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Abstract

This note presents a combination of published and preliminary electroweak results from the four
LEP collaborations and the SLD collaboration which were prepared for the 2001 summer conferences.
Averages from Z resonance results are derived for hadronic and leptonic cross sections, the leptonic
forward-backward asymmetries, the � polarisation asymmetries, the bb and cc partial widths and
forward-backward asymmetries and the qq charge asymmetry. Above the Z resonance, averages are
derived for di{fermion cross sections and forward-backward asymmetries, W{pair, Z{pair and single{
W production cross section, electroweak gauge boson couplings, W mass and width and W decay
branching ratios. For the �rst time, total and di�erential cross sections for di{photon production are
combined.

The main changes with respect to the experimental results presented in summer 2000 are updates
to the Z-pole heavy 
avour results from SLD and LEP and to the W mass from LEP. The results are
compared with precise electroweak measurements from other experiments. Using a new evaluation of
the hadronic vacuum polarisation, the parameters of the Standard Model are evaluated, �rst using
the combined LEP electroweak measurements, and then using the full set of electroweak results.



Chapter 1

Introduction

This paper presents an update of combined results on electroweak parameters by the four LEP exper-
iments and SLD using published and preliminary measurements, superseding previous analyses [1].
Results derived from the Z resonance are based on data recorded until the end of 1995 for the LEP
experiments and 1998 for SLD. Since 1996 LEP has run at energies above the W-pair production
threshold. In 2000, the �nal year of data taking at LEP, the total delivered luminosity was as high as
in 1999; the maximum centre-of-mass energy attained was close to 209 GeV although most of the data
taken in 1999 was collected at 205 and 207 GeV. By the end of LEP-II operation, a total integrated
luminosity of approximately 700pb�1 per experiment has been recorded above the Z resonance.

The LEP-I (1990-1995) Z-pole measurements consist of the hadronic and leptonic cross sections, the
leptonic forward-backward asymmetries, the � polarisation asymmetries, the bb and cc partial widths
and forward-backward asymmetries and the qq charge asymmetry. The measurements of the left-right
cross section asymmetry, the bb and cc partial widths and left-right-forward-backward asymmetries
for b and c quarks from SLD are treated consistently with the LEP data. Many technical aspects of
their combination are described in References 2, 3 and references therein.

The LEP-II (1996-2000) measurements are di{fermion cross sections and forward-backward asym-
metries; di{photon production, W{pair, Z{pair and single{W production cross sections, and elec-
troweak gauge boson self couplings. W boson properties, like mass, width and decay branching ratios
are also measured.

Several measurements included in the combinations are still preliminary.

This note is organised as follows:

Chapter 2 Z line shape and leptonic forward-backward asymmetries;

Chapter 3 � polarisation;

Chapter 4 Measurement of polarised asymmetries at SLD;

Chapter 5 Heavy 
avour analyses;

Chapter 6 Inclusive hadronic charge asymmetry;

Chapter 7 Photon-pair production at energies above the Z;

Chapter 8 Fermion-pair production at energies above the Z;
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Chapter 9 W and four-fermion production;

Chapter 10 Electroweak gauge boson self couplings;

Chapter 11 W-boson mass and width;

Chapter 12 Interpretation of the Z-pole results in terms of e�ective couplings of the neutral weak
current;

Chapter 13 Interpretation of all results, also including results from neutrino interaction and atomic
parity violation experiments as well as from CDF and D� in terms of constraints on the Standard
Model

Chapter 14 Conclusions including prospects for the future.

To allow a quick assessment, a box highlighting the updates is given at the beginning of each section.
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Chapter 2

Z Lineshape and Lepton Forward-Backward

Asymmetries

Updates with respect to summer 2000:

Unchanged w.r.t. summer 2000: All experiments have published �nal results which enter in the
combination. The �nal combination procedure is used.

The results presented here are based on the full LEP-I data set. This includes the data taken during
the energy scans in 1990 and 1991 in the range1 jps�mZj < 3 GeV, the data collected at the Z peak in
1992 and 1994 and the precise energy scans in 1993 and 1995 (jps�mZj < 1:8 GeV). The total event
statistics are given in Table 2.1. Details of the individual analyses can be found in References 4{7.

qq

year A D L O all

'90/91 433 357 416 454 1660
'92 633 697 678 733 2741
'93 630 682 646 649 2607
'94 1640 1310 1359 1601 5910
'95 735 659 526 659 2579

total 4071 3705 3625 4096 15497

`+`�

year A D L O all

'90/91 53 36 39 58 186
'92 77 70 59 88 294
'93 78 75 64 79 296
'94 202 137 127 191 657
'95 90 66 54 81 291

total 500 384 343 497 1724

Table 2.1: The qq and `+`� event statistics, in units of 103, used for the analysis of the Z line shape
and lepton forward-backward asymmetries by the experiments ALEPH (A), DELPHI (D), L3 (L) and
OPAL (O).

For the averaging of results the LEP experiments provide a standard set of 9 parameters describing
the information contained in hadronic and leptonic cross sections and leptonic forward-backward asym-
metries. These parameters are convenient for �tting and averaging since they have small correlations.
They are:

� The mass mZ and total width �Z of the Z boson, where the de�nition is based on the Breit-
Wigner denominator (s�m2

Z + is�Z=mZ) with s-dependent width [8].

1In this note ~ = c = 1.
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� The hadronic pole cross section of Z exchange:

�0h �
12�

m2
Z

�ee�had
�2Z

: (2.1)

Here �ee and �had are the partial widths of the Z for decays into electrons and hadrons.

� The ratios:

R0
e � �had=�ee; R0

� � �had=��� and R0
� � �had=��� : (2.2)

Here ��� and ��� are the partial widths of the Z for the decays Z ! �+�� and Z ! �+��. Due
to the mass of the � lepton, a di�erence of 0.2% is expected between the values for R0

e and R0
�,

and the value for R0
� , even under the assumption of lepton universality [9].

� The pole asymmetries, A
0; e
FB, A

0; �
FB and A

0; �
FB , for the processes e+e� ! e+e�, e+e� ! �+�� and

e+e� ! �+��. In terms of the real parts of the e�ective vector and axial-vector neutral current
couplings of fermions, gVf and gAf , the pole asymmetries are expressed as

A
0; f
FB �

3

4
AeAf (2.3)

with

Af � 2gVfgAf
g2Vf + g2Af

= 2
gVf=gAf

1 + (gVf=gAf)2
: (2.4)

The imaginary parts of the vector and axial-vector coupling constants as well as real and imaginary
parts of the photon vacuum polarisation are taken into account explicitly in the �tting formulae and
are �xed to their Standard Model values. The �tting procedure takes into account the e�ects of initial-
state radiation [8] to O(�3) [10{12], as well as the t-channel and the s-t interference contributions in
the case of e+e� �nal states.

The set of 9 parameters does not describe hadron and lepton-pair production completely, because
it does not include the interference of the s-channel Z exchange with the s-channel 
 exchange. For
the results presented in this section and used in the rest of the note, the 
-exchange contributions
and the hadronic 
Z interference terms are �xed to their Standard Model values. The leptonic 
Z
interference terms are expressed in terms of the e�ective couplings.

The four sets of nine parameters provided by the LEP experiments are presented in Table 2.2.
For performing the average over these four sets of nine parameters, the overall covariance matrix is
constructed from the covariance matrices of the individual LEP experiments and taking into account
common systematic errors [2]. The common systematic errors include theoretical errors as well as errors
arising from the uncertainty in the LEP beam energy. The beam energy uncertainty contributes an
uncertainty of �1:7 MeV to mZ and �1:2 MeV to �Z. In addition, the uncertainty in the centre-
of-mass energy spread of about �1 MeV contributes �0:2 MeV to �Z. The theoretical error on
calculations of the small-angle Bhabha cross section is �0.054% [13] for OPAL and �0.061 % [14] for
all other experiments, and results in the largest common systematic uncertainty on �0h. QED radiation,
dominated by photon radiation from the initial state electrons, contributes a common uncertainty of
�0.02 % on �0h, of �0:3 MeV on mZ and of �0:2 MeV on �Z. The contribution of t-channel diagrams
and the s-t interference in Z ! e+e� leads to an additional theoretical uncertainty estimated to be
�0:024 on R0

e and �0:0014 on A0; e
FB, which are fully anti{correlated. Uncertainties from the model-

independent parameterisation of the energy dependence of the cross section are almost negligible,
if the de�nitions of Reference [15] are applied. Through unavoidable remaining Standard Model
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correlations

mZ �Z �0h R0
e R0

� R0
� A0; e

FB A0; �
FB A0; �

FB

�2=Ndf = 169=176 ALEPH
mZ [GeV] 91.1891 � 0.0031 1.00
�Z [GeV] 2.4959 � 0.0043 .038 1.00
�0h [nb] 41.558 � 0.057 �.091�.383 1.00
R0
e 20.690 � 0.075 .102 .004 .134 1.00

R0
� 20.801 � 0.056 �.003 .012 .167 .083 1.00

R0
� 20.708 � 0.062 �.003 .004 .152 .067 .093 1.00

A0; e
FB 0.0184 � 0.0034 �.047 .000�.003�.388 .000 .000 1.00

A0; �
FB 0.0172 � 0.0024 .072 .002 .002 .019 .013 .000�.008 1.00

A0; �
FB 0.0170 � 0.0028 .061 .002 .002 .017 .000 .011�.007 .016 1.00

�2=Ndf = 177=168 DELPHI
mZ [GeV] 91.1864 � 0.0028 1.00
�Z [GeV] 2.4876 � 0.0041 .047 1.00
�0h [nb] 41.578 � 0.069 �.070�.270 1.00
R0
e 20.88 � 0.12 .063 .000 .120 1.00

R0
� 20.650 � 0.076 �.003�.007 .191 .054 1.00

R0
� 20.84 � 0.13 .001�.001 .113 .033 .051 1.00

A0; e
FB 0.0171 � 0.0049 .057 .001�.006�.106 .000�.001 1.00

A0; �
FB 0.0165 � 0.0025 .064 .006�.002 .025 .008 .000�.016 1.00

A0; �
FB 0.0241 � 0.0037 .043 .003�.002 .015 .000 .012�.015 .014 1.00

�2=Ndf = 158=166 L3
mZ [GeV] 91.1897 � 0.0030 1.00
�Z [GeV] 2.5025 � 0.0041 .065 1.00
�0h [nb] 41.535 � 0.054 .009�.343 1.00
R0
e 20.815 � 0.089 .108�.007 .075 1.00

R0
� 20.861 � 0.097 �.001 .002 .077 .030 1.00

R0
� 20.79 � 0.13 .002 .005 .053 .024 .020 1.00

A0; e
FB 0.0107 � 0.0058 �.045 .055�.006�.146�.001�.003 1.00

A0; �
FB 0.0188 � 0.0033 .052 .004 .005 .017 .005 .000 .011 1.00

A0; �
FB 0.0260 � 0.0047 .034 .004 .003 .012 .000 .007�.008 .006 1.00

�2=Ndf = 155=194 OPAL
mZ [GeV] 91.1858 � 0.0030 1.00
�Z [GeV] 2.4948 � 0.0041 .049 1.00
�0h [nb] 41.501 � 0.055 .031�.352 1.00
R0
e 20.901 � 0.084 .108 .011 .155 1.00

R0
� 20.811 � 0.058 .001 .020 .222 .093 1.00

R0
� 20.832 � 0.091 .001 .013 .137 .039 .051 1.00

A0; e
FB 0.0089 � 0.0045 �.053�.005 .011�.222�.001 .005 1.00

A0; �
FB 0.0159 � 0.0023 .077�.002 .011 .031 .018 .004�.012 1.00

A0; �
FB 0.0145 � 0.0030 .059�.003 .003 .015�.010 .007�.010 .013 1.00

Table 2.2: Line Shape and asymmetry parameters from �ts to the data of the four LEP experiments
and their correlation coeÆcients.

assumptions, dominated by the need to �x the 
-Z interference contribution in the qq channel, there
is some small dependence of �0:2 MeV of mZ on the Higgs mass, mH (in the range 100 GeV to 1000
GeV) and the value of the electromagnetic coupling constant. Such \parametric" errors are negligible
for the other results. The combined parameter set and its correlation matrix are given in Table 2.3.

If lepton universality is assumed, the set of 9 parameters is reduced to a set of 5 parameters.
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without lepton universality correlations

�2=Ndf = 32:6=27 mZ �Z �0h R0
e R0

� R0
� A0; e

FB A
0; �
FB A0; �

FB

mZ [GeV] 91.1876� 0.0021 1.00
�Z [GeV] 2.4952 � 0.0023 �.024 1.00
�0h [nb] 41.541 � 0.037 �.044�.297 1.00
R0
e 20.804 � 0.050 .078�.011 .105 1.00

R0
� 20.785 � 0.033 .000 .008 .131 .069 1.00

R0
� 20.764 � 0.045 .002 .006 .092 .046 .069 1.00

A0; e
FB 0.0145 � 0.0025 �.014 .007 .001�.371 .001 .003 1.00

A0; �
FB 0.0169 � 0.0013 .046 .002 .003 .020 .012 .001�.024 1.00

A
0; �
FB 0.0188 � 0.0017 .035 .001 .002 .013�.003 .009�.020 .046 1.00

with lepton universality

�2=Ndf = 36:5=31 mZ �Z �0h R0
` A0; `

FB

mZ [GeV] 91.1875� 0.0021 1.00
�Z [GeV] 2.4952 � 0.0023 �.023 1.00
�0h [nb] 41.540 � 0.037 �.045�.297 1.00
R0
` 20.767 � 0.025 .033 .004 .183 1.00

A0; `
FB 0.0171 � 0.0010 .055 .003 .006�.056 1.00

Table 2.3: Average line shape and asymmetry parameters from the data of the four LEP experiments,
without and with the assumption of lepton universality.

R0
` is de�ned as R0

` � �had=�``, where �`` refers to the partial Z width for the decay into a pair of
massless charged leptons. The data of each of the four LEP experiments are consistent with lepton
universality (the di�erence in �2 over the di�erence in d.o.f. with and without the assumption of
lepton universality is 3/4, 6/4, 5/4 and 3/4 for ALEPH, DELPHI, L3 and OPAL, respectively). The
lower part of Table 2.3 gives the combined result and the corresponding correlation matrix. Figure 2.1
shows, for each lepton species and for the combination assuming lepton universality, the resulting 68%
probability contours in the R0

` -A
0; `
FB plane. Good agreement is observed.

For completeness the partial decay widths of the Z boson are listed in Table 2.4, although they
are more correlated than the ratios given in Table 2.3. The leptonic pole cross-section, �0` , de�ned as

�0` � 12�

m2
Z

�2``
�2Z

; (2.5)

in analogy to �0h, is shown in the last line of the Table. Because QCD �nal state corrections appear
twice in the denominator via �Z, �0` has a higher sensitivity to �s than �0h or R0

` , where the dependence
on QCD corrections is only linear.

2.1 Number of Neutrino Species

An important aspect of our measurement concerns the information related to Z decays into invisible
channels. Using the results of Table 2.3, the ratio of the Z decay width into invisible particles and the
leptonic decay width is determined:

�inv=�`` = 5:942� 0:016 : (2.6)
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without lepton universality correlations
�had �ee ��� ���

�had [MeV] 1745.8 �2.7 1.00
�ee [MeV] 83.92�0.12 �0.29 1.00
��� [MeV] 83.99�0.18 0.66�0.20 1.00
��� [MeV] 84.08�0.22 0.54�0.17 0.39 1.00

with lepton universality correlations
�inv �had �``

�inv [MeV] 499.0 �1.5 1.00
�had [MeV] 1744.4 �2.0 �0.29 1.00
�`` [MeV] 83.984�0.086 0.49 0.39 1.00

�inv=�`` 5.942 �0.016

�0` [nb] 2.0003�0.0027

Table 2.4: Partial decay widths of the Z boson, derived from the results of the 9-parameter averages
in Table 2.3. In the case of lepton universality, �`` refers to the partial Z width for the decay into a
pair of massless charged leptons.

The Standard Model value for the ratio of the partial widths to neutrinos and charged leptons is:

(���=�``)SM = 1:9912� 0:0012 : (2.7)

The central value is evaluated for mZ = 91:1875 GeV and the error quoted accounts for a variation of
mt in the range mt = 174:3�5:1 GeV and a variation of mH in the range 100 GeV � mH � 1000 GeV.
The number of light neutrino species is given by the ratio of the two expressions listed above:

N� = 2:9841� 0:0083; (2.8)

which is two standard deviations below the value of 3 expected from 3 observed fermion families.

Alternatively, one can assume 3 neutrino species and determine the width from additional invisible
decays of the Z. This yields

��inv = �2:7� 1:6 MeV: (2.9)

The measured total width is below the Standard Model expectation. If a conservative approach is taken
to limit the result to only positive values of ��inv and renormalising the probability for ��inv � 0 to
be unity, then the resulting 95% CL upper limit on additional invisible decays of the Z is

��inv < 2:0 MeV: (2.10)

The theoretical error on the luminosity [14] constitutes a large part of the uncertainties on N� and
��inv.
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Figure 2.1: Contours of 68% probability in the R0
` -A

0; `
FB plane. For better comparison the results

for the � lepton are corrected to correspond to the massless case. The Standard Model prediction
for mZ = 91:1875 GeV, mt = 174:3 GeV, mH = 300 GeV, and �S(m2

Z) = 0:118 is also shown.
The lines with arrows correspond to the variation of the Standard Model prediction when mt, mH,

�S(m2
Z) and ��

(5)
had(m

2
Z) are varied in the intervals mt = 174:3 � 5:1 GeV, mH = 300+700�186 GeV,

�S(m2
Z) = 0:118� 0:002 and ��

(5)
had(m

2
Z) = 0:02761� 0:00036, respectively. The arrows point in the

direction of increasing values of mt, mH, �S and ��
(5)
had(m

2
Z).
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Chapter 3

The � Polarisation

Updates with respect to summer 2000:

OPAL has �nalised their results. While all results are now �nal, the combination procedure itself is
still preliminary.

The longitudinal � polarisation P� of � pairs produced in Z decays is de�ned as

P� � �R � �L
�R + �L

; (3.1)

where �R and �L are the � -pair cross sections for the production of a right-handed and left-handed
��, respectively. The distribution of P� as a function of the polar scattering angle � between the e�

and the ��, at
p
s = mZ, is given by

P�(cos �) = �A� (1 + cos2 �) + 2Ae cos �

1 + cos2 � + 2A�Ae cos �
; (3.2)

with Ae and A� as de�ned in Equation (2.4). Equation (3.2) is valid for pure Z exchange. The e�ects
of 
 exchange, 
-Z interference and electromagnetic radiative corrections in the initial and �nal states
are taken into account in the experimental analyses. In particular, these corrections account for thep
s dependence of the � polarisation, which is important because the o�-peak data are included in the

event samples for all experiments. When averaged over all production angles P� is a measurement of
A� . As a function of cos �, P�(cos �) provides nearly independent determinations of both A� and Ae,
thus allowing a test of the universality of the couplings of the Z to e and � .

