case, for a bi-alkali type response 
detection curve with a fused silica radiator as a function 
of detector time resolution and photon propagation 
length. The resolution attainable saturates at about 10 
mrad per photon independent of detector timing 
performance. However, this saturation in performance 
is attained at 2-3 meters in length if the detector 
resolution is ~100 ps, while the propagation length 
must grow longer to reach saturated performance as the 
resolution gets worse. 

As already discussed, at other angles the 
performance is less favorable, both because of the 
geometrical effect from the dip angle and because the 
negative correlation between production angle and 
propagation time becomes smaller, or in the least 
favorable cases, becomes positive. 

4.2. Limits to Single Photon Performance 

It is interesting to consider how the measurement 
errors might be reduced. The total error on the 
Cherenkov polar angle scales as shown by equation 10.  
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The error on each individual photon σ[θi] can be 
thought of as being given in terms of a number of 
individual design components, 
 

[ ] [ ] [ ] [ ] [ ] )
22

(
22

i DeImTrPr
θσ+θσ+θσ+θσ=θσ .                     (23) 

   
The Imaging and Detection terms, defined as 

(σ[θIm], σ[θDe]), have been discussed together in 
section 3. In principle, angular resolution derived from 
positional information can be made “arbitrarily” good 
to match requirements for a particular performance 
limit. In particular, the imaging component that comes 
from the bar size in a pin hole focusing scheme, such as 
the one used by BaBar, can be made small with lens 
focusing, and the number of detector pixels and the 
standoff distance are essentially arbitrary choices. It 
makes economic sense to choose focusing methods and 
detector configurations that balance the various 
resolution components. 

Transport smearing, defined as (σ [θTr]), can be 
caused by various flaws in the DIRC radiators, such as 
non-parallel sides, non-planar surfaces, and non-
orthogonal sides and faces. In general, photons at small 
dip angles in the bar tend to be most distorted. These 
also tend to be lost due to index matching problems 
between radiators, glues, and imaging region materials. 
Due to effects of these kinds, the resolution 
contribution from this term tends to grow as the square 
root of the propagation length and becomes worse than 
expected for the large transverse angle photons. In 
BaBar DIRC, the most difficult effect of this kind to 
control was the side-to-face orthogonality, which 
contributes around 2-4 mrad per photon for a bar at the 
production specification limit. In principle, such effects 
can be made much smaller with different production 
methodology (at a higher cost), or by using a one- 
dimensional transport design to limit the number of side 
bounces. BaBar DIRC also retains few photons with 
dip angles less than about 30 degrees because of the 
water-fused silica interface.  

The dominant smearing term at production, defined 
as (σ [θPr]), is the so-called production chromatic term 
(σ[θChromatic]) discussed earlier.  Other production 
smearing terms, such as trajectory distortion due to 
bending in the magnetic field, or multiple scattering in 
the radiator material, are much smaller at least at high 

momentum where good resolution is required to 
separate πs from Ks.  

4.2.1. Mitigating Chromatic Smearing 
 

It seems impractical to apply chromatic correction in 
the focusing system, or to find a radiator with 
significantly less dispersion than fused silica. However, 
somewhat counter-intuitively, limiting the detector 
acceptance bandwidth can actually improve the total 
resolution substantially in a DIRC with resolution near 
the chromatic limit even though such a restriction limits 
Npe substantially. Of course, this ignores the pattern 
recognition issues. None the less, e.g., the total 
contribution σ[θc (tot)] from the chromatic term in a 
counter with a glass window bi-alkali detector response 
is reduced by a factor of about 2.5 when the photon 
energy range is restricted between 600 and 450 nm 
compared to the case where all photons between 600 
nm and 300 nm are accepted, even though the number 
of photons observed is reduced by nearly a factor of 
four!  If a high efficiency detector were available in a 
longer wavelength region near the visible, this could 
lead to excellent performance for a counter operating 
near the dispersion limit. 

The “ideal” solution to the chromatic smearing 
would be a detector that measures the photon energy 
directly. In principle, some detectors of this kind exist 
(e.g., the transition edge sensors[17]), but they are 
slow, run at 70 mK, and would be very hard to 
implement.  It seems more practical to use the large 
dispersion of ng, as described earlier, to measure the 
photon wavelength directly in a 3-D DIRC. That is, by 
comparing the individual photon flight time with its 
measured angle, the photon wavelength can be 
calculated. This allows the refractive index at 
production to be rather precisely calculated so that the 
chromatic piece of the production term can be 
substantially reduced.  The measurement of photon 
wavelength done in this way can be quite accurate if the 
time resolution is good (~100 ps). In the Cherenkov 
angle space, for a long DIRC this would be equivalent 
to reducing the smearing due to chromaticity by a 
factor of about 5 (to about 1 mrad per photon). The 
large chromatic dispersion of the group velocity 
actually works in one’s favor in this case!  

4.2.2. Mitigating Other Resolution Terms 
 

There are also a number of additional limits to 
particle separation performance that should be 
mentioned. The first are the correlated terms. These can 
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come from many sources, including multiple scattering, 
alignment systematics, tracking performance, etc. 
Because these contribute to the total resolution on the 
angle, they must be held well under 1 mrad in order to 
obtain significantly improved performance.  The 
second come from physics processes, such as decay, 
interactions, δ-rays, etc. In principle, many of these 
terms could be addressed, at least in part, with a high 
precision post-PID tracking device. 