Each experiment makes separate P� measurements using the �ve � decay modes e�� , ��� , ��, ��
and a1� [16{19]. The �� and �� are the most sensitive channels, contributing weights of about 40%
each in the average. DELPHI and L3 also use an inclusive hadronic analysis. The combination is
made using the results from each experiment already averaged over the � decay modes.

3.1 Results

Tables 3.1 and 3.2 show the most recent results for A� and Ae obtained by the four LEP collaborations
[16{19] and their combination. Although the size of the event samples used by the four experiments
are roughly equal, smaller errors are quoted by ALEPH. This is largely associated with the higher
angular granularity of the ALEPH electromagnetic calorimeter. Common systematic errors arise from
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uncertainties in radiative corrections (decay radiation) in the �� and �� channels, and in the modelling
of the a1 decays [20]. These errors and their correlations need further investigation, but are already
taken into account in the combination (see also Reference 18). The statistical correlation between the
extracted values of A� and Ae is small (� 5%).

The average values for A� and Ae:

A� = 0:1439� 0:0043 (3.3)

Ae = 0:1498� 0:0049 ; (3.4)

with a correlation of 0.013, are compatible, in good agreement with neutral-current lepton universality.
Assuming e-� universality, the values for A� and Ae can be combined. This combination is performed
including the small common systematic errors between A� and Ae within each experiment and between
experiments. The combined result of A� and Ae is:

A` = 0:1465� 0:0033 ; (3.5)

where the error includes a systematic component of 0.0016.

Experiment A�

ALEPH (90 - 95), �nal 0:1451� 0:0052� 0:0029

DELPHI (90 - 95), �nal 0:1359� 0:0079� 0:0055

L3 (90 - 95), �nal 0:1476� 0:0088� 0:0062

OPAL (90 - 95), �nal 0:1456� 0:0076� 0:0057

LEP Average preliminary 0:1439� 0:0043

Table 3.1: LEP results for A� . The �rst error is statistical and the second systematic. In the LEP
average, statistical and systematic errors are combined in quadrature. The systematic component of
the error is �0:0026.

Experiment Ae

ALEPH (90 - 95), �nal 0:1504� 0:0068� 0:0008

DELPHI (90 - 95), �nal 0:1382� 0:0116� 0:0005

L3 (90 - 95), �nal 0:1678� 0:0127� 0:0030

OPAL (90 - 95), �nal 0:1454� 0:0108� 0:0036

LEP Average preliminary 0:1498� 0:0049

Table 3.2: LEP results for Ae. The �rst error is statistical and the second systematic. In the LEP
average, statistical and systematic errors are combined in quadrature. The systematic component of
the error is �0:0009.
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Chapter 4

Measurement of polarised lepton asymmetries

at SLC

Updates with respect to summer 2000:

Unchanged w.r.t. summer 2000: SLD has �nal results for ALR and the leptonic left-right forward-
backward asymmetries.

The measurement of the left-right cross section asymmetry (ALR) by SLD [21] at the SLC provides
a systematically precise, statistics-dominated determination of the coupling Ae, and is presently the
most precise single measurement, with the smallest systematic error, of this quantity. In principle
the analysis is straightforward: one counts the numbers of Z bosons produced by left and right
longitudinally polarised electrons, forms an asymmetry, and then divides by the luminosity-weighted
e� beam polarisation magnitude (the e+ beam is not polarised):

ALR =
NL �NR

NL + NR

1

Pe
: (4.1)

Since the advent of high polarisation \strained lattice" GaAs photo-cathodes (1994), the average elec-
tron polarisation at the interaction point has been in the range 73% to 77%. The method requires
no detailed �nal state event identi�cation (e+e� �nal state events are removed, as are non-Z back-
grounds) and is insensitive to all acceptance and eÆciency e�ects. The small total systematic error
of 0.64% relative is dominated by the 0.50% relative systematic error in the determination of the e�

polarisation. The relative statistical error on ALR is about 1.3%.

The precision Compton polarimeter detects beam electrons that are scattered by photons from a
circularly polarised laser. Two additional polarimeters that are sensitive to the Compton-scattered
photons and which are operated in the absence of positron beam, have veri�ed the precision polarimeter
result and are used to set a calibration uncertainty of 0.4% relative. In 1998, a dedicated experiment
was performed in order to test directly the expectation that accidental polarisation of the positron
beam was negligible; the e+ polarisation was found to be consistent with zero (�0:02� 0:07)%.

The ALR analysis includes several very small corrections. The polarimeter result is corrected for
higher order QED and accelerator related e�ects, a total of (�0:22 � 0:15)% relative for 1997/98
data. The event asymmetry is corrected for backgrounds and accelerator asymmetries, a total of
(+0:15� 0:07)% relative, for 1997/98 data.

The translation of the ALR result to a \pole" value is a (�2:5 � 0:4)% relative shift, where the
uncertainty arises from the precision of the centre-of-mass energy determination. This small error due
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to the beam energy measurement re
ects the results of a scan of the Z peak used to calibrate the
energy spectrometers to mZ from LEP data. The pole value, A0

LR, is equivalent to a measurement of
Ae.

The 2000 result is included in a running average of all of the SLD ALR measurements (1992, 1993,
1994/1995, 1996, 1997 and 1998). This updated result for A0

LR (Ae) is 0:1514�0:0022. In addition, the
left-right forward-backward asymmetries for leptonic �nal states are measured [22]. From these, the
parametersAe, A� and A� can be determined. The results areAe = 0:1544�0:0060,A� = 0:142�0:015
and A� = 0:136� 0:015. The lepton-based result for Ae can be combined with the A0

LR result to yield
Ae = 0:1516� 0:0021, including small correlations in the systematic errors. The correlation of this
measurement with A� and A� is indicated in Table 4.1.

Assuming lepton universality, the ALR result and the results on the leptonic left-right forward-
backward asymmetries can be combined, while accounting for small correlated systematic errors,
yielding

A` = 0:1513� 0:0021: (4.2)

Ae A� A�

Ae 1.000
A� 0.038 1.000
A� 0.033 0.007 1.000

Table 4.1: Correlation coeÆcients between Ae, A� and A�
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Chapter 5

Results from b and c Quarks

Updates with respect to summer 2000:

ALEPH has updated their Abb
FB jet-charge measurement using a neural net charge tag

DELPHI has presented new measurements of Abb
FB using a neural net charge tag

SLD has updated Rc and most Ab and Ac measurements.

5.1 Introduction

The relevant quantities in the heavy quark sector at LEP-I/SLD which are currently determined by
the combination procedure are:

� The ratios of the b and c quark partial widths of the Z to its total hadronic partial width:
R0
b � �bb=�had and R0

c � �cc=�had. (The symbols Rb, Rc are used to denote the experimentally
measured ratios of event rates or cross sections.)

� The forward-backward asymmetries, Abb
FB and Acc

FB.

� The �nal state coupling parameters Ab; Ac obtained from the left-right-forward-backward asym-
metry at SLD.

� The semileptonic branching ratios, BR(b ! `�), BR(b ! c ! `+) and BR(c ! `+), and the
average time-integrated B0B0 mixing parameter, �. These are often determined at the same
time or with similar methods as the asymmetries. Including them in the combination greatly
reduces the errors. For example the measurements of � act as an e�ective measurement of the
charge tagging eÆciency, so that all errors coming from the mixture of di�erent lepton sources
in bb events cancel in the asymmetries.

� The probability that a c quark produces a D+, Ds, D�+ meson1 or a charmed baryon. The prob-
ability that a c quark fragments into a D0 is calculated from the constraint that the probabilities
for the weakly decaying charmed hadrons add up to one.

A full description of the averaging procedure is published in [3]; the main motivations for the procedure
are outlined here. Several analyses measure more than one parameter simultaneously, for example the

1Actually the product P(c! D�+) � BR(D�+ ! �+D0) is �tted because this quantity is needed and measured by
the LEP experiments.
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asymmetry measurements with leptons or D mesons. Some of the measurements of electroweak pa-
rameters depend explicitly on the values of other parameters, for example Rb depends on Rc. The
common tagging and analysis techniques lead to common sources of systematic uncertainty, in partic-
ular for the double-tag measurements of Rb. The starting point for the combination is to ensure that
all the analyses use a common set of assumptions for input parameters which give rise to systematic
uncertainties. The input parameters are updated and extended [23] to accommodate new analyses and
more recent measurements. The correlations and interdependencies of the input measurements are
then taken into account in a �2 minimisation which results in the combined electroweak parameters
and their correlation matrix.

5.2 Summary of Measurements and Averaging Procedure

All measurements are presented by the LEP and SLD collaborations in a consistent manner for the
purpose of combination. The tables prepared by the experiments include a detailed breakdown of the
systematic error of each measurement and its dependence on other electroweak parameters. Where
necessary, the experiments apply small corrections to their results in order to use agreed values and
ranges for the input parameters to calculate systematic errors. The measurements, corrected where
necessary, are summarised in Appendix A in Tables A.1{A.20, where the statistical and systematic
errors are quoted separately. The correlated systematic entries are from physics sources shared with
one or more other results in the tables and are derived from the full breakdown of common systematic
uncertainties. The uncorrelated systematic entries come from the remaining sources.

5.2.1 Averaging Procedure

A �2 minimisation procedure is used to derive the values of the heavy-
avour electroweak parameters,
following the procedure described in Reference 3. The full statistical and systematic covariance matrix
for all measurements is calculated. This correlation matrix takes into account correlations between
di�erent measurements of one experiment and between di�erent experiments. The explicit dependence
of each measurement on the other parameters is also accounted for.

Since c-quark events form the main background in the Rb analyses, the value of Rb depends on
the value of Rc. If Rb and Rc are measured in the same analysis, this is re
ected in the correlation
matrix for the results. However the analyses do not determine Rb and Rc simultaneously but instead
measure Rb for an assumed value of Rc. In this case the dependence is parameterised as

Rb = Rmeas
b + a(Rc)

(Rc � Rused
c )

Rc
: (5.1)

In this expression, Rmeas
b is the result of the analysis assuming a value of Rc = Rused

c . The values
of Rused

c and the coeÆcients a(Rc) are given in Table A.1 where appropriate. The dependence of all
other measurements on other electroweak parameters is treated in the same way, with coeÆcients a(x)
describing the dependence on parameter x.

5.2.2 Partial Width Measurements

The measurements of Rb and Rc fall into two categories. In the �rst, called a single-tag measurement,
a method to select b or c events is devised, and the number of tagged events is counted. This number
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must then be corrected for backgrounds from other 
avours and for the tagging eÆciency to calculate
the true fraction of hadronic Z decays of that 
avour. The dominant systematic errors come from
understanding the branching ratios and detection eÆciencies which give the overall tagging eÆciency.
For the second technique, called a double-tag measurement, each event is divided into two hemispheres.
With Nt being the number of tagged hemispheres, Ntt the number of events with both hemispheres
tagged and Nhad the total number of hadronic Z decays one has

Nt

2Nhad
= "bRb + "cRc + "uds(1� Rb � Rc); (5.2)

Ntt

Nhad
= Cb"2bRb + Cc"2cRc + Cuds"2uds(1�Rb �Rc); (5.3)

where "b, "c and "uds are the tagging eÆciencies per hemisphere for b, c and light-quark events, and
Cq 6= 1 accounts for the fact that the tagging eÆciencies between the hemispheres may be correlated.
In the case of Rb one has "b � "c � "uds, Cb � 1. The correlations for the other 
avours can be
neglected. These equations can be solved to give Rb and "b. Neglecting the c and uds backgrounds
and the correlations, they are approximately given by

"b � 2Ntt=Nt; (5.4)

Rb � N2
t =(4NttNhad): (5.5)

The double-tagging method has the advantage that the b tagging eÆciency is derived from the data,
reducing the systematic error. The residual background of other 
avours in the sample, and the
evaluation of the correlation between the tagging eÆciencies in the two hemispheres of the event are
the main sources of systematic uncertainty in such an analysis.

This method can be enhanced by including more tags. All additional eÆciencies can be determined
from the data, reducing the statistical uncertainties without adding new systematic uncertainties.

Small corrections must be applied to the results to obtain the partial width ratios R0
b and R0

c

from the cross section ratios Rb and Rc. These corrections depend slightly on the invariant mass
cuto� of the simulations used by the experiments; they are applied by the collaborations before the
combination.

The partial width measurements included are:

� Lifetime (and lepton) double-tag measurements for Rb from ALEPH [24], DELPHI [25], L3
[26], OPAL [27] and SLD [28]. These are the most precise determinations of Rb. Since they
completely dominate the combined result, no other Rb measurements are used at present. The
basic features of the double-tag technique are discussed above. In the ALEPH, DELPHI, OPAL
and SLD measurements the charm rejection is enhanced by using the invariant mass information.
DELPHI, OPAL and SLD also add kinematic information from the particles at the secondary
vertex. The ALEPH and DELPHI measurements make use of several di�erent tags; this improves
the statistical accuracy and reduces the systematic errors due to hemisphere correlations and
charm contamination, compared with the simple single/double tag.

� Analyses with D/D�� mesons to measure Rc from ALEPH, DELPHI and OPAL. All mea-
surements are constructed in such a way that no assumptions on the charm fragmentation are
necessary as these are determined from the LEP-I data. The available measurements can be
divided into three groups:

{ inclusive/exclusive double tag (ALEPH [29], DELPHI [30,31], OPAL [32]): In a �rst step
D�� mesons are reconstructed in several decay channels and their production rate is mea-
sured, which depends on the product Rc � P(c ! D�+)� BR(D�+ ! �+D0). This sample
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of cc (and bb) events is then used to measure P(c ! D�+)�BR(D�+ ! �+D0) using a slow
pion tag in the opposite hemisphere. In the ALEPH measurement Rc is unfolded internally
in the analysis so that no explicit P(c ! D�+)� BR(D�+ ! �+D0) is available.

{ exclusive double tag (ALEPH [29]): This analysis uses exclusively reconstructed D�+, D0

and D+ mesons in di�erent decay channels. It has lower statistics but better purity than
the inclusive analyses.

{ reconstruction of all weakly decaying charmed states (ALEPH [33], DELPHI [31], OPAL
[34]): These analyses make the assumption that the production fractions of D0, D+, Ds

and �c in c-quark jets of cc events add up to one with small corrections due to unmeasured
charm strange baryons. This is a single tag measurement, relying only on knowing the
decay branching ratios of the charm hadrons. These analyses are also used to measure the
c hadron production ratios which are needed for the Rb analyses.

� A lifetime plus mass double tag from SLD to measureRc [35]. This analysis uses the same tagging
algorithm as the SLD Rb analysis, but with the neural net tuned to tag charm. Although the
charm tag has a purity of about 84%, most of the background is from b which can be measured
with high precision from the b/c mixed tag rate.

� A measurement of Rc using single leptons assuming BR(c ! `+) from ALEPH [29].

To avoid e�ects from nonlinearities in the �t, for the inclusive/exclusive single/double tag and for
the charm-counting analyses, the products RcP(c ! D�+)� BR(D�+ ! �+D0), RcfD0 , RcfD+ , RcfDs
and Rcf�cthat are actually measured in the analyses are directly used as inputs to the �t. The
measurements of the production rates of weakly decaying charmed hadrons, especially RcfDs and
Rcf�c have substantial errors due to the uncertainties in the branching ratios of the decay mode used.
Since these errors are relative, there is a potential bias towards lower measurements. To avoid this
bias, for the production rates of weakly decaying charmed hadrons the logarithm of the production
rates instead of the rates themselves are input to the �t. For RcfD0 and RcfD+ the di�erence between
the results using the logarithm or the value itself is negligible. For RcfDs and Rcf�c the di�erence in
the extracted value of Rc is about one tenth of a standard deviation.

5.2.3 Asymmetry Measurements

All b and c asymmetries given by the experiments correspond to full acceptance.

The QCD corrections to the forward-backward asymmetries depend strongly on the experimental
analyses. For this reason the numbers given by the collaborations are also corrected for QCD e�ects.
A detailed description of the procedure can be found in [36] with updates reported in [23].

For the 12- and 14-parameter �ts described above, the LEP peak and o�-peak asymmetries are
corrected to

p
s = 91:26 GeV using the predicted dependence from ZFITTER [37]. The slope of the

asymmetry around mZ depends only on the axial coupling and the charge of the initial and �nal state
fermions and is thus independent of the value of the asymmetry itself, i.e., the e�ective electroweak
mixing angle.

After calculating the overall averages, the quark pole asymmetries A0;q
FB , de�ned in terms of e�ective

couplings, are derived from the measured asymmetries by applying corrections as listed in Table 5.1.
These corrections are due to the energy shift from 91.26 GeV to mZ, initial state radiation, 
 exchange
and 
-Z interference. A very small correction due to the nonzero value of the b quark mass is included
in the last correction. All corrections are calculated using ZFITTER.
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Source ÆAb
FB ÆAc

FBp
s = mZ �0:0013 �0:0034

QED corrections +0:0041 +0:0104

, 
-Z, mass �0:0003 �0:0008

Total +0:0025 +0:0062

Table 5.1: Corrections to be applied to the quark asymmetries as A0
FB = Ameas

FB + ÆAFB.

The SLD left-right-forward-backward asymmetries are also corrected for all radiative e�ects and
are directly presented in terms of Ab and Ac.

The measurements used are:

� Measurements of Abb
FB and Acc

FB using leptons from ALEPH [38], DELPHI [39], L3 [40] and

OPAL [41]. These analyses measure either Abb
FB only from a high pt lepton sample or they obtain

Abb
FB and Acc

FB from a �t to the lepton spectra. In the case of OPAL the lepton information is
combined with hadronic variables in a neural net. DELPHI uses in addition lifetime information
and jet-charge in the hemisphere opposite to the lepton to separate the di�erent lepton sources.
Some asymmetry analyses also measure �.

� Measurements of Abb
FB based on lifetime tagged events with a hemisphere charge measurement

from ALEPH [42], DELPHI [43, 44], L3 [45] and OPAL [46]. These measurements contribute
roughly the same weight to the combined result as the lepton �ts.

� Analyses with D mesons to measure Acc
FB from ALEPH [47] or Acc

FB and Abb
FB from DELPHI [48]

and OPAL [49].

� Measurements of Ab and Ac from SLD. These results include measurements using lepton [50],
D meson [51] and vertex mass plus hemisphere charge [52] tags, which have similar sources of
systematic errors as the LEP asymmetry measurements. SLD also uses vertex mass for bottom
or charm tagging in conjunction with a kaon tag or a vertex charge tag for both Ab and Ac

measurements [53{55].

5.2.4 Other Measurements

The measurements of the charmed hadron fractions P(c ! D�+) � BR(D�+ ! �+D0), f(D+), f(Ds)
and f(cbaryon) are included in the Rc measurements and are described there.

ALEPH [56], DELPHI [57], L3 [26,58] and OPAL [59] measure BR(b ! `�), BR(b ! c ! `+) and
� or a subset of them from a sample of leptons opposite to a b-tagged hemisphere and from a double
lepton sample. DELPHI [30] and OPAL [60] measure BR(c ! `+) from a sample opposite to a high
energy D��.

5.3 Results

In a �rst �t the asymmetry measurements on peak, above peak and below peak are corrected to three
common centre-of-mass energies and are then combined at each energy point. The results of this �t,
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including the SLD results, are given in Appendix B. The dependence of the average asymmetries
on centre-of-mass energy agrees with the prediction of the Standard Model, as shown in Figure 5.1.
A second �t is made to derive the pole asymmetries A

0;q
FB from the measured quark asymmetries, in

which all the o�-peak asymmetry measurements are corrected to the peak energy before combining.
This �t determines a total of 14 parameters: the two partial widths, two LEP asymmetries, two
coupling parameters from SLD, three semileptonic branching ratios, the average mixing parameter
and the probabilities for c quark to fragment into a D+, a Ds, a D�+, or a charmed baryon. If the
SLD measurements are excluded from the �t there are 12 parameters to be determined. Results for
the non-electroweak parameters are independent of the treatment of the o�-peak asymmetries and the
SLD data.
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89 90 91 92 93 94
√s [GeV]

A
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B
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LEP

A
FB

b
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Figure 5.1: Measured asymmetries for b and c quark �nal states as a function of the centre-of-mass
energy.
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5.3.1 Results of the 12-Parameter Fit to the LEP Data

Using the full averaging procedure gives the following combined results for the electroweak parameters:

R0
b = 0:21651� 0:00072 (5.6)

R0
c = 0:1689� 0:0047

A0;b
FB = 0:0990� 0:0017

A0; c
FB = 0:0684� 0:0035 ;

where all corrections to the asymmetries and partial widths are applied. The �2=d.o.f. is 44=(90�12).
The corresponding correlation matrix is given in Table 5.2.

R0
b R0

c A0;b
FB A0; c

FB

R0
b 1:00 �0:17 �0:09 0:02

R0
c �0:17 1:00 0:07 �0:01

A0;b
FB �0:09 0:07 1:00 0:15

A
0; c
FB 0:02 �0:01 0:15 1:00

Table 5.2: The correlation matrix for the four electroweak parameters from the 12-parameter �t.

5.3.2 Results of the 14-Parameter Fit to LEP and SLD Data

Including the SLD results for Rb, Rc, Ab and Ac into the �t the following results are obtained:

R0
b = 0:21646� 0:00065 ; (5.7)

R0
c = 0:1719� 0:0031 ;

A0;b
FB = 0:0990� 0:0017 ;

A0; c
FB = 0:0685� 0:0034 ;

Ab = 0:922� 0:020 ;

Ac = 0:670� 0:026 ;

with a �2=d.o.f. of 47=(99� 14). The corresponding correlation matrix is given in Table 5.3 and the
largest errors for the electroweak parameters are listed in Table 5.4.

In deriving these results the parameters Ab and Ac are treated as independent of the forward-
backward asymmetries A0;b

FB and A0; c
FB (but see Section 12.1 for a joint analysis). In Figure 5.2 the

results for R0
b and R0

c are shown compared with the Standard Model expectation.

Amongst the non-electroweak observables the B semileptonic branching fraction (BR(b ! `�) =
0:1062� 0:0021) is of special interest. The dominant error source on this quantity is the dependence
on the semileptonic decay models b ! `�, c ! `+ with

�BR(b ! `�)(b ! `� �modelling) = 0:0011: (5.8)

Extensive studies are made to understand the size of this error. Amongst the electroweak quantities
the quark asymmetries with leptons depend also on the assumptions on the decay model while the
asymmetries using other methods usually do not. The �t implicitly requires that the di�erent methods
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R0
b R0

c A0;b
FB A0; c

FB Ab Ac

R0
b 1:00 �0:14 �0:08 0:01 �0:08 0:04

R0
c �0:14 1:00 0:04 �0:01 0:03 �0:05

A0;b
FB �0:08 0:04 1:00 0:15 0:02 0:00

A0; c
FB 0:01 �0:01 0:15 1:00 0:00 0:01

Ab �0:08 0:03 0:02 0:00 1:00 0:13
Ac 0:04 �0:05 0:00 0:01 0:13 1:00

Table 5.3: The correlation matrix for the six electroweak parameters from the 14-parameter �t.

R0
b R0

c A0;b
FB A0; c

FB Ab Ac

(10�3) (10�3) (10�3) (10�3) (10�2) (10�2)
statistics 0:43 2:3 1:6 3:0 1:5 2:1

internal systematics 0:29 1:4 0:6 1:4 1:2 1:5
QCD e�ects 0:18 0:1 0:3 0:1 0:3 0:2

BR(D ! neut.) 0:14 0:3 0 0 0 0
D decay multiplicity 0:13 0:3 0 0 0 0
BR(D+ ! K��+�+) 0:09 0:2 0 0 0 0

BR(Ds ! ��+) 0:03 0:5 0 0 0 0
BR(�c !p K��+) 0:06 0:5 0 0:1 0 0

D lifetimes 0:06 0:1 0 0:1 0 0
gluon splitting 0:22 0:1 0:1 0:1 0:1 0:1
c fragmentation 0:10 0:2 0:1 0:2 0:1 0:1

light quarks 0:07 0:2 0:1 0:1 0 0
beam polarisation 0 0 0 0 0:5 0:4

total 0:65 3:1 1:7 3:5 2:0 2:6

Table 5.4: The dominant error sources for the electroweak parameters from the 14-parameter �t.

give consistent results. This e�ectively constrains the decay model and thus reduces the error from
this source in the �t result for BR(b ! `�).

To get a conservative estimate of the modelling error in BR(b ! `�) the �t is repeated removing
all asymmetry measurements. The result of this �t is

BR(b ! `�) = 0:1065� 0:0023 (5.9)

with

�BR(b ! `�)(b ! `� �modelling) = 0:0014: (5.10)
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Figure 5.2: Contours in the (R0
b,R

0
c) plane derived from the LEP+SLD data, corresponding to 68%

and 95% con�dence levels assuming Gaussian systematic errors. The Standard Model prediction for
mt = 174:3� 5:1 GeV is also shown. The arrow points in the direction of increasing values of mt.
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Chapter 6

The Hadronic Charge Asymmetry hQFBi

Updates with respect to summer 2000:

DELPHI and OPAL revert to their published result. While all results are now �nal, the combination
procedure itself is still preliminary.

The LEP experiments ALEPH [61], DELPHI [62], L3 [45] and OPAL [63] provide measurements of the
hadronic charge asymmetry based on the mean di�erence in jet charges measured in the forward and
backward event hemispheres, hQFBi. DELPHI also provides a related measurement of the total charge
asymmetry by making a charge assignment on an event-by-event basis and performing a likelihood
�t [62]. The experimental values quoted for the average forward-backward charge di�erence, hQFBi,
cannot be directly compared as some of them include detector dependent e�ects such as acceptances
and eÆciencies. Therefore the e�ective electroweak mixing angle, sin2 �lepte� , as de�ned in Section 12.3,
is used as a means of combining the experimental results summarised in Table 6.1.

Experiment sin2 �lepte�

ALEPH (90-94), �nal 0:2322� 0:0008� 0:0011

DELPHI (91-91), �nal 0:2345� 0:0030� 0:0027

L3 (91-95), �nal 0:2327� 0:0012� 0:0013

OPAL (90-91), �nal 0:2326� 0:0012� 0:0029

LEP Average 0:2324� 0:0012

Table 6.1: Summary of the determination of sin2 �lepte� from inclusive hadronic charge asymmetries
at LEP. For each experiment, the �rst error is statistical and the second systematic. The latter,
amounting to 0.0010 in the average, is dominated by fragmentation and decay modelling uncertainties.

The dominant source of systematic error arises from the modelling of the charge 
ow in the
fragmentation process for each 
avour. All experiments measure the required charge properties for
Z ! bb events from the data. ALEPH also determines the charm charge properties from the data.
The fragmentation model implemented in the JETSET Monte Carlo program [64] is used by all
experiments as reference; the one of the HERWIG Monte Carlo program [65] is used for comparison.
The JETSET fragmentation parameters are varied to estimate the systematic errors. The central
values chosen by the experiments for these parameters are, however, not the same. The smaller of the
two fragmentation errors in any pair of results is treated as common to both. The present average
of sin2 �lepte� from hQFBi and its associated error are not very sensitive to the treatment of common
uncertainties. The ambiguities due to QCD corrections may cause changes in the derived value of
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sin2 �lepte� . These are, however, well below the fragmentation uncertainties and experimental errors.
The e�ect of fully correlating the estimated systematic uncertainties from this source between the
experiments has a negligible e�ect upon the average and its error.

There is also some correlation between these results and those for Abb
FB using jet charges. The

dominant source of correlation is again through uncertainties in the fragmentation and decay models
used. The typical correlation between the derived values of sin2 �lepte� from the hQFBi and the Abb

FB jet
charge measurements is estimated to be about 20% to 25%. This leads to only a small change in the
relative weights for the Abb

FB and hQFBi results when averaging their sin2 �lepte� values (Section 12.3).

Thus, the correlation between hQFBi and Abb
FB from jet charge has little impact on the overall Standard

Model �t, and is neglected at present.
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Chapter 7

Photon-Pair Production at LEP-II

Updates with respect to summer 2000:

This is a new chapter. LEP results on photon-pair production are combined. These combination
results became available after the summer conferences and were �rst presented at Siena, in October
2001.

7.1 Introduction

The reaction e+e� ! 

(
) provides a clean test of QED at LEP energies and is well suited to detect
the presence of non-standard physics. The di�erential QED cross-section at the Born level in the
relativistic limit is given by: �

d�

d


�
Born

=
�2

s

1 + cos2 �

1� cos2 �
: (7.1)

Since the two �nal state particles are identical the polar angle � is de�ned such that cos � > 0.
Various models with deviations from this cross-section will be discussed in section 7.4. Results on
the �2-photon �nal state using the high energy data collected by the four LEP collaborations are
reported by the individual experiments [66]. Here the results of the LEP working group dedicated to
the combination of the e+e� ! 

(
) measurements are reported. Results are given for the averaged
total cross-section and for global �ts to the di�erential cross-sections.

7.2 Event Selection

This channel is very clean and the event selection, which is similar for all experiments, is based on the
presence of at least two energetic clusters in the electromagnetic calorimeters. A minimum energy is
required, typically (E1 + E2)=

p
s larger than 0.3 to 0.6, where E1 and E2 are the energies of the two

most energetic photons. In order to remove e+e� events, charged tracks are in general not allowed
except when they can be associated to a photon conversion in one hemisphere.

The polar angle is de�ned in order to minimise e�ects due to initial state radiation as

cos � =

����sin(
�1 � �2

2
)

����
�

sin(
�1 + �2

2
) ;
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where �1 and �2 are the polar angles of the two most energetic photons. The acceptance in polar angle
is in the range of 0.90 to 0.96 on j cos �j, depending on the experiment.

With these criteria, the selection eÆciencies are in the range of 68% to 95% and the residual
background (from e+e� events and from e+e� ! �+�� with �� ! e����) is very small, 0:1% to 1%.
Detailed descriptions of the event selections performed by the four collaborations can be found in [66].

7.3 Total cross-section

The total cross-sections are combined using a �2 minimisation. Given the di�erent angular accep-
tances, only the ratios of the measured cross-sections relative to the QED expectation r = �meas=�QED
are averaged. Figure 7.1 shows the measured ratios ri;k of the experiments i at energies k with their
statistical and systematic errors added in quadrature. Systematic errors are uncorrelated between
experiments as the error on the theory is not included in the experimental errors.

Denoting with � the vector of residuals between the measurements and the expected ratios, three
di�erent averages are performed:

1. per energy k = 1; : : : ; 7: �i;k = ri;k � xk
2. per experiment i = 1; : : : ; 4: �i;k = ri;k � yi

3. global value: �i;k = ri;k � z

The seven �t parameters per energy xk are shown in Figure 7.1 as LEP combined cross-sections.
They are correlated with correlation coeÆcients ranging from 10% to 20%. The four �t-parameters
per experiment yi are uncorrelated between each other, the results are given in Table 7.1 together
with the single global �t parameter z.

No signi�cant deviations from the QED expectations are found. The global ratio is below unity
by 1.5� not accounting for the error on the radiative corrections (1%) which is of similar size as the
experimental error (1.2%).

Experiment cross-section ratio

ALEPH 0.963�0.025
DELPHI 0.974�0.032
L3 0.982�0.021
OPAL 1.000�0.021

global 0.982�0.012

Table 7.1: Cross-section ratios r = �meas=�QED for the four LEP experiments averaged over all
energies and the global average over all experiments and energies. The error includes the statistical
and experimental systematic error but no error from theory.

7.4 Global �t to the di�erential cross-sections

The global �t is based on angular distributions at energies between 183 and 207 GeV from the individ-
ual experiments. As an example angular distributions from each experiment are shown in Figure 7.2.
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Figure 7.1: Cross-section ratios r = �meas=�QED at di�erent energies. The measurements of the
single experiments are displaced by � 200 or 400 MeV from the actual energy for clarity. Filled
symbols indicate published results, open symbols stand for preliminary numbers. The average over
the experiments at each energy is shown as a star. Measurements between 203 and 209 GeV are
averaged to one energy point. The theoretical error is not included in the experimental errors but is
represented as the shaded band.

data used sys. error [%] jcos�j
published preliminary experimental theory

ALEPH 189 { 202 2 1 0.95
DELPHI 189 { 202 206 2.5 1 0.90
L3 183 { 189 192 { 207 2.1 1 0.96
OPAL 183 { 189 192 { 207 1.1 1 0.90

Table 7.2: The data samples used for the global �t to the di�erential cross-sections, the systematic
errors, the assumed error on the theory and the polar angle acceptance for the LEP experiments.

Combined di�erential cross-sections are not available yet, since they need a common binning of the
histograms. All four experiments give preliminary results; DELPHI, L3 and OPAL include the whole
year 2000 data-taking, as shown in Table 7.2. The systematic errors arise from the luminosity evalu-
ation (including theory uncertainty on the small-angle Bhabha cross-section computation), from the
selection eÆciency and the background evaluations and from radiative corrections. The last contribu-
tion, owing to the fact that the available e+e� ! 

(
) cross-section calculation is based on O(�3)
code, is assumed to be 1% and is considered correlated among energies and experiments.

Various model predictions are �tted to these angular distributions taking into account the experi-
mental systematic error correlated between energies for each experiment and the error on the theory.
A binned log likelihood �t is performed with one free parameter for the model and �ve �t parameters
used to keep the normalisation free within the systematic errors of the theory and the four experiments.

The following models of new physics are considered. In some cases they give rise to identical
distortions of the predictions; hence their parameters can be transformed into each other.
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Cut-o� parameter �� [67, 68]:�
d�

d


�
��

=

�
d�

d


�
Born

� �2s

2�4�
(1 + cos2 �) (7.2)

E�ective Lagrangian theory [69] describing anomalous e+e�
 couplings in dimension 6 (�4
6 = 2

�
�4
�)

or contact interactions for dimensions 7 and 8 (�7 = �0; �4
8 = me�

3
7):�

d�

d


�
�0

=

�
d�

d


�
Born

+
s2

32�

1

�06 (7.3)

Low scale gravity in extra dimensions [70], where Ms is related to the string scale and expected to
be of order O(TeV):�

d�

d


�
Ms

=

�
d�

d


�
Born

� �s

2�

�

M4
s

(1 + cos2 �) +
s3

16�2
�2

M8
s

(1� cos4 �) ; � = �1 (7.4)

Excited electrons [71] with mass Me� and chiral magnetic coupling described by the Lagrangian

L =
1

2�
�̀����

�
gf
�

2
W�� + g0f 0

Y

2
B��

�
`L + h.c. ; (7.5)

where g and g0 are the coupling constants of SU(2)L and U(1)Y , respectively. For the two photon �nal
state this leads to the following cross-section:�

d�

d


�
e�

=

�
d�

d


�
Born

+
�2

4

f4

�4
M2

e�

"
p4

(p2 �M2
e�)

2
+

q4

(q2 �M2
e�)

2
+

1
2s

2 sin2 �

(p2 �M2
e�)(q

2 �M2
e�)

#
; (7.6)

with f
 = �1
2(f + f 0), p2 = � s

2(1� cos �) and q2 = � s
2(1 + cos �) and � = Me� .

7.5 Fit Results

Where possible the �t parameters are chosen such that the likelihood function is approximately Gaus-
sian. The preliminary results of the �ts to the di�erential cross-sections are given in Table 7.3. No
signi�cant deviations with respect to the QED expectations are found (all the parameters are compat-
ible with zero) and therefore 95% con�dence level limits are obtained by renormalising the probability
distribution of the �t parameter to the physically allowed region. For limits on f
=� a scan over
Me� is performed and presented in Figure 7.3. Only for Me� is the cross-section nonlinear in the �t
parameter. The obtained negative log likelihood is shown in Figure 7.4 and the limit is determined at
1.92 units above the minimum.

7.6 Conclusion

The LEP collaborations study the e+e� ! 

(
) channel up to the highest available centre-of-mass
energies. The total cross-section results are combined in terms of the ratios with respect to the
QED expectations. No deviations are found. The di�erential cross-sections are �t following di�erent
parametrisations from models predicting deviations from QED. No evidence for deviations is found
and therefore combined 95% con�dence level limits are given.

28



0

200

400

600

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

|CosΘ*|

E
nt

ri
es

/0
.0

5

ALEPH PRELIMINARY

√s = 189-202 GeV

0

1

2

3

4

5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

data

Λ+=354 GeV

Λ-=324 GeV

DELPHI preliminary
√s


eff =  205.9 GeV L = 214.3 pb-1

|cos θ*|
dσ

0 /d
Ω

 (
pb

/s
tr

)

1

10

0 0.2 0.4 0.6 0.8 1
|cos Θ|

d
σ/

d
Ω

 (
p

b
/s

ra
d

)

L3
√ s

−
 = 189 GeV

Data

Lowest Order QED

Λ+=321 GeV

Λ-=282 GeV

cos(θ∗)

dσ
 ⁄ 

dΩ
   

[p
b 

⁄ s
r]

30

60

100

300

600

1000

0.3

0.6

1

3

6

10

20

E
ve

nt
s

OPAL

e+ e− γγ(γ)

189 GeV

0 0.2 0.4 0.6 0.8 1

Figure 7.2: Examples for angular distributions of the four LEP experiments. Points are the data and
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Fit parameter Fit result 95% CL limit [GeV]

�+ > 365
��4
�

�
4:6+27:0�26:5

�
� 10�12 GeV�4

�� > 379

��6
7

�
0:18+1:95�1:92

�
� 10�18 GeV�6 �7 > 794

derived from �+ �6 > 1484

derived from �7 �8 > 22.5

� = +1: Ms > 972
�=M4

s

�
�0:106+0:609�0:615

�
� 10�12 GeV�4

� = �1: Ms > 940

f4
 (Me� = 200GeV) 0:036+0:414�0:400 f
=� < 4:1 TeV�1

Table 7.3: The preliminary combined �t parameters and the 95% con�dence level limits for the four
LEP experiments.
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Chapter 8

Fermion-Pair Production at LEP-II

Updates with respect to summer 2000:

Additional preliminary results based on the data collected in the year 2000 are included.

8.1 Introduction

Since the start of the LEP-II program LEP has delivered collisions at centre-of-mass energies from
� 130 GeV to � 209 GeV. The four LEP experiments make measurements of the e+e� ! ff processes
over this range of energies, and a preliminary combination of these data is discussed in this Chapter.

In the years 1995 to 1999 LEP delivered luminosity at a number of distinct centre-of-mass energy
points. In 2000 most of the luminosity was delivered close to 2 distinct energies, but there was also a
signi�cant fraction of the luminosity delivered in, more-or-less, a continuum of energies. To facilitate
the combination of the measurements, the four LEP experiments all divided the data they collected
in 2000 into two energy bins: from 202.5 to 205.5 GeV; and 205.5 GeV and above. The nominal and
actual centre-of-mass energies to which the LEP data are averaged for each year are given in Table 8.1.

A number of measurements on the process e+e� ! ff exist and are combined. The preliminary
averages of cross-section and forward-backward asymmetry measurements are discussed in Section
8.2. The results presented in this section update those presented in [1,72{75]. Complete results of the
combinations are available on the web page [76]. In Section 8.3 a preliminary average of the di�erential
cross-section measurements, d�

dcos � , for the channels e+e� ! �+�� and e+e� ! �+�� is presented. In

Section 8.4 a preliminary combination of the heavy 
avour results Rb, Rc, Abb
FB and Acc

FB from LEP-II
is presented. In Section 8.5 the combined results are interpreted in terms of contact interactions and
the exchange of Z0 bosons. The results are summarised in section 8.6.

There are signi�cant changes with respect to results presented in Summer 2000 [1, 73]:

� The method of combining the cross-sections and leptonic forward-backward asymmetries is im-
proved.

� The combinations are updated using new data:

{ updated preliminary cross-sections and leptonic forward-backward asymmetries for data
taken at centre-of-mass energies of 205 and 207 GeV,
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Year Nominal Energy Actual Energy Luminosity
GeV GeV pb�1

1995 130 130.2 � 3
136 136.2 � 3
133� 133.2 � 6

1996 161 161.3 � 10
172 172.1 � 10
167� 166.6 � 20

1997 130 130.2 � 2
136 136.2 � 2
183 182.7 � 50

1998 189 188.6 � 170

1999 192 191.6 � 30
196 195.5 � 80
200 199.5 � 80
202 201.6 � 40

2000 205 204.9 � 80
207 206.7 � 140

Table 8.1: The nominal and actual centre-of-mass energies for data collected during LEP-II operation
in each year. The approximate average luminosity analysed per experiment at each energy is also
shown. Values marked with a � are average energies for 1995 and 1996 used for heavy 
avour results.
The data taken at nominal energies of 130 and 136 in 1995 and 1997 are combined by most experiments.

{ new preliminary di�erential cross-section results for �+�� and �+�� �nal states,

{ new preliminary heavy-
avour results.

� The interpretations are updated due to the changes in combined LEP results.

8.2 Averages for Cross-sections and Asymmetries

In this section the results of the preliminary combination of cross-sections and asymmetries are given.
The individual experiments' analyses of cross-sections and forward-backward asymmetries are dis-
cussed in [77]. The preliminary cross-section and leptonic forward-backward asymmetry results at
centre-of-mass energies of 205 and 207 GeV are updated with respect to [1, 73]. These are now ob-
tained from analyses based on the full data set collected in 2000, improving the precision of the
measurements.

Cross-section results are combined for the e+e� ! qq, e+e� ! �+�� and e+e� ! �+�� channels,
forward-backward asymmetry measurements are combined for the �+�� and �+�� �nal states. At
LEP-II energies 
 radiation is very important, leading in particular to a high rate for the radiative
return to the Z. Events are classi�ed according to the e�ective centre of mass energy,

p
s0, measured

in di�erent ways. The averages are made for the samples of events with high
p
s0, as discussed in the

following.

Individual experiments use their own ff signal de�nitions; corrections are applied to bring the
measurements to two common signal de�nitions:

33



� De�nition 1:
p
s0 is taken to be the mass of the s-channel propagator, with the ff signal being

de�ned by the cut
p
s0=s > 0:85. The e�ects of ISR-FSR photon interference is subtracted to

render the propagator mass unambiguous.

� De�nition 2: For dilepton events,
p
s0 is taken to be the bare invariant mass of the outgoing

difermion pair. For hadronic events, it is taken to be the mass of the s-channel propagator.
In both cases, ISR-FSR photon interference is included and the signal is de�ned by the cutp
s0=s > 0:85. When calculating the contribution to the hadronic cross-section due to ISR-FSR

interference, since the propagator mass is ill-de�ned, it is replaced by the bare qq mass.

The measurement corrected to the common signal de�nition, Mcommon is computed from the experi-
mental measurement Mexp,

Mcommon = Mexp + (Pcommon� Pexp);

where Pexp is the prediction for the measurement obtained for the experiments' signal de�nition and
Pcommon is the prediction for the common signal de�nition. The predictions are computed with ZFIT-
TER [78]. The theoretical uncertainties associated with the corrections are obtained by comparing
ZFITTER, TOPAZ0 v4.4 [79] and the Monte Carlo generator KK v4.02 [80]. The uncertainties are
approximately 0:2% for the hadronic cross-sections, 0:7% for dilepton cross-sections and 0.003 for
the leptonic asymmetries [75]. These uncertainties will be updated for the �nal analyses, taking into
account the results of Reference 81. These errors are not included in the combination. Results are
presented extrapolated to full 4� angular acceptance. Events containing additional fermion pairs from
radiative processes are considered to be signal, providing that the primary pair passes the cut onp
s0=s and that the secondary pair has a mass below 70 GeV.

The average is performed using the Best Linear Unbiased Estimator (BLUE) technique [82], which
is based on matrix algebra and which is equivalent to a �2 minimisation. For the �rst time, all
the data, from centre-of-mass energies of 130 to 207 GeV are averaged together, taking into account
correlations between all LEP-II e+e� ! ff measurements. Previously [1], the data were treated
as three independent subsamples at (130{189) GeV, (192{202) GeV and (205{207) GeV, ignoring
correlations between the subsamples.

Particular care is taken to ensure that the correlations between the hadronic cross-sections are
reasonably estimated. As in [1, 73] the errors are broken down into 5 categories

1) The statistical uncertainty plus uncorrelated systematic uncertainties, combined in quadrature.

2) The systematic uncertainty for the �nal state X which is fully correlated between energy points
for that experiment.

3) The systematic uncertainty for experiment Y which is fully correlated between di�erent �nal
states for this energy point but uncorrelated between energy points.

4) The systematic uncertainty for the �nal state X which is fully correlated between energy points
and between di�erent experiments.

5) The systematic uncertainty which is fully correlated between energy points and between di�erent
experiments for all �nal states.

In previous averages, uncertainties in the hadronic cross-sections arising from fragmentation models
and modelling of ISR had been treated as uncorrelated between experiments. However, although
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there are some di�erences between the models used and the methods of evaluating the errors, there are
signi�cant common elements in the estimation of these sources of uncertainty between the experiments.
For the average reported here, these errors are treated as fully correlated between energy points and
experiments.

Table 8.2 gives the averaged cross-sections and forward-backward asymmetries for all energies for
De�nition 1. The di�erences in the results obtained using De�nition 2 are also given.

The �2 per degree of freedom for the average of the LEP-II ff data is 170=180. The correlations are
rather small, with the largest components at any given pair of energies being between the hadronic
cross-sections. The other o�-diagonal terms in the correlation matrix are smaller than 10%. The
correlation matrix between the averaged hadronic cross-sections at di�erent centre-of-mass energies is
given in Table 8.3.

Di�erences in the results with respect to previous combinations at centre-of-mass energies from
130{202 GeV [1,73,74] arise mainly from the introduction of correlations between measurements which
were previously taken to be uncorrelated, and the improved treatment of the correlations themselves.

Figures 8.1 and 8.2 show the LEP averaged cross-sections and asymmetries, respectively, as a
function of the centre-of-mass energy, together with the SM predictions. There is good agreement
between the SM expectations and the measurements of the individual experiments and the combined
averages. The measured cross-sections for hadronic �nal states at most of the energy points are
somewhat above the SM expectations. Taking into account the correlations between the data points
and also assigning an error of �0:26% [81] on the absolute SM predictions, the di�erence of the cross-
section from the SM expectations averaged over all energies is approximately 1:8 standard deviations.
It is concluded that there is no signi�cant evidence in the results for physics beyond the SM in the
process e+e� ! ff.
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Table 8.2: Preliminary combined LEP results for e+e� ! ff. All the results correspond to the signal
De�nition 1. The Standard Model predictions are from ZFITTER [78]. The di�erence, �, in the
averages for the measurements for De�nition 2 relative to De�nition 1 are given in the �nal column.
The quoted uncertainties do not include the theoretical uncertainties on the corrections discussed in
the text.
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Table 8.3: The correlation coeÆcients between averaged hadronic cross-sections at di�erent energies.
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Figure 8.1: Preliminary combined LEP results on the cross-sections for qq, �+�� and �+�� �nal states,
as a function of centre-of-mass energy. The expectations of the SM, computed with ZFITTER [78],
are shown as curves. The lower plot shows the ratio of the data divided by the SM.
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8.3 Averages for Di�erential Cross-sections

The LEP experiments measure the di�erential cross-section, d�
d cos � , for the e+e� ! �+�� and e+e� !

�+�� channels for samples of events with
p
s0=s > 0:85. A preliminary combination of these results

is made using a �2 �t to the measured di�erential cross sections, using the expected error on the
di�erential cross sections, computed from the expected cross sections and the expected numbers of
events in each experiment. Using a Monte Carlo simulation it is shown that this method provides a
good approximation to the exact likelihood method based on Poisson statistics [73].

The combination included data from 183 to 207 GeV, but not all experiments provided mea-
surements at all energies. Since [1, 73], new, preliminary, results for centre-of-mass energies of 205
and 207 GeV are made available by all experiments. In addition, new, preliminary, results for
e+e� ! �+�� at energies from 192{202 GeV from L3 are made available. The data used in the
combination are summarised in Table 8.4.

Each experiments' data are binned in 10 bins of cos � at each energy, using their own signal
de�nition. The scattering angle, �, is the angle of the negative lepton with respect to the incoming
electron direction in the lab coordinate system. The outer acceptances of the most forward and most
backward bins for which the four experiments present their data are di�erent. This is accounted for as
part of the correction to a common signal de�nition. The ranges in cos � for the measurements of the
individual experiments and the average are given in Table 8.5. The signal de�nition used corresponded
to De�nition 1 of Section 8.2.

Correlated small systematic errors between di�erent experiments, channels and energies, arising
from uncertainties on the overall normalisation are considered in the averaging procedure.

Three separate averages are performed; one for 183 and 189 GeV data, one for 192{202 GeV data
and for 205 and 207 GeV data. The averages for the 183{189 data set are not updated with respect
to [1, 73]. The results of the averages are shown in Figures 8.3 and 8.4.

The correlations between bins in the average are less than 2% of the total error on the averages
in each bin. The overall agreement between the averaged data and the predictions is reasonable, with
a �2 of 191 for 160 degrees of freedom. At 202 GeV the cross-section in the most backward bin,
�1:0 < cos � < �0:8, for both muon and tau �nal states is above the predictions. For the muons
the excess in the data corresponds to 3:4 standard deviations. For the taus the excess is 2:3 standard
deviations, however, for this measurement the individual experiments are somewhat inconsistent,
having a �2 with respect to the average of 10:5 for 2 degrees of freedom. The data at 202 GeV su�er
from rather low delivered luminosity, with fewer than four events expected in each experiment in each
channel in this backward cos � bin. The agreement between the data and the predictions in the same
cos � bin is better at higher energies.
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Figure 8.3: LEP averaged di�erential cross-sections for e+e� ! �+�� at energies of 183{207 GeV.
The SM predictions, shown as solid histograms, are computed with ZFITTER [78].

41



Preliminary LEP Averaged dσ/dcosθ (ττ)

183 GeV

cosθτ

dσ
/d

co
sθ

 (
pb

)

189 GeV

cosθτ

dσ
/d

co
sθ

 (
pb

)
192 GeV

cosθτ

dσ
/d

co
sθ

 (
pb

)

196 GeV

cosθτ

dσ
/d

co
sθ

 (
pb

)

200 GeV

cosθτ

dσ
/d

co
sθ

 (
pb

)

202 GeV

cosθτ

dσ
/d

co
sθ

 (
pb

)

205 GeV

cosθτ

dσ
/d

co
sθ

 (
pb

)

207 GeV

cosθτ

dσ
/d

co
sθ

 (
pb

)

0

2

4

6

-1 -0.5 0 0.5 1
0

1

2

3

4

-1 -0.5 0 0.5 1

0

1

2

3

4

-1 -0.5 0 0.5 1
0

2

4

-1 -0.5 0 0.5 1

0

2

4

-1 -0.5 0 0.5 1
0

1

2

3

-1 -0.5 0 0.5 1

0

1

2

3

4

-1 -0.5 0 0.5 1
0

1

2

3

-1 -0.5 0 0.5 1

Figure 8.4: LEP averaged di�erential cross-sections for e+e� ! �+�� at energies of 183{207 GeV.
The SM predictions, shown as solid histograms, are computed with ZFITTER [78].
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e+e� ! �+�� e+e� ! �+��p
s(GeV) A D L O A D L O

183 - F - F - F - F

189 P F F F P F F F

192{202 P P P P P P - P

205{207 P P P P P P - P

Table 8.4: Di�erential cross-section data provided by the LEP collaborations (ALEPH, DELPHI, L3
and OPAL) for e+e� ! �+�� and e+e� ! �+�� combination at di�erent centre-of-mass energies.
Data indicated with F are �nal, published data. Data marked with P are preliminary. Data marked
with a - are not available for combination.

Experiment cos �min cos �max

ALEPH �0:95 0:95
DELPHI (e+e� ! �+�� 183) �0:94 0:94
DELPHI (e+e� ! �+�� 189{207) �0:97 0:97
DELPHI (e+e� ! �+��) �0:96 0:96
L3 �0:90 0:90
OPAL �1:00 1:00

Average �1:00 1:00

Table 8.5: The acceptances for which experimental data are presented and the acceptance for the
LEP average. For DELPHI the acceptance is shown for the di�erent channels and for the muons for
di�erent centre of mass energies. For all other experiments the acceptance is the same for muon and
tau-lepton channels and for all energies provided.
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8.4 Averages for Heavy Flavour Measurements

This section presents a preliminary combination of both published [83] and preliminary [84] measure-

ments of the ratios1 Rb and Rc and the forward-backward asymmetries, Abb
FB and Acc

FB, from the LEP
collaborations at centre-of-mass energies in the range of 130 to 207 GeV. The averages are updated
with respect to [1, 73]. New preliminary results from DELPHI and L3 at centre-of-mass energies of
205 and 207 GeV, based on analyses of the full 2000 data sets, are also included. New, preliminary,
results from ALEPH at lower energies are also combined. Table 8.6 summarises all the inputs that
are combined.

A common signal de�nition is de�ned for all the measurements, requiring:

� an e�ective centre-of-mass energy
p
s0 > 0:85

p
s

� the inclusion of ISR and FSR photon interference contribution and
� extrapolation to full angular acceptance.

Systematic errors are divided into three categories: uncorrelated errors, errors correlated between the
measurements of each experiment, and errors common to all experiments. Full details concerning the
combination procedure can be found in [85].

The results of the combination are presented in Table 8.7 and Figures 8.5 and 8.6. The results are
consistent with the Standard Model predictions of ZFITTER.

Because of the large correlation (-0.36) with Rc at 183 GeV and 189 GeV, the errors on the
corresponding measurements of Rb receive an additional contribution which is absent at the other
energy points. For other energies where there is no measurement of Rc, the Standard Model value
of Rc is used in extracting Rb (the error on the Standard Model prediction of Rc is estimated to be
negligible compared to the other uncertainties on Rb).

A list of the error contributions from the combination at 189 GeV is shown in Table 8.8.

p
s (GeV) Rb Rc Abb

FB Acc
FB

A D L O A D L O A D L O A D L O

133 F F F F - - - - - F - F - F - F

167 F F F F - - - - - F - F - F - F

183 F P F F F - - - F - - F P - - F

189 P P F F P - - - P P F F P - - F

192 to 202 P P P - - - - - P P - - - - - -

205 and 207 - P P - - - - - - P - - - - - -

Table 8.6: Data provided by the ALEPH, DELPHI, L3, OPAL collaborations for combination at
di�erent centre-of-mass energies. Data indicated with F are �nal, published data. Data marked with
P are preliminary. Data marked with a - are not supplied for combination.

1Unlike at LEP-I, R0
q is de�ned as

�qq
�had

.

44



0.14

0.16

0.18

0.2

0.22

0.24

0.26

80 100 120 140 160 180 200
√s  (GeV)

R
b

Rb

LEP preliminary

√s’/√s > 0.1 , 0.85

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

80 100 120 140 160 180 200
√s  (GeV)

R
c

Rc

LEP preliminary

√s’/√s > 0.1 , 0.85

Figure 8.5: Preliminary combined LEP measurements of Rb and Rc. Solid lines represent the Standard
Model prediction for the signal de�nition and dotted lines the inclusive prediction. Both are computed
with ZFITTER[86]. The LEP-I measurements are taken from [87].
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p
s (GeV) Rb Rc Abb

FB Acc
FB

133 0.1811 � 0.0132 - 0.358 � 0.251 0.577 � 0.314
(0.1853) - (0.487) (0.681)

167 0.1484 � 0.0127 - 0.620 � 0.254 0.915 � 0.344
(0.1708) - (0.561) (0.671)

183 0.1619 � 0.0101 0.269 � 0.043 0.528 � 0.155 0.658 � 0.209
(0.1671) (0.250) (0.578) (0.656)

189 0.1562 � 0.0065 0.240 � 0.023 0.488 � 0.094 0.446 � 0.151
(0.1660) (0.252) (0.583) (0.649)

192 0.1541 � 0.0149 - 0.422 � 0.267 -
(0.1655) - (0.585) -

196 0.1542 � 0.0098 - 0.531 � 0.151 -
(0.1648) - (0.587) -

200 0.1675 � 0.0100 - 0.589 � 0.150 -
(0.1642) - (0.590) -

202 0.1635 � 0.0143 - 0.604 � 0.241 -
(0.1638) - (0.593) -

205 0.1588 � 0.0126 - 0.728 � 0.258 -
(0.1634) - (0.594) -

207 0.1680 � 0.0108 - 0.447 � 0.200 -
(0.1632) - (0.593) -

Table 8.7: Results of the global �t, compared to the Standard Model predictions computed with
ZFITTER [86], for the signal de�nition in parentheses. The quoted errors are the statistical and
systematic errors added in quadrature. Because of the large correlation with Rc at 183 GeV and
189 GeV, the errors on the corresponding measurements of Rb receive an additional contribution
which is absent at the other energy points.

Error list Rb (189 GeV) Rc (189 GeV) Abb
FB (189 GeV) Acc

FB (189 GeV)

statistics 0.00606 0.0179 0.0884 0.1229

internal syst 0.00232 0.0123 0.0296 0.0481
common syst 0.00082 0.0078 0.0138 0.0735
total syst 0.00246 0.0145 0.0327 0.0878

total error 0.00654 0.0231 0.0942 0.1510

Table 8.8: Error breakdown at 189 GeV.
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8.5 Interpretation

The combined cross-sections and asymmetries and results on heavy 
avour production are interpreted
in a variety of models. The cross-section and asymmetry results are used to place limits on the mass
of a possible additional heavy neutral boson, Z0, in several models. Limits on contact interactions
between leptons and on contact interaction between electrons and b and c quarks are obtained. These
results are of particular interest since they are inaccessible to p�p or ep colliders. The results update
those provided in [1, 73].

8.5.1 Models with Z
0 Bosons

The combined hadronic and leptonic cross-sections and the leptonic forward-backward asymmetries
are used to �t the data to models including an additional, heavy, neutral boson, Z0. The results are
updated with respect to those given in [1, 73] due to the updated cross-section and leptonic forward-
backward asymmetry results.

Fits are made to the mass of a Z0, MZ
0 , for 4 di�erent models referred to as �,  , � and L-R [88]

and for the Sequential Standard Model [89], which proposes the existence of a Z0 with exactly the
same coupling to fermions as the standard Z. The LEP-II data alone does not signi�cantly constrain
the mixing angle between the Z and Z0 �elds, �ZZ0 . However, results from a single experiment in
which LEP-I data is used in the �t show that the mixing is consistent with zero (see for example [90],
giving limits of 30 mrad or less depending on model). So for these �ts �ZZ0 is �xed to zero.

No signi�cant evidence is found for the existence of a Z0 boson in any of the models. 95% con�dence
level lower limits on MZ

0 are obtained, by integrating the likelihood function2. The lower limits on
the Z0 mass are shown in Table 8.9.

Model �  � L-R SSM

Mlimit

Z0
(GeV) 678 463 436 800 1890

Table 8.9: The 95% con�dence level lower limits on the Z0 mass and �,  , �, L-R and SSM models.

8.5.2 Contact Interactions between Leptons

The averages of cross-sections and forward-backward asymmetries for muon-pair and tau-lepton pair
�nal states are used to search for contact interactions between leptons. The results are updated
with respect to those given in [1, 73] due to the updated cross-section and leptonic forward-backward
asymmetry results.

Following [91], contact interactions are parameterised by an e�ective Lagrangian, Le� , which is
added to the Standard Model Lagrangian and has the form:

Le� =
g2

(1 + Æ)�2

X
i;j=L;R

�ijei
�eif j

�fj ;

2To be able to obtain con�dence limits from the likelihood function it is necessary to convert the likelihood to a
probability density function; this is done by multiplying by a prior probability function. Simply integrating the likelihood
is equivalent to multiplying by a uniform prior probability function.
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where g2=4� is taken to be 1 by convention, Æ = 1(0) for f = e (f 6= e), �ij = �1 or 0, � is the scale
of the contact interactions, ei and fj are left or right-handed spinors. By assuming di�erent helicity
coupling between the initial state and �nal state currents, a set of di�erent models can be de�ned
from this Lagrangian [92], with either constructive (+) or destructive (�) interference between the
Standard Model process and the contact interactions. The models and corresponding choices of �ij
are given in Table 8.10. The models LL, RR, VV, AA, LR, RL, V0, A0 are considered here since these
models lead to large deviations in the e+e� ! �+�� and e+e� ! �+�� channels. The total hadronic
cross section on its own does not allow stringent limits to be placed on contact interactions involving
quarks.

For the purpose of �tting contact interaction models to the data, a new parameter � = 1=�2

is de�ned; � = 0 in the limit that there are no contact interactions. This parameter is allowed to
take both positive and negative values in the �ts. Theoretical uncertainties on the Standard Model
predictions are taken from [81], see above.

The values of � extracted for each model are all compatible with the Standard Model expectation
� = 0, at the two standard deviation level. These errors on � are typically a factor of two smaller
than those obtained from a single LEP experiment with the same data set. The �tted values of �
are converted into 95% con�dence level lower limits on �. The limits are obtained by integrating the
likelihood function over the physically allowed values, � � 0 for each �+ limit and � � 0 for �� limits.
The �tted values of � and the extracted limits are shown in Table 8.11. Figure 8.7 shows the limits
obtained on the scale � for the di�erent models assuming universality between contact interactions
for e+e� ! �+�� and e+e� ! �+��.

Model �LL �RR �LR �RL

LL� �1 0 0 0

RR� 0 �1 0 0

VV� �1 �1 �1 �1

AA� �1 �1 �1 �1

LR� 0 0 �1 0

RL� 0 0 0 �1

V0� �1 �1 0 0

A0� 0 0 �1 �1

Table 8.10: Choices of �ij for di�erent contact interaction models
.

8.5.3 Contact Interactions from Heavy Flavour Averages

Limits on contact interactions between electrons and b and c quarks are obtained. The formalism
for describing contact interactions including heavy 
avours is identical to that described above for
leptons.

All heavy 
avour LEP-II combined results from 133 to 207 GeV given in Table 8.7 are used as
inputs. For the purpose of �tting contact interaction models to the data, Rb and Rc are converted to
cross sections �bb and �cc using the averaged qq cross section of section 8.2 corresponding to signal
De�nition 2. In the calculation of errors, the correlations between Rb, Rc and �qq are assumed to be
negligible.

49



e+e� ! �+��

Model � (TeV�2) ��(TeV) �+(TeV)

LL -0.0056+0:0042�0:0037 8.8 14.4

RR -0.0060+0:0051�0:0046 8.4 13.8

VV -0.0014+0:0016�0:0012 15.5 22.2

AA -0.0025+0:0018�0:0023 12.1 20.1

LR 0.0014+0:0043�0:0074 7.4 9.3

RL 0.0014+0:0043�0:0074 7.4 9.3

V0 -0.0036+0:0032�0:0013 12.2 19.9

A0 0.0008+0:0020�0:0031 12.7 13.0

e+e� ! �+��

Model � (TeV�2) ��(TeV) �+(TeV)

LL -0.0033+0:0056�0:0050 8.9 11.4

RR -0.0036+0:0061�0:0056 8.4 10.9

VV -0.0012+0:0017�0:0020 14.0 19.1

AA -0.0004+0:0025�0:0027 13.1 14.2

LR -0.0053+0:0079�0:2210 2.1 9.2

RL -0.0053+0:0079�0:2210 2.1 9.2

V0 -0.0011+0:0023�0:0033 12.3 15.7

A0 -0.0028+0:0041�0:0043 9.3 12.9

e+e� ! `+`�

Model � (TeV�2) ��(TeV) �+(TeV)

LL -0.0042+0:0027�0:0028 9.8 16.5

RR -0.0046+0:0037�0:0034 9.4 15.8

VV -0.0014+0:0012�0:0012 16.5 26.2

AA -0.0018+0:0016�0:0019 14.0 21.7

LR -0.0023+0:0051�0:0045 8.5 11.2

RL -0.0023+0:0051�0:0045 8.5 11.2

V0 -0.0020+0:0016�0:0019 13.5 22.9

A0 -0.0011+0:0025�0:0023 13.2 15.6

Table 8.11: Fitted values of � and 95% con�dence limits on the scale, �, for constructive (+) and
destructive interference (�) with the Standard Model, for the contact interaction models discussed in
the text. Results are given for e+e� ! �+��, e+e� ! �+�� and e+e� ! `+`�, assuming universality
in the contact interactions between e+e� ! �+�� and e+e� ! �+��.

The results are updated with respect to those given in [1, 73] due to the updated hadronic cross-
sections and heavy 
avour results. No evidence for contact interactions between electrons and b and
c is found. The �tted values of � and their 68% con�dence level uncertainties together with the 95%
con�dence level lower limit on � are shown in Table 8.12. Figure 8.8 shows the limits obtained on the
scale, �, of models with di�erent helicity combinations involved in the interactions.
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Preliminary LEP Combined

Λ- (TeV) Λ+ (TeV)

LL  9.8 16.5

RR  9.4 15.8

VV 16.5 26.2

AA 14.0 21.7

LR  8.5 11.2

RL  8.5 11.2

V0 13.5 22.9

A0 13.2 15.6

Λ- Λ+

l+l-  30. 0 30.

Figure 8.7: The 95% CL exclusion limits on � for e+e� ! `+`� assuming universality in the contact
interactions between e+e� ! �+�� and e+e� ! �+��.

8.6 Summary

A preliminary combination of the LEP-II e+e� ! ff cross-sections (for hadron, muon and tau �nal
states) and forward-backward asymmetries (for muon and tau �nal states) from LEP running at
energies from 130 to 207 GeV is made. The results from the four LEP experiments are in good
agreement with each other.

The averages for all energies are shown in Table 8.2. Overall the data agree with the Standard
Model predictions of ZFITTER. Preliminary di�erential cross-sections, d�

d cos � , for e+e� ! �+�� and
e+e� ! �+�� are combined. Results are shown in Figures 8.3 and 8.4. A preliminary average of
results on heavy 
avour production at LEP-II is also made for measurements of Rb, Rc, Abb

FB and
Acc
FB, using results from LEP centre-of-mass energies from 130 to 207 GeV. Results are given in

Table 8.7 and shown graphically in Figures 8.5 and 8.6. The results are in good agreement with the
predictions of the SM.

The preliminary averaged cross-section and forward-backward asymmetry results together with
the combined results on heavy 
avour production are interpreted in a variety of models. The LEP-II
averaged cross-sections and lepton asymmetries are used to obtain lower limits on the mass of a
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Figure 8.8: The 95% CL exclusion limits on the scale of Contact Interactions in e+e� ! bb and
e+e� ! cc using Heavy Flavour LEP combined results from 133 to 207 GeV.
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e+e� ! bb

Model � (TeV�2) ��(TeV) �+(TeV)

LL -0.0030+0:0045�0:0047 9.3 11.8

RR -0.1755+0:1634�0:0159 2.2 7.7

VV -0.0029+0:0038�0:0040 10.0 13.3

AA -0.0018+0:0029�0:0031 11.6 14.6

LR -0.0491+0:0555�0:0384 3.1 5.5

RL 0.0065+0:1409�0:0149 7.0 2.5

V0 -0.0021+0:0032�0:0034 11.0 13.9

A0 0.0305+0:0203�0:0348 6.4 4.0

e+e� ! cc

Model � (TeV�2) ��(TeV) �+(TeV)

LL 0.0146+0:5911�0:0259 5.3 1.3

RR 0.0492+0:3723�0:0568 4.6 1.5

VV 0.0008+0:0106�0:0100 7.4 6.7

AA 0.0081+0:0171�0:0154 6.6 5.0

LR 0.0913+0:1076�0:1251 3.5 2.1

RL 0.0145+0:0872�0:0872 2.9 2.6

V0 0.0047+0:0170�0:0133 6.9 1.4

A0 0.0524+0:0736�0:0780 4.0 2.6

Table 8.12: Fitted values of � and 95% con�dence limits on the scale, �, for constructive (+) and
destructive interference (�) with the Standard Model, for the contact interaction models discussed in
the text. From combined b�b and c�c results with centre of mass energies from 133 to 207 GeV.

possible Z0 boson in di�erent models. Limits range from 436 to 1890 GeV depending on the model.
Limits on the scale of contact interactions between leptons and also between electrons and bb and cc
�nal states are determined. A full set of limits are given in Tables 8.11 and 8.12.
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Chapter 9

W and Four-Fermion Production at LEP-II

Updates with respect to summer 2000:

New preliminary results are presented for W-pair, Z-pair and single W production, based on the full
data sample collected in the year 2000 between 202 and 209 GeV. Improved procedures are used for
the combination of W-pair cross sections and W decay branching fractions. New averages of the Z-pair
and single W cross sections are performed, including also preliminary updates below 205 GeV.

9.1 Introduction

This Chapter summarises the combination of published and preliminary results of the four LEP
experiments on W-pair, Z-pair and single W cross sections and on W decay branching fractions,
prepared for the summer 2001 conferences [1, 93]. Where available, the published �nal results of the
analysis of data collected at centre{of{mass energies up to 209 GeV are used in the combination.

Most relevant, with respect to the results presented at the summer 2000 conferences [1, 94], are
new measurements of the W-pair, Z-pair and single-W cross sections at the highest LEP-II centre{
of{mass energies between 202 and 209 GeV, using the full data samples collected in the year 2000.
This represents, for energies above 202 GeV, an increase in luminosity by more than a factor of two
over the results presented at the summer 2000 conferences from the year 2000 data available at that
time. Another signi�cant change is an improved procedure for the combination of measured W-pair
cross sections between 183 and 207 GeV and for the combination of measured W decay branching
fractions, also used to derive the average ratio between the measured W-pair cross sections and the
corresponding theoretical predictions from various models. Finally, new combinations of single-W and
Z-pair cross sections are presented to take into account the new data available above 200 GeV, also
including minor changes in the single-W combination procedure and preliminary updates of Z-pair
cross sections between 192 and 202 GeV.

In the year 2000, LEP ran at centre{of{mass energies larger than 200 GeV, up to a maximum
of 209 GeV. For the measurements of the W-pair, Z-pair and single-W cross section, the data col-
lected above 202 GeV is divided [95] in two ranges of

p
s, below and above 205.5 GeV, to enhance

the sensitivity of the cross-section measurements to possible signals of new physics at the highest
e+e� centre{of{mass energy. The two data sets have mean centre{of{mass energies of 204.9 and
206.6 GeV, and the respective integrated luminosities used for the analyses considered in this note are
approximately 80 and 130 pb�1 per experiment.
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Results from di�erent experiments are combined in �2 minimisations through matrix algebra, based
on the Best Linear Unbiased Estimate (BLUE) method described in Reference 82, and taking into
account, when relevant, the correlations between the systematic uncertainties, which arise mainly from
the use of the same Monte Carlo codes to predict the background and to simulate the hadronisation
processes. The detailed breakdown of the systematic errors for the measurements combined in this
Chapter is described in Appendix C. Experimental results are compared with recent theoretical
predictions, many of which were developed in the framework of the LEP-II Monte Carlo workshop [96].

9.2 W-pair production cross section

All experiments have published �nal results on the W-pair (CC03 [96]) production cross section for
centre{of{mass energies from 161 to 189 GeV [97{109]. The preliminary results contributed by all four
collaborations at

p
s = 192{202 GeV are unchanged with respect to the summer 2000 conferences [110{

114]. All experiments contribute new preliminary results at
p
s = 205{207 GeV [115{118], based on

the analysis of the full data sample collected in the year 2000. New LEP averages of the measurements
at the eight centre{of{mass energies between 183 and 207 GeV are computed for the summer 2001
conferences, using an improved combination procedure. In particular, the LEP combined cross sections
are now obtained from one global �t to the 32 measurements performed by the four experiments at
each of these eight energies, taking into account inter-experiment as well as inter-energy correlations,
rather than from eight individual �ts at the various energies, neglecting inter-energy correlations, as
in the case of the previous combination for the summer 2000 [1, 94] conferences.

In the averaging of results at and above
p
s = 189 GeV, the component of the systematic error

from each experiment coming from the uncertainty on the 4-jet QCD background is taken to be fully
correlated between experiments. This is slightly di�erent from the procedure adopted for the summer
2000 conferences [1], where some experiments had also included in the correlated error the uncertainties
due to the modelling of hadronisation and �nal state interactions. More importantly, this common
error, ranging between 0.04 and 0.12 pb, is now taken to be also fully correlated between energies.
The remaining sources of systematic errors, taken as completely uncorrelated between experiments,
are split by each experiment into two categories, for which 100% and 0% correlations between di�erent
energies are assumed. The detailed inputs used for the combination are given in Appendix C. The
measured statistical errors are used for the combination. After building the full 32�32 covariance
matrix for the measurements, the �2 minimisation �t is performed as described in Reference [119].
More detailed studies on correlated systematic errors are in progress.

The results from each experiment for the W-pair production cross section are shown in Table 9.1, to-
gether with the LEP combination at each energy. All measurements are de�ned to represent CC03 [96]
WW cross sections, and assume Standard Model values for the W decay branching fractions. The
results for centre{of{mass energies between 183 and 207 GeV, for which new LEP averages are com-
puted, supersede the ones presented in [1]: the e�ect of the new combination procedure is to change the
LEP combined cross sections at these energies by 0.6% at most, generally towards lower values. The
combined LEP cross sections at the eight energies are all positively correlated, with correlations rang-
ing from 9% to 24%. For completeness, the measurements at 161 [97,120] and 172 GeV [98{101,121]
are also listed in the table. All results from the four experiments listed in the table are preliminary,
with the exception of those at 161{189 GeV.

Figure 9.1 shows the combined LEP W-pair cross section measured as a function of the centre{
of{mass energy. The combined measurements are compared with the theoretical calculations from
YFSWW [122] and RACOONWW [123] between 155 and 215 GeV for mW = 80:35 GeV. The two
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p
s WW cross section (pb) �2=d.o.f.

(GeV) ALEPH DELPHI L3 OPAL LEP

161.3 4:23� 0:75� 3:67 + 0:99 �
� 0:87 2:89 + 0:82 �

� 0:71 3:62 + 0:94 �
� 0:84 3:69� 0:45 g 1:3 = 3

172.1 11:7 � 1:3 � 11:6 � 1:4 � 12:3 � 1:4 � 12:3 � 1:3 � 12:0 � 0:7 g 0:22= 3

182.7 15:57� 0:68� 15:86� 0:74� 16:53� 0:72� 15:43� 0:66� 15:79� 0:36
9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

27.42/24

188.6 15:71� 0:38� 15:83� 0:43� 16:24� 0:43� 16:30� 0:38� 16:00� 0:21

191.6 17:23� 0:91 16:90� 1:02 16:39� 0:93 16:60� 0:98 16:72� 0:48

195.5 17:00� 0:57 17:86� 0:63 16:67� 0:60 18:59� 0:74 17:43� 0:32

199.5 16:98� 0:56 17:35� 0:60 16:94� 0:62 16:32� 0:66 16:84� 0:31

201.6 16:16� 0:76 17:67� 0:84 16:95� 0:88 18:48� 0:91 17:23� 0:42

204.9 16:57� 0:55 17:44� 0:64 17:35� 0:64 15:97� 0:64 16:71� 0:31

206.6 17:32� 0:45 16:50� 0:48 17:96� 0:51 17:77� 0:57 17:33� 0:25

Table 9.1: W-pair production cross section from the four LEP experiments and combined values at
all recorded centre{of{mass energies. All results are preliminary and unpublished, with the exception
of those indicated by �. The measurements between 183 and 207 GeV are combined in one global
�t, taking into account inter-experiment as well as inter-energy correlations of systematic errors.
The results for the combined LEP W-pair production cross section at 161 and 172 GeV are taken
from [120,121] respectively.

codes have been extensively compared and agree at a level better than 0.5% at the LEP-II energies [96].
The calculations above 170 GeV, based for the two programs on the so-called leading pole (LPA)
or double pole approximations (DPA) [124], have theoretical uncertainties decreasing from 0.7% at
170 GeV to about 0.4% at centre{of{mass energies larger than 200 GeV, while in the threshold region
a larger theoretical uncertainty of 2% is assigned [125]. This theoretical uncertainty is represented by
the width of the shaded band in Figure 9.1. An error of 50 MeV on the W mass would translate into
additional errors of 0.1% (3.0%) on the cross-section predictions at 200 GeV (161 GeV, respectively).
All results, up to the highest centre{of{mass energies, are in agreement with the two theoretical
predictions considered.

9.2.1 Ratio of measured and predicted W-pair cross sections

The agreement between the measured W-pair cross section, �measWW , and its expectation according to a
given theoretical model, �theoWW, can be expressed quantitatively in terms of their ratio

RWW =
�measWW

�theoWW

;

averaged over the measurements performed by the four experiments at di�erent energies in the
LEP-II region. The above procedure is used to compare the measurements at the eight energies
between 183 and 207 GeV to the predictions of GENTLE [126], KORALW [127], YFSWW [122] and
RACOONWW [123]. The measurements at 161 and 172 GeV are not used in the combination because
they were performed using data samples of low statistics and because of the high sensitivity of the
cross section to the value of the W mass at these energies.

The combination of the ratio RWW is performed using as input from the four experiments the 32
cross sections measured at each of the eight energies. For each model considered, these are converted
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Figure 9.1: Measurements of the W-pair production cross section, compared to the predictions of
RACOONWW [123] and YFSWW [122]. The shaded area represents the uncertainty on the theoretical
predictions, estimated to be �2% for

p
s<170 GeV and ranging from 0.7 to 0.4% above 170 GeV.

into 32 ratios by dividing them by the corresponding theoretical predictions, listed in Appendix C.
The full 32�32 covariance matrix for the ratios is built taking into account the same sources of
systematic errors used for the combination of the W-pair cross sections at these energies. The small
statistical errors on the theoretical predictions at the various energies, taken as fully correlated for
the four experiments and uncorrelated between di�erent energies, are also translated into errors on
the individual measurements of RWW. The theoretical errors on the predictions, due to the physical
and technical precision of the generators used, are not propagated to the individual ratios and are
used instead when comparing to the combined values obtained for RWW. For each of the four models
considered, two �ts are performed: in the �rst, eight values of RWW at the di�erent energies are
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extracted, averaged over the four experiments; in the second, only one value of RWW is determined,
representing the global agreement of measured and predicted cross sections over the whole energy
range.

The results of the two �ts to RWW for each of the four models considered are given in Table 9.2.
As already qualitatively noted from Figure 9.1, the LEP measurements of the W-pair cross section
above threshold are in very good agreement to the predictions of YFSWW and RACOONWW. In
contrast, the predictions from GENTLE and KORALW are more than 2% too high with respect
to the measurements. The main di�erences between these two sets of predictions come from non-
leading O(�) electroweak radiative corrections to the W-pair production process, which are included
(in the LPA/DPA approximation [124]) in both YFSWW and RACOONWW, but not in GENTLE
and KORALW. Especially interesting is the comparison between KORALW and YFSWW, as the
numerical results provided by the authors for KORALW are actually those of a downgraded version
of YFSWW, such that the only di�erences between the two calculations are the screening of Coulomb
interactions according to the prescription of Reference 128 and the inclusion of non-leading O(�)
electroweak radiative corrections to W-pair production (mainly radiation o� W bosons and pure weak
corrections). Of these two e�ects, only the latter is found to be relevant to the measurement of RWW,
while the former has a negligible impact on the total W-pair cross section [129].

p
s Ratio of measured and expected WW cross sections

(GeV) RGENTLE
WW RKORALW

WW RYFSWW
WW RRACOONWW

WW

182.7 1:005� 0:022 1:011� 0:023 1:028� 0:023 1:028� 0:023

188.6 0:961� 0:013 0:967� 0:013 0:984� 0:013 0:985� 0:013

191.6 0:986� 0:028 0:991� 0:028 1:009� 0:029 1:012� 0:029

195.5 1:010� 0:018 1:015� 0:018 1:035� 0:019 1:037� 0:019

199.5 0:964� 0:018 0:970� 0:018 0:990� 0:018 0:992� 0:018

201.6 0:983� 0:024 0:989� 0:024 1:009� 0:025 1:012� 0:025

204.9 0:949� 0:018 0:955� 0:018 0:976� 0:018 0:978� 0:018

206.6 0:984� 0:014 0:989� 0:014 1:011� 0:015 1:014� 0:015

�2/d.o.f 27.42/24 27.42/24 27.42/24 27.42/24

Average 0:973� 0:009 0:979� 0:009 0:998� 0:009 1:000� 0:009

�2/d.o.f 39.16/31 39.20/31 39.04/31 39.14/31

Table 9.2: Ratios of LEP combined W-pair cross-section measurements to the expectations according
to GENTLE [126], KORALW [127], YFSWW [122] and RACOONWW [123]. For each of the four
models, two �ts are performed, one to the LEP combined values of RWW at the eight energies between
183 and 207 GeV, and another to the LEP combined average of RWW over all energies. The results
of the �ts are given in the table together with the resulting �2. Both �ts take into account inter-
experiment as well as inter-energy correlations of systematic errors.

The results of the �ts for YFSWW and RACOONWWare also shown in Figure 9.2, where relative
errors of 0.5% on the cross-section predictions are assumed. For simplicity, the energy dependence of
the relative error on the W-pair cross-section predicted by each model is neglected in Figure 9.2.
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183 GeV 1.028 ± 0.023

189 GeV 0.984 ± 0.013

192 GeV 1.009 ± 0.029

196 GeV 1.035 ± 0.019

200 GeV 0.990 ± 0.018

202 GeV 1.009 ± 0.025

205 GeV 0.976 ± 0.018

207 GeV 1.011 ± 0.015

LEP combined 0.998 ± 0.009

0.9 1. 1.1

  Measured σWW / YFSWW

LEP WW Working Group Summer 2001

PRELIMINARY

183 GeV 1.028 ± 0.023

189 GeV 0.985 ± 0.013

192 GeV 1.012 ± 0.029

196 GeV 1.037 ± 0.019

200 GeV 0.992 ± 0.018

202 GeV 1.012 ± 0.025

205 GeV 0.978 ± 0.018

207 GeV 1.014 ± 0.015

LEP combined 1.000 ± 0.009

0.9 1. 1.1

  Measured σWW / RacoonWW

LEP WW Working Group Summer 2001

PRELIMINARY

Figure 9.2: Ratios of LEP combined W-pair cross-section measurements to the expectations according
to YFSWW [122] and RACOONWW [123] The yellow bands represent constant relative errors of 0.5%
on the two cross-section predictions.

9.3 W decay branching fractions

From the cross sections for the individual WW! 4f decay channels measured by the four experiments
at all energies larger than 161 GeV, the W decay branching fractions B(W ! ff

0
) are determined, with

and without the assumption of lepton universality. All four experiments update their results since the
summer 2000 conferences to include the full data samples collected in the year 2000 at centre{of{mass
energies of 205 and 207 GeV [115{118]. The results from each experiment are given in Table 9.3 and
Figure 9.3, together with the result of the LEP combination.

Lepton Lepton

non{universality universality

Experiment B(W ! e�e) B(W ! ���) B(W ! ��� ) B(W ! hadrons)

[%] [%] [%] [%]

ALEPH 10:95� 0:31 11:11� 0:29 10:57� 0:38 67:33� 0:47

DELPHI 10:36� 0:34 10:62� 0:28 10:99� 0:47 68:10� 0:52

L3 10:40� 0:30 9:72� 0:31 11:78� 0:43 68:34� 0:52

OPAL 10:40� 0:35 10:61� 0:35 11:18� 0:48 67:91� 0:61

LEP 10:54� 0:17 10:54� 0:16 11:09� 0:22 67:92� 0:27

�2=d.o.f. 14.9/9 18.8/11

Table 9.3: Summary of leptonic and hadronic W branching fractions derived from preliminary W-pair
production cross-sections measurements up to 207 GeV centre{of{mass energy. A common systematic
error of (0.03{0.06)% on the leptonic branching fractions is taken into account in the combination.
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02/03/2001

W Leptonic Branching Ratios

ALEPH 10.95 ±  0.31
DELPHI 10.36 ±  0.34
L3 10.40 ±  0.30
OPAL 10.40 ±  0.35

LEP W→eν 10.54 ±  0.17

ALEPH 11.11 ±  0.29
DELPHI 10.62 ±  0.28
L3  9.72 ±  0.31
OPAL 10.61 ±  0.35

LEP W→µν 10.54 ±  0.16

ALEPH 10.57 ±  0.38
DELPHI 10.99 ±  0.47
L3 11.78 ±  0.43
OPAL 11.18 ±  0.48

LEP W→τν 11.09 ±  0.22

LEP W→lν 10.69 ±  0.09

10 11 12

Br(W→lν) [%]

Winter 01 - Preliminary - [161-207] GeV
02/03/2001

Br(W→hadrons) [%]

ALEPH 67.33 ±  0.47

DELPHI 68.10 ±  0.52

L3 68.34 ±  0.52

OPAL 67.91 ±  0.61

LEP 67.92 ±  0.27

66 68 70

Br(W→hadrons) [%]

Winter 01 - Preliminary - [161-207] GeV

Figure 9.3: Summary of leptonic and hadronic W branching fractions derived from preliminary W-pair
production cross-sections measurements up to 207 GeV centre{of{mass energy, unchanged from winter
2001. The thin vertical line denotes the Standard Model expectation.

The two combinations performed, with and without the assumption of lepton universality, both
use as inputs from each of the four experiments the three leptonic branching fractions, with their
systematic and observed statistical errors and their three by three correlation matrices. In the �t
with lepton universality, the branching fraction to hadrons is determined from that to leptons by
constraining the sum to unity. In building the full 12�12 covariance matrix, it is assumed that
the 4-jet QCD background components of the systematic error are fully correlated between di�erent
experiments both for the same and for di�erent leptonic channels, as they arise mainly from the
uncertainty on the WW cross section in the channel where both W bosons decay to hadrons. The
combination procedure is consistent with that used for the combination of the total W-pair cross
sections and outlined in the previous section, as the same sources of inter-experiment correlations
are considered, while inter-energy correlations of systematic errors are taken into account internally
by each experiment when deriving their average branching ratios. The detailed inputs used for the
combination are given in Appendix C.

The results of the �t which does not make use of the lepton universality assumption show a
negative correlation of 21.4% (18.9%) between the W ! ��� and W ! e�e (W ! ���) branching
fractions, while between the electron and muon decay channels there is a positive correlation of 6.6%.
The two-by-two comparison of these branching fractions constitutes a test of lepton universality in
the decay of on{shell W bosons at the level of 2.9%:

B(W ! ���) =B(W ! e�e) = 1:000� 0:021 ;

B(W ! ���) =B(W ! e�e) = 1:052� 0:029 ;

B(W ! ���) =B(W ! ���) = 1:052� 0:028 :

The branching fractions are all consistent with each other within the errors.

Assuming lepton universality, the measured hadronic branching fraction is [67:92� 0:17(stat:)�
0:21(syst:)]% and the leptonic one is [10:69� 0:06(stat:)� 0:07(syst:)]%. These results are consistent
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with their Standard Model expectations, of 67.51% and 10.83% respectively [130]. The systematic
error receives equal contributions from the correlated and uncorrelated sources. The high �2 of the
�t, 18.8 for 11 degrees of freedom, is mainly caused by the spread of the L3 results for W decays to
muons and taus around the common average.

Within the Standard Model, the branching fractions of the W boson depend on the six matrix
elements jVqq0j of the Cabibbo{Kobayashi{Maskawa (CKM) quark mixing matrix not involving the top
quark. In terms of these matrix elements, the leptonic branching fraction of the W boson B(W ! `�`)
is given by

1

B(W ! `�`)
= 3

(
1 +

�
1 +

�s(M
2
W)

�

� X
i = (u; c);
j = (d; s; b)

jVij j2
)
;

where �s(M
2
W) is the strong coupling constant. Taking �s(M

2
W) = 0:121�0:002, the measured leptonic

branching fraction of the W yieldsX
i = (u; c);
j = (d; s; b)

jVij j2 = 2:039 � 0:025 (BW! `�`) � 0:001 (�s);

where the �rst error is due to the uncertainty on the branching fraction measurement and the second
to the uncertainty on �s. Using the experimental knowledge [131] of the sum jVudj2+ jVus j2+ jVubj2+
jVcdj2 + jVcbj2 = 1:0477� 0:0074, the above result can be interpreted as a measurement of jVcsj which
is the least well determined of these matrix elements:

jVcsj = 0:996 � 0:013:

The error includes a �0:0006 contribution from the uncertainty on �s and a �0:004 contribution from
the uncertainties on the other CKM matrix elements, the largest of which is that on jVcdj. These
contributions are negligible in the error on this determination of jVcsj, which is dominated by the
�0:013 experimental error from the measurement of the W branching fractions.

9.4 Z-pair production cross section

All experiments have published �nal results [132{137] on the Z-pair production cross section atp
s = 183 and 189 GeV, already presented in [94]. Since the summer 2000 conferences, L3 [138] has

published its updated �nal results between 192 and 202 GeV, OPAL [139] has provided preliminary
updates of its previous measurements at those energies [140], whereas the corresponding preliminary
results from ALEPH [141,142] and DELPHI [143,144] are unchanged. All experiments also contribute
preliminary results at 205 and 207 GeV [139,142,145,146], based on the analysis of the full data sample
collected in the year 2000.

The results of the individual experiments and the LEP averages are summarised for the di�erent
centre{of{mass energies in Table 9.4. The combination of �nal results at

p
s = 183 and 189 GeV is

the same that was given for the summer 2000 conferences, while the results above 189 GeV supersede
those previously presented [1], and are all preliminary with the exception of the L3 results between
192 and 202 GeV.

All numerical results presented in this Section are de�ned to represent NC02 [96] ZZ cross sections.
The combination of results is performed using the symmetrized expected statistical error of each
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p
s ZZ cross section (pb) �2=d.o.f.

(GeV) ALEPH DELPHI L3 OPAL LEP

182.7 0:11 + 0:16 �
� 0:12 0:38� 0:18� 0:31 + 0:17 �

� 0:15 0:12 + 0:20 �
� 0:18 0:23� 0:08 2.28/3

188.6 0:67 + 0:14 �
� 0:13 0:60� 0:15� 0:73 + 0:15 �

� 0:14 0:80 + 0:15 �
� 0:14 0:70� 0:08 0.97/3

191.6 0:53 + 0:34
� 0:27 0:55� 0:34 0:29� 0:22� 1:13 + 0:47

� 0:41 0:60� 0:18 2.88/3

195.5 0:69 + 0:23
� 0:20 1:17� 0:29 1:18� 0:26� 1:19 + 0:28

� 0:26 1:04� 0:13 3.23/3

199.5 0:70 + 0:22
� 0:20 1:08� 0:26 1:25� 0:27� 1:09 + 0:26

� 0:24 1:01� 0:13 2.80/3

201.6 0:70 + 0:33
� 0:28 0:87� 0:33 0:95� 0:39� 0:94 + 0:38

� 0:33 0:86� 0:18 0.32/3

204.9 1:21 + 0:26
� 0:23 1:05� 0:26 0:84� 0:23 1:07 + 0:28

� 0:26 1:03� 0:13 1.11/3

206.6 1:01 + 0:19
� 0:17 0:98� 0:22 1:20� 0:21 1:07 + 0:22

� 0:21 1:06� 0:11 0.76/3

Table 9.4: Z-pair production cross section from the four LEP experiments and combined values for
the eight energies between 183 and 207 GeV. All results are preliminary with the exception of those
indicated by �. A common systematic error of (0.01{0.07) pb is taken into account in the averaging
procedure.

analysis, to avoid biases due to the limited number of events selected. As in the combination performed
for the summer 2000 conferences [94], the component of the systematic errors that is considered as
correlated between experiments includes the uncertainty on the backgrounds from q�q, WW, Zee and
We� processes and the uncertainty on the b quark modelling. Summing these contributions together,
the common error ranges between 0.01 and 0.07 pb for the various experiments, as described in
Appendix C.

The measurements are shown in Figure 9.4 as a function of the LEP centre{of{mass energy, where
they are compared to the YFSZZ [147] and ZZTO [148] predictions. Both these calculations have an
estimated uncertainty of �2% [96]. The data do not show any signi�cant deviation from the theoretical
expectations.

9.5 Single-W production cross section

Since the summer 2000 [94] conferences, only ALEPH [149] and DELPHI [150] present new measure-
ments of the single-W cross section, from the analysis of the full data sample collected in the year 2000
at 205 and 207 GeV, while L3 has published unchanged its results at 189 GeV [151], already presented
as preliminary in the summer 2000. None of the other results previously presented by the four experi-
ments are updated: these include the results published by ALEPH [152] and L3 [153,154] at 183 GeV,
and the preliminary measurements by ALEPH at 189{202 [155], DELPHI at 189{202 [156,157], L3 at
192{202 [158] and OPAL at 189 GeV [159].

A new combination of LEP results for the summer 2001 conferences is performed not only at
205{207 GeVto include the new results by ALEPH and DELPHI, but also at all energies between 183
and 202 GeV. This is done to include the DELPHI results for the total single-W cross section at these
energies [157] de�ned according to the common LEP prescription of Reference 160, which accounts for
all decays of the W boson, including those to taus. In contrast, for the previous combination performed
for the winter 2000 conferences [160], previous DELPHI results [156] had been used, accounting only
for decays of the W boson to hadrons, electrons or muons. In the new average for the summer 2001
conferences, results are combined assuming uncorrelated systematic errors between experiments and
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Figure 9.4: Measurements of the Z-pair production cross section, compared to the predictions of
YFSZZ [147] and ZZTO [148]. The shaded area represents the �2% uncertainty on the predictions.

consistently using expected statistical errors for all measurements, given the limited statistical precision
of the single-W cross-section measurements. This also di�ers slightly from the procedure previously
used for the winter 2000 conferences, where expected statistical errors had only been used for a few
measurements on very limited data samples, reverting to measured statistical errors elsewhere.

The measurements of the hadronic and total single-W cross sections by the four LEP experiments
between 183 and 207 GeVare listed in Tables 9.5 and 9.6, together with the corresponding LEP
combined values. All numerical results presented in this Section represent single-W cross sections
according to the common LEP de�nition given in [160]. Single-W production is considered as the
complete t-channel subset of Feynman diagrams contributing to e�ef�f

0 �nal states, with additional cuts
on kinematic variables to exclude the regions of phase space dominated by multiperipheral diagrams,

63



where the cross-section calculation is a�ected by large uncertainties. The kinematic cuts used in
the signal de�nitions are: mqq > 45 GeV for the e�eqq �nal states, E` > 20 GeV for the e�e`�e �nal
states with ` = � or � , and �nally j cos �e� j > 0:95, j cos �e+ j < 0:95 and Ee+ > 20 GeV (or the charge
conjugate cuts) for the e�ee�e �nal states. The measurements performed on the small amount of data
below 183 GeV, by L3 at 130{172 GeV [154,161] and ALEPH at 161{172 GeV [152], are not converted
into the single-W common LEP de�nition and are absent from the tables and the following plot.

The LEP measurements of the single-W cross section are shown, as a function of the LEP centre{
of{mass energy, in Figure 9.5 for the hadronic decays and for all decays of the W boson. In the two
�gures, the measurements are compared with the expected values from WTO [162], WPHACT [163]
and grc4f [164]. As discussed more in detail in [1] and [96], the theoretical predictions are scaled
upward to correct for the implementation of QED radiative corrections at the wrong momentum
transfer scale s. The full correction factor of 4%, derived [96] by the comparison to the theoretical
predictions from SWAP [165], is conservatively taken as a systematic error. This uncertainty dominates
the �5% theoretical error currently assigned to these predictions [1, 96], represented by the shaded
area in Figure 9.5. All results, up to the highest centre{of{mass energies, are in agreement with the
theoretical predictions.
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Figure 9.5: Measurements of the single-W production cross section. Top: hadronic decay channel of
the W boson; bottom: total production cross section. Also shown are the predictions of WTO [162]
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uncertainty on the predictions.
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p
s Single-W hadronic cross section (pb) �2=d.o.f.

(GeV) ALEPH DELPHI L3 OPAL LEP

182.7 0:40� 0:24� | 0:58 + 0:23 �
� 0:20 | 0:50� 0:16 0.31/1

188.6 0:31� 0:14 0:44 + 0:28
� 0:25 0:52 + 0:14 �

� 0:13 0:53 + 0:14
� 0:13 0:46� 0:08 1.47/3

191.6 0:94� 0:44 0:01 + 0:19
� 0:07 0:85 + 0:45

� 0:37 | 0:73� 0:25 1.94/2

195.5 0:45� 0:23 0:78 + 0:38
� 0:34 0:66 + 0:25

� 0:23 | 0:60� 0:15 0.77/2

199.5 0:82� 0:26 0:16 + 0:29
� 0:17 0:34 + 0:23

� 0:20 | 0:46� 0:14 3.60/2

201.6 0:68� 0:35 0:55 + 0:47
� 0:40 1:09 + 0:42

� 0:37 | 0:80� 0:21 1.13/2

204.9 0:50� 0:25 0:50 + 0:35
� 0:31 | | 0:50� 0:20 0.00/1

206.6 0:95� 0:24 0:37 + 0:24
� 0:21 | | 0:71� 0:17 2.77/1

Table 9.5: Single-W production cross section from the four LEP experiments and combined values
for the eight energies between 183 and 207 GeV, in the hadronic decay channel of the W boson. All
results are preliminary with the exception of those indicated by �.

p
s Single-W total cross section (pb) �2=d.o.f.

(GeV) ALEPH DELPHI L3 OPAL LEP

182.7 0:61� 0:27� | 0:80 + 0:28 �
� 0:25 | 0:70� 0:19 0.26/1

188.6 0:45� 0:15 0:75 + 0:30
� 0:26 0:69 + 0:16 �

� 0:15 0:67 + 0:17
� 0:15 0:62� 0:09 1.60/3

191.6 1:31� 0:48 0:17 + 0:34
� 0:18 1:06 + 0:49

� 0:42 | 0:99� 0:28 2.38/2

195.5 0:65� 0:25 0:94 + 0:41
� 0:36 0:98 + 0:28

� 0:27 | 0:84� 0:16 0.92/2

199.5 0:99� 0:27 0:51 + 0:33
� 0:32 0:79 + 0:27

� 0:24 | 0:79� 0:16 1.40/2

201.6 0:75� 0:36 1:15 + 0:55
� 0:46 1:38 + 0:47

� 0:42 | 1:06� 0:24 1.38/2

204.9 0:78� 0:27 0:56 + 0:36
� 0:32 | | 0:70� 0:22 0.24/1

206.6 1:19� 0:25 0:58 + 0:26
� 0:23 | | 0:94� 0:18 2.71/1

Table 9.6: Single-W total production cross section from the four LEP experiments and combined
values for the eight energies between 183 and 207 GeV. All results are preliminary with the exception
of those indicated by �.
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Chapter 10

Electroweak Gauge Boson Self Couplings

Updates with respect to summer 2000:

Additional preliminary results based on the data collected in the year 2000 are included. No results
on charged TGCs are included as the e�ects of newly calculated radiative corrections on the couplings
results derived from W-pair production are still under investigation.

10.1 Introduction

The measurement of gauge boson couplings and the search for possible anomalous contributions due
to the e�ects of new physics beyond the Standard Model are among the principal physics aims at
LEP-II [166]. Combined preliminary measurements of the neutral triple gauge boson couplings and
quartic gauge couplings are presented here. The results for the neutral couplings already include the
full data set for all but the OPAL results from Z
-production. For the quartic gauge couplings the
whole data set is analysed so far only by L3, and by ALEPH for the ���

 -channel.

The W-pair production process, e+e� ! W+W�, involves the charged triple gauge boson vertices
between the W+W� and the Z or the photon. During LEP-II operation, about 10,000 W-pair events
are collected by each experiment. Single W (e�W) and single photon (���
) production at LEP are also
sensitive to the WW
 vertex. Results from these channels have been combined for previous summer
conferences.

For the charged TGCs, new Monte Carlo calculations (RacoonWW [123] and YFSWW [122])
including O(�em) corrections to the WW production process have recently become available. They
have the potential to largely a�ect the measurements of the charged TGCs in W-pair production. Their
implications are still under investigation. Preliminary results including these O(�em) corrections are
so far available only from ALEPH [167]. Therefore, as for the winter conferences this year, no new
combinations are made for these measurements.

At centre-of-mass energies exceeding twice the Z boson mass, pair production of Z bosons is
kinematically allowed. Here, one searches for the possible existence of triple vertices involving only
neutral electroweak gauge bosons. Such vertices could also contribute to Z
 production. In contrast
to triple gauge boson vertices with two charged gauge bosons, purely neutral gauge boson vertices do
not occur in the Standard Model of electroweak interactions.

Within the Standard Model, quartic electroweak gauge boson vertices with at least two charged
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gauge bosons do exist. In e+e� collisions at LEP-II centre-of-mass energies, the WWZ
 and WW


vertices contribute to WW
 and ���

 production in s-channel and t-channel, respectively. The e�ect
of the Standard Model quartic electroweak vertices is below the sensitivity of LEP-II. Thus only
anomalous quartic vertices are searched for in the production of WW
, ���

 and also Z

 �nal
states. No results from the Z

 �nal state analysis are included in the combinations due to current
investigations of di�erences in the description of the anomalous contributions to this vertex [168].

10.1.1 Neutral Triple Gauge Boson Couplings

There are two classes of Lorentz invariant structures associated with neutral TGC vertices which
preserve U(1)em and Bose symmetry, as described in [169,170].

The �rst class refers to anomalous Z

� and Z
Z� couplings which are accessible at LEP in the
process e+e� ! Z
. The parametrisation contains eight couplings: hVi with i = 1; :::; 4 and V = 
,Z.
The superscript 
 refers to Z

� couplings and superscript Z refers to Z
Z� couplings. The photon
and the Z boson in the �nal state are considered as on-shell particles, while the third boson at the
vertex, the s-channel internal propagator, is o� shell. The couplings hV1 and hV2 are CP-odd while hV3
and hV4 are CP-even.

The second class refers to anomalous ZZ
� and ZZZ� couplings which are accessible at LEP-II in
the process e+e� ! ZZ. This anomalous vertex is parametrised in terms of four couplings: fVi with
i = 4; 5 and V = 
,Z. The superscript 
 refers to ZZ
� couplings and the superscript Z refers to
ZZZ� couplings, respectively. Both Z bosons in the �nal state are assumed to be on-shell, while the
third boson at the triple vertex, the s-channel internal propagator, is o�-shell. The couplings fV4 are
CP-odd whereas fV5 are CP-even.

Note that the hVi and fVi couplings are independent of each other. They are assumed to be real
and they vanish at tree level in the Standard Model.

10.1.2 Quartic Gauge Boson Couplings

Anomalous contributions to electroweak quartic vertices are treated in the framework of References [171{
173]. Considered are the three lowest-dimensional operators leading to quartic vertices not causing
anomalous TGCs. According to a more recent description of the QGCs [174], anomalous contribu-
tions to the WW

 and ZZ

 vertex are treated separately, although their structure is the same. The
corresponding couplings are parametrised by aV0 =�

2 and aVc =�
2, where � represents the energy scale

of new physics and V=W,Z for the respective WW

 and ZZ

 vertices. An anomalous contribution
to the WWZ
 vertex is parametrised by an=�2. The couplings aV0 =�

2 and aVc =�
2 conserve C and

P, while the coupling an=�
2 is CP-violating. The production of WW
 depends on all three aW0 =�

2,
aWc =�

2, and an=�2 couplings. The production of ���

 and Z

 depend only on aV0 =�
2 and aVc =�

2

(for V=W,Z or Z respectively), as they do not involve the WWZ
 vertex. The coupling parameters
are assumed to be real and they vanish at tree level in the Standard Model. At present there are
di�erences between the Monte Carlo descriptions of [172] and [168] of the quartic gauge coupling
vertex, especially in the Z

-�nal state. This issue is still under investigation as stated in [168] and
currently e�ort is going on to repeat the measurement using the latter description. No new results are
available using this framework so far and therefore no new combinations are presented for the ZZ


couplings. The analyses of the ���

 �nal state do not include possible contributions from the ZZ
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vertex and hence the presented measurements here assume a vanishing ZZ

 vertex measuring only
aW0 =�

2, aWc =�
2 and an=�

2 accordingly.

10.2 Measurements

The combined results presented here are obtained from updated neutral electroweak gauge boson
coupling measurements and quartic gauge coupling measurements as discussed above. The individual
references should be consulted for details about the data samples used.

The h-coupling analyses of ALEPH, DELPHI and L3 use the data collected at LEP-II up to centre-
of-mass energies of 209 GeV. The OPAL measurements so far use the data at 189 GeV. The results of
the f -couplings are now obtained from the whole data set above the ZZ-production threshold by all
of the experiments. The experiments already pre-combine di�erent processes and �nal states for each
of the couplings. For the neutral TGCs, the analyses use measurements of the total cross sections
of Z
 and ZZ production and the di�erential distributions: the hVi couplings [175{178] and the fVi
couplings [175,176,179,180] are determined.

For QGCs, the combined results are based on measurements from WW
 and ���

 production.
In addition to the total cross section, the photon energy is used as a sensitive variable in the WW


channel. The analyses in the ���

 channel generally restrict to low recoil masses where contributions
from the Standard Model and a possible ZZ

 vertex are small. The QGCs aV0 =�

2, aVc =�
2 and

an=�
2 [181{183] are determined, where the whole data set is analysed by L3 and ALEPH, while

OPAL uses the data at 189 GeV.

10.3 Combination Procedure

The combination procedure is identical to the previous LEP combination of electroweak gauge boson
couplings [184].

Each experiment provides the negative log likelihood, logL, as a function of the coupling pa-
rameters (one or two) to be combined. The single-parameter analyses are performed �xing all other
parameters to their Standard Model values. The two-parameter analyses are performed setting the
remaining parameters to their Standard Model values.

The logL functions from each experiment include statistical as well as those systematic uncertain-
ties which are considered as uncorrelated between experiments. For both single- and multi-parameter
combinations, the individual logL functions are added. It is necessary to use the logL functions
directly in the combination, since in some cases they are not parabolic, and hence it is not possible to
combine the results correctly by simply taking weighted averages of the measurements.

The main contributions to the systematic uncertainties that are uncorrelated between experiments
arise from detector e�ects, background in the selected signal samples, limited Monte Carlo statistics
and the �tting method. Their importance varies for each experiment and the individual references
should be consulted for details.

The systematic uncertainties arising from the theoretical cross section prediction in Z
-production
(' 1% in the qq
- and ' 2% in the ���
 channel) are treated as correlated. For ZZ production, the

69



uncertainty on the theoretical cross section prediction is small compared to the statistical accuracy
and therefore is neglected. Smaller sources of correlated systematic uncertainties, such as those arising
from the LEP beam energy, are for simplicity treated as uncorrelated.

The correlated systematic uncertainties in the h-coupling analyses are taken into account by scaling
the combined log-likelihood functions by the squared ratio of the sum of statistical and uncorrelated
systematic uncertainty over the total uncertainty including all correlated uncertainties. For the general
case of non-Gaussian probability density functions, this treatment of the correlated errors is only an
approximation; it also neglects correlations in the systematic uncertainties between the parameters in
multi-parameter analyses.

The one standard deviation uncertainties (68% con�dence level) are obtained by taking the coupling
values for which � logL = +0:5 above the minimum. The 95% con�dence level (C.L.) limits are given
by the coupling values for which � logL = +1:92 above the minimum. These cut-o� values are used
for obtaining the results of both single- and multi-parameter analyses reported here. Note that in
the case of the neutral TGCs, double minima structures appear in the negative log-likelihood curves.
For multi-parameter analyses, the two dimensional 68% C.L. contour curves for any pair of couplings
are obtained by requiring � logL = +1:15, while for the 95% C.L. contour curves � logL = +3:0 is
required.

10.4 Results

We present results from the four LEP experiments on the various electroweak gauge boson couplings,
and their combination. The results quoted for each individual experiment are calculated using the
method described in Section 10.3. Thus they may di�er slightly from those reported in the individual
references. In particular for the h-coupling result from OPAL and DELPHI, a slightly modi�ed
estimate of the systematic uncertainty due to the theoretical cross section prediction is responsible for
slightly di�erent limits compared to the published results. Furthermore, for the QGC, L3 integrates the
likelihood in order to determine the 95%CL, whereas here it is read o� the logL-curve at � logL = 1:92
as for Gaussian shaped likelihood functions.

10.4.1 Neutral Triple Gauge Boson Couplings in Z
 Production

The individual analyses and results of the experiments for the h-couplings are described in [175{178].

Single-Parameter Analyses

The results for each experiment are shown in Table 10.1, where the errors include both statistical
and systematic uncertainties. The individual logL curves and their sum are shown in Figures 10.1
and 10.2. The results of the combination are given in Table 10.2. From Figures 10.1 and 10.2 it is
clear that the sensitivity of the L3 analysis [177] is the highest amongst the LEP experiments. This is
partially due to the use of a larger phase space region, which increases the statistics by about a factor
two, and partially due to added information from using an Optimal Observable technique.
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Parameter ALEPH DELPHI L3 OPAL

h
1 [�0:14; +0:14] [�0:15; +0:15] [�0:06; +0:06] [�0:13; +0:13]

h
2 [�0:07; +0:07] [�0:09; +0:09] [�0:053; +0:024] [�0:089; +0:089]

h
3 [�0:069; +0:037] [�0:047; +0:047] [�0:062; �0:014] [�0:16; +0:00]

h


4 [�0:020; +0:045] [�0:032; +0:030] [�0:004; +0:045] [+0:01; +0:13]

hZ1 [�0:23; +0:23] [�0:24; +0:25] [�0:17; +0:16] [�0:22; +0:22]

hZ2 [�0:12; +0:12] [�0:14; +0:14] [�0:10; +0:09] [�0:15; +0:15]

hZ3 [�0:28; +0:19] [�0:32; +0:18] [�0:23; +0:11] [�0:29; +0:14]

hZ4 [�0:10; +0:15] [�0:12; +0:18] [�0:08; +0:16] [�0:09; +0:19]

Table 10.1: The 95% C.L. intervals (� logL = 1:92) measured by the ALEPH, DELPHI, L3 and
OPAL. In each case the parameter listed is varied while the remaining ones are �xed to their Standard
Model values. Both statistical and systematic uncertainties are included.

Parameter 95% C.L.

h
1 [�0:056; +0:055]

h
2 [�0:045; +0:025]

h
3 [�0:049; �0:008]

h
4 [�0:002; +0:034]

hZ1 [�0:13; +0:13]

hZ2 [�0:078; +0:071]

hZ3 [�0:20; +0:07]

hZ4 [�0:05; +0:12]

Table 10.2: The 95% C.L. intervals (� logL = 1:92) obtained combining the results from the four
experiments. In each case the parameter listed is varied while the remaining ones are �xed to their
Standard Model values. Both statistical and systematic uncertainties are included.

Two-Parameter Analyses

The results for each experiment are shown in Table 10.3, where the errors include both statistical and
systematic uncertainties. The 68% C.L. and 95% C.L. contour curves resulting from the combinations
of the two-dimensional likelihood curves are shown in Figure 10.3. The LEP average values are given
in Table 10.4.
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Parameter ALEPH DELPHI L3

h
1 [�0:32; +0:32] [�0:28; +0:28] [�0:17; +0:04]

h
2 [�0:18; +0:18] [�0:17; +0:18] [�0:12; +0:02]

h
3 [�0:17; +0:38] [�0:48; +0:20] [�0:09; +0:13]

h
4 [�0:08; +0:29] [�0:08; +0:15] [�0:04; +0:11]

hZ1 [�0:54; +0:54] [�0:45; +0:46] [�0:48; +0:33]

hZ2 [�0:29; +0:30] [�0:29; +0:29] [�0:30; +0:22]

hZ3 [�0:58; +0:52] [�0:57; +0:38] [�0:43; +0:39]

hZ4 [�0:29; +0:31] [�0:31; +0:28] [�0:23; +0:28]

Table 10.3: The 95% C.L. intervals (� logL = 1:92) measured by ALEPH, DELPHI and L3. In each
case the two parameters listed are varied while the remaining ones are �xed to their Standard Model
values. Both statistical and systematic uncertainties are included.

Parameter 95% C.L. Correlations

h
1 [�0:16; +0:05] 1:00 +0:79

h
2 [�0:11; +0:02] +0:79 1:00

h
3 [�0:08; +0:14] 1:00 +0:97

h
4 [�0:04; +0:11] +0:97 1:00

hZ1 [�0:35; +0:28] 1:00 +0:77

hZ2 [�0:21; +0:17] +0:77 1:00

hZ3 [�0:37; +0:29] 1:00 +0:76

hZ4 [�0:19; +0:21] +0:76 1:00

Table 10.4: The 95% C.L. intervals (� logL = 1:92) obtained combining the results from ALEPH,
DELPHI and L3. In each case the two parameters listed are varied while the remaining ones are �xed
to their Standard Model values. Both statistical and systematic uncertainties are included. Since the
shape of the log-likelihood is not parabolic, there is some ambiguity in the de�nition of the correlation
coeÆcients and the values quoted here are approximate.
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Figure 10.1: The logL curves of the four experiments, and the LEP combined curve for the four
neutral TGCs h
i ; i = 1; 2; 3; 4. In each case, the minimal value is subtracted.
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LEP OPALL3+DELPHI+ALEPH+
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Figure 10.2: The logL curves of the four experiments, and the LEP combined curve for the four
neutral TGCs hZi ; i = 1; 2; 3; 4. In each case, the minimal value is subtracted.
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4 ) showing the LEP combined result.
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10.4.2 Neutral Triple Gauge Boson Couplings in ZZ Production

The individual analyses and results of the experiments for the f -couplings are described in [175,176,
179,180].

Single-Parameter Analyses

The results for each experiment are shown in Table 10.5, where the errors include both statistical and
systematic uncertainties. The individual logL curves and their sum are shown in Figure 10.4. The
results of the combination are given in Table 10.6.

Two-Parameter Analyses

The results from each experiment are shown in Table 10.7, where the errors include both statistical and
systematic uncertainties. The 68% C.L. and 95% C.L. contour curves resulting from the combinations
of the two-dimensional likelihood curves are shown in Figure 10.5. The LEP average values are given
in Table 10.8.

10.4.3 Quartic Gauge Boson Couplings

The individual analyses and results of the experiments for the quartic gauge couplings are described
in [181{183].

The results for each experiment are shown in Table 10.9, where the uncertainties include both
statistical and systematic e�ects. The individual logL curves and their sum are shown in Figures 10.6.
The results of the combination are given in Table 10.10.

Conclusions

No signi�cant deviation from the Standard Model prediction is seen for any of the electroweak gauge
boson couplings studied.
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Parameter ALEPH DELPHI L3 OPAL

f
4 [�0:26; +0:26] [�0:26; +0:28] [�0:24; +0:26] [�0:36; +0:36]

fZ4 [�0:44; +0:43] [�0:49; +0:42] [�0:43; +0:41] [�0:55; +0:64]

f
5 [�0:54; +0:56] [�0:48; +0:61] [�0:48; +0:56] [�0:82; +0:72]

fZ5 [�0:73; +0:83] [�0:42; +0:69] [�0:46; +1:2] [�0:96; +0:31]

Table 10.5: The 95% C.L. intervals (� logL = 1:92) measured by ALEPH, DELPHI, L3 and OPAL.
In each case the parameter listed is varied while the remaining ones are �xed to their Standard Model
values. Both statistical and systematic uncertainties are included.

Parameter 95% C.L.

f
4 [�0:17; +0:19]

fZ4 [�0:31; +0:28]

f
5 [�0:36; +0:40]

fZ5 [�0:36; +0:39]

Table 10.6: The 95% C.L. intervals (� logL = 1:92) obtained combining the results from all four
experiments. In each case the parameter listed is varied while the remaining ones are �xed to their
Standard Model values. Both statistical and systematic uncertainties are included.

Parameter ALEPH DELPHI L3 OPAL

f
4 [�0:26; +0:26] [�0:26; +0:28] [�0:24; +0:26] [�0:36; +0:36]

fZ4 [�0:44; +0:43] [�0:49; +0:42] [�0:43; +0:41] [�0:54; +0:63]

f
5 [�0:52; +0:53] [�0:52; +0:61] [�0:48; +0:56] [�0:77; +0:73]

fZ5 [�0:77; +0:86] [�0:44; +0:69] [�0:46; +1:2] [�0:96; +0:44]

Table 10.7: The 95% C.L. intervals (� logL = 1:92) measured by ALEPH, DELPHI, L3 and OPAL.
In each case the two parameters listed are varied while the remaining ones are �xed to their Standard
Model values. Both statistical and systematic uncertainties are included.

Parameter 95% C.L. Correlations

f
4 [�0:17; +0:19] 1:00 +0:10

fZ4 [�0:30; +0:28] +0:10 1:00

f
5 [�0:34; +0:38] 1:00 �0:18

fZ5 [�0:36; +0:38] �0:18 1:00

Table 10.8: The 95% C.L. intervals (� logL = 1:92) obtained combining the results from all four
experiments. In each case the two parameters listed are varied while the remaining ones are �xed to
their Standard Model values. Both statistical and systematic uncertainties are included. Since the
shape of the log-likelihood is not parabolic, there is some ambiguity in the de�nition of the correlation
coeÆcients and the values quoted here are approximate.
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Parameter [GeV�2] ALEPH L3 OPAL

aW0 =�
2 [�0:029; +0:029] [�0:017; +0:017] [�0:065; +0:065]

aWc =�
2 [�0:079; +0:080] [�0:03; +0:05] [�0:13; +0:17]

an=�2 | [�0:15; +0:14] [�0:61; +0:57]

Table 10.9: The 95% C.L. intervals (� logL = 1:92) measured by ALEPH, L3 and OPAL. In each
case the parameter listed is varied while the remaining ones are �xed to their Standard Model values.
Both statistical and systematic uncertainties are included.

Parameter [GeV�2] 95% C.L.

aW0 =�
2 [�0:018; +0:018]

aWc =�
2 [�0:033; +0:047]

an=�
2 [�0:17; +0:15]

Table 10.10: The 95% C.L. intervals (� logL = 1:92) obtained combining the results from ALEPH,
L3 and OPAL. In each case the parameter listed is varied while the remaining ones are �xed to their
Standard Model values. Both statistical and systematic uncertainties are included.
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Figure 10.4: The logL curves of the four experiments, and the LEP combined curve for the four
neutral TGCs fVi ; V = 
; Z; i = 4; 5. In each case, the minimal value is subtracted.
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Chapter 11

W-Boson Mass and Width at LEP-II

Updates with respect to summer 2000:

Additional preliminary results based on the data collected in the year 2000 are included.

11.1 W Mass Measurements

The W boson mass results presented in this Chapter are obtained from data recorded over a range of
centre-of-mass energies,

p
s = 161�209 GeV, during the 1996-2000 operation of the LEP collider. The

results reported by the ALEPH, DELPHI and L3 collaborations include an analysis of the year 2000
data, and have an integrated luminosity per experiment of about 700 pb�1. The OPAL collaboration
has analysed the data up to and including 1999 and has an integrated luminosity of approximately
450 pb�1.

The results on the W mass and width quoted below correspond to a de�nition based on a Breit-
Wigner denominator with an s-dependent width, j(s�m2

W) + is�W=mWj.

Since 1996 the LEP e+e� collider has been operating above the threshold for W+W� pair produc-
tion. Initially, 10 pb�1 of data were recorded close to the W+W� pair production threshold. At this
energy the W+W� cross section is sensitive to the W boson mass, mW. Table 11.1 summarises the
W mass results from the four LEP collaborations based on these data [97].

THRESHOLD ANALYSIS [97]
Experiment mW(threshold)/GeV

ALEPH 80:14� 0:35
DELPHI 80:40� 0:45

L3 80:80+0:48�0:42
OPAL 80:40+0:46�0:43

Table 11.1: W mass measurements from the W+W� threshold cross section at
p
s = 161 GeV. The

errors include statistical and systematic contributions.

Subsequently LEP has operated at energies signi�cantly above the W+W� threshold, where the
e+e� ! W+W� cross section has little sensitivity to mW. For these higher energy data mW is mea-
sured through the direct reconstruction of the W boson's invariant mass from the observed jets and
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leptons. Table 11.2 summarises the W mass results presented individually by the four LEP experi-
ments using the direct reconstruction method. The combined values of mW from each collaboration
take into account the correlated systematic uncertainties between the decay channels and between
the di�erent years of data taking. In addition to the combined numbers, each experiment presents
mass measurements from W+W�!qq`�e and W+W�!qqqq channels separately. The DELPHI and
OPAL collaborations provide results from independent �ts to the data in the qq`�e and qqqq decay
channels separately and hence account for correlations between years but do not include correlations
between the two channels. The qq`�e and qqqq results quoted by the ALEPH and L3 collaborations
are obtained from a simultaneous �t to all data which, in addition to other correlations, takes into
account the correlated systematic uncertainties between the two channels. The L3 result is unchanged
when determined through separate �ts. The large variation in the systematic uncertainties in the
W+W�!qqqq channel are caused by di�ering estimates of the possible e�ects of Colour Reconnec-
tion (CR) and Bose-Einstein Correlations (BEC); this is discussed below. The systematic errors in the
W+W�!qq`�e channel are dominated by uncertainties from hadronisation, with estimates ranging
from 15 to 30 MeV.

DIRECT RECONSTRUCTION
W+W�!qq`�e W+W�!qqqq Combined

Experiment mW/GeV mW/GeV mW/GeV

ALEPH [185{187] 80:456� 0:051� 0:032 80:507� 0:054� 0:045 80:477� 0:038� 0:032
DELPHI [99,188{190] 80:414� 0:074� 0:048 80:384� 0:053� 0:065 80:399� 0:045� 0:049

L3 [100,191{194] 80:314� 0:074� 0:045 80:478� 0:063� 0:069 80:389� 0:048� 0:051
OPAL [101,195{198] 80:516� 0:067� 0:030 80:408� 0:066� 0:100 80:491� 0:053� 0:038

Table 11.2: Preliminary W mass measurements from direct reconstruction (
p
s = 172 � 209 GeV).

The �rst error is statistical and the second systematic. Results are given for the semi-leptonic, fully-
hadronic channels and the combined value. The W+W�!qq`�e results from the ALEPH and OPAL
collaborations include mass information from the W+W�!`�e`�e channel.

11.2 Combination Procedure

A combined LEP W mass measurement is obtained from the results of the four experiments. In order
to perform a reliable combination of the measurements, a more detailed input than that given in Ta-
ble 11.2 is required. Each experiment provided a W mass measurement for both the W+W�!qq`�e
and W+W�!qqqq channels for each of the data taking years (1996-2000) that it had analysed. In addi-
tion to the four threshold measurements a total of 36 direct reconstruction measurements are supplied:
ALEPH and DELPHI provided 10 measurements (1996-2000), L3 gave 8 measurements (1996-2000)
having already combined the 1996 and 1997 results and OPAL provided 8 measurements (1996-1999).
The W+W�!`�e`�e channel is also analysed by the ALEPH(1997-2000) and OPAL(1997-2000) col-
laborations; the lower precision results obtained from this channel are combined by the experiments
with their W+W�!qq`�e channel mass determinations.

Subdividing the results by data-taking years enables a proper treatment of the correlated system-
atic uncertainty from the LEP beam energy and other dependences on the centre-of-mass energy or
data-taking period. A detailed breakdown of the sources of systematic uncertainty are provided for
each result and the correlations speci�ed. The inter-year, inter-channel and inter-experiment correla-
tions are included in the combination. The main sources of correlated systematic errors are: colour
reconnection, Bose-Einstein correlations, hadronisation, the LEP beam energy, and uncertainties from
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SK-I W Mass Bias Comparison
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Figure 11.1: W mass bias obtained in the SK-I model of colour reconnection relative to a simulation
without colour reconnection as a function of the fraction of events reconnected, at a centre of mass
energy of 189 GeV and for the fully-hadronic decay channel. The analyses of the four LEP experiments
show similar sensitivity to this e�ect. The points connected by the lines have correlated uncertainties
increasing to the right in the range indicated.

initial and �nal state radiation. The full correlation matrix for the LEP beam energy is employed [199].
The combination is performed and the evaluation of the components of the total error assessed using
the Best Linear Unbiased Estimate (BLUE) technique, see Reference 82.

The four LEP collaborations gave di�erent estimates of the systematic errors arising from �nal
state interactions: these varied from 30-66 MeV for colour reconnection and from 20-67 MeV for Bose-
Einstein correlations. This range of estimates could be due to di�erent experimental sensitivities to
these e�ects or, alternatively, simply a re
ection of the di�erent phenomenological models used to
assess the uncertainties. This question is resolved by comparing the results of the experiments when
analysing simulation samples with and without CR e�ects in the SK-I model [200]. Studies of these
samples demonstrate that the four experiments are equally sensitive to colour reconnection e�ects,
i.e. when looking at the same CR model similar biases are seen by all experiments. This is shown
in Figure 11.1 as a function of the fraction of reconnected events, a reconnection fraction of 30% of
events is typically assumed by the experiments for the assessment of systematic uncertainties.

For this reason a common value of the CR systematic uncertainty is used in the combination.
For Bose-Einstein Correlations, no similar test is made of the respective experimental sensitivities.
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Source Systematic Error on mW (MeV)
qq`�e qqqq Combined

ISR/FSR 8 9 8
Hadronisation 19 17 17
Detector Systematics 12 8 10
LEP Beam Energy 17 17 17
Colour Reconnection � 40 11
Bose-Einstein Correlations � 25 7
Other 4 4 3

Total Systematic 29 54 30

Statistical 33 30 26

Total 44 62 40

Statistical in absence of Systematics 32 29 22

Table 11.3: Error decomposition for the combined LEP W mass results. Detector systematics include
uncertainties in the jet and lepton energy scales and resolution. The `Other' category refers to errors,
all of which are uncorrelated between experiments, arising from: simulation statistics, background
estimation, four-fermion treatment, �tting method and event selection. The error decomposition
in the qq`�e and qqqq channels refers to the independent �ts to the results from the two channels
separately.

However, in the absence of evidence that the experiments have di�erent sensitivities to the e�ect, a
common value of the systematic uncertainty from BEC is assumed. In the combination a common
colour reconnection error of 40 MeV and a common Bose-Einstein systematic uncertainty of 25 MeV
are used. These values are chosen as representative averages of the estimates of the di�erent LEP
experiments, resulting in the same �nal error on mW as obtained when using the BEC and CR
estimates of the experiments. Applying this procedure changes the value of mW from the �t by 7
MeV.

11.3 LEP Combined W Boson Mass

The combined W mass from direct reconstruction is

mW(direct) = 80:450� 0:026(stat:)� 0:030(syst:) GeV;

with a �2/d.o.f. of 31.1/35, corresponding to a �2 probability of 66%. The weight of the fully-hadronic
channel in the combined �t is 0.27. This reduced weight is a consequence of the relatively large size of
the current estimates of the systematic errors from CR and BEC. Table 11.3 gives a breakdown of the
contribution to the total error of the various sources of systematic errors. The largest contribution
to the systematic error comes from hadronisation uncertainties, which are conservatively treated as
correlated between the two channels, between experiments and between years. In the absence of
systematic e�ects the current LEP statistical precision on mW would be 22 MeV: the statistical error
contribution in the LEP combination is larger than this (26 MeV) due to the signi�cantly reduced
weight of the fully-hadronic channel.

In addition to the above results, the W boson mass is measured at LEP from the 10 pb�1 per
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experiment of data recorded at threshold for W pair production:

mW(threshold) = 80:40� 0:20(stat:)� 0:07(syst:)� 0:03(Ebeam) GeV:

When the threshold measurements are combined with the much more precise results obtained from
direct reconstruction one achieves a W mass measurement of

mW = 80:450� 0:026(stat:)� 0:030(syst:)GeV:

The LEP beam energy uncertainty is the only correlated systematic error source between the threshold
and direct reconstruction measurements. The threshold measurements have a weight of only 0:02 in
the combined �t. This LEP combined result is compared with the results (threshold and direct
reconstruction combined) of the four LEP experiments in Figure 11.2.

11.4 Consistency Checks

The di�erence between the combined W boson mass measurements obtained from the fully-hadronic
and semi-leptonic channels, �mW(qqqq� qq`�e), is determined:

�mW(qqqq� qq`�e) = +9� 44 MeV:

A signi�cant non-zero value for �mW could indicate that FSI e�ects are biasing the value of mW

determined from W+W�!qqqq events. Since �mW is primarily of interest as a check of the possible
e�ects of �nal state interactions, the errors from CR and BEC are set to zero in its determination. The