4.3. R&D Examples 

Although no high precision timing DIRC for Particle 
ID has yet been used in an experiment, a number of 
interesting R&D devices that use precision timing have 
been constructed and some properties explored in R&D 
devices. Two such devices with 1 or 2-dimensional 
readout (the 1-D CCT and the 2-D TOP) have already 
been discussed briefly above. Since they have been 
described in detail at either this conference (the 
TOP[8]) or earlier meetings in this conference series 
(the CCT [7]), in the interest of brevity, they will not be 
further discussed here. Please consult the references for 
a complete description. For comparison, we will briefly 
explore some features of two full 3-D devices that have 
been proposed by the BaBar DIRC group during the 
past decade, as they have not been discussed in any 
detail at this series of meetings. 

4.3.1. BaBar DIRC Conceptual Design (II) 
 

During the design phase of BaBar, Hamamatsu 
began to deliver pixilated Metal Channel Dynode tubes 
in the R5900 series. This led to an alternative design 
for BaBar DIRC [18] as shown in Fig. 9. 
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This is a full 3-D design: 1-D pinhole (x) with a 100 
cm standoff, 1-D lens (y), and fast timing. It is modular, 
compact, and was thought to be easier to engineer than 
the conventional, water filled imaging-region device as 
it has no potential for water leaks. The fast timing 
provides some help on angular resolution and is very 
effective in sorting out the ambiguities. This device is 
also very resistant to all backgrounds, because of its 
speed, and since it is much more compact, it would be 
less sensitive to random backgrounds in the imaging 
region than the device with a water-filled region. 
However, when it was proposed, it still required further 
development of the Hamamatsu 5900 series tube 
technology to get a 64 channel, linear  array tube with 
better geometrical coverage than existing models. 
Though the manufacturer was willing to work on 
developing such a tube, there were many unknowns 
about tube uniformity, quantum efficiency, cross talk, 
active area ratio, etc.  If all of these issues could be 
solved, nominal separation performance in simulations 
was predicted to be fairly similar to (or a bit better) 
than that of the water standoff device actually built. 
However, as so little was known (or knowable) about 
the actual detector performance at the time a decision 
was required there was too much technical risk to head 
down an untrodden road with no fallback possible.  

4.3.2. Super BaBar 
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Figure 10.  A 3-D DIRC conceptual Design for Super BaBar. 

Super BaBar is a concept for a detector capable of 
doing physics at a very high luminosity (Lum=1036)  
e+e- Super-PEP collider operating at the Υ(4S)[19]. 
This would be a totally new machine, not an approved Figure 9. BaBar DIRC conceptual Design II with pixilated readout. 
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upgrade of the existing PEP-II machine. The first 
concern for a PID system operating at such a machine 
would be to at least maintain the existing BaBar 
separation performance. To do this, it is necessary to 
cope with the very high backgrounds expected at such a 
machine. Some of the important tools available to fight 
backgrounds are (1) fast timing; (2) 3-D imaging; and 
(3) careful shielding of beams. All are likely to be 
required. In addition, if at all possible, it would be very 
useful to improve the overall separation performance, 
both by improving the angular resolution (and the 
momentum range of coverage), and by improving the 
mis-id rates and the correlated terms. 

The design tools available have been discussed 
above. A concept for a detector that meets these 
requirements is given in Fig. 10. The design details will 
depend on the photon detector, but as an example, if 
the detector has 120 pixels in the y direction, ~1-2 cm 
pixels in x, and  <150 ps resolution in time, π/K should 
be separable by more than 3σ to above 6 GeV/c. Post 
PID tracking should be incorporated as it would allow 
significant reduction in correlated and physics’ 
dependent terms, such as alignment, tracking and decay 
systematics, leading to better mis-id rates.  

There are, of course, many practical details involved 
in constructing such a device. For example, one must 
demonstrate that the ambiguities and backgrounds can 
be handled and that the large radiator pieces can be 
constructed to the required specifications. However, the 
availability of photo-detectors with the needed 
properties continues to be “the” crucial element for 
design, and the R&D of the BaBar group is centered 
primarily on this issue at the present time. The newest 
flat panel PMTs by Hamamatsu [20] are now becoming 
available and may provide an adequate solution.  
Hybrid PMTs could also be a promising alternative for 
the future [21], but they are probably too slow. Other 
potential technologies, such as Hybrid Avalanche 
Photodiodes, visible light gas detectors, and MCP-
PMTs have many attractive features but remain more 
speculative at present. Finally, the affordability of the 
25-40K channels of readout needed will clearly be a 
challenge.  

5. Summary 

 
Tom Ypsilantis was seminal to the evolution of 

RICH counters from an early concept into the powerful 
instruments now in place and also to this enlightening 
series of RICH conferences. He was truly the “Lord of 

the Rings”. Unlike the Lord from Mordor who has 
darkened the world of the movie screen, Tom brought 
light, joy, and keen understanding to the detector 
world, not only with his powerful independent efforts 
but also in supporting the efforts of his many friends. I 
still find it difficult to believe he is not here with us. 
With grateful thanks to our Lord of light, Tom, and 
apologies to J.R.R. Tolkien: 
 
The Lord of the Rings   

 
Photons from ice and sea under the sky, 
    Photons from vast water tanks in halls of stone, 
Photons from the atmosphere in an insect’s eye, 
    Photons from aerogels, light, clear, blown, 
Photons from liquids, gases, crystals flying by,   
   Photons from fused silica expanding on a cone. 
In RICH detectors where PID truths lie. 
   One Ring to rule them all, One Ring to find them, 
   One Ring to bring them all, correlate, and bind them 
In RICH detectors where PID truths lie.  
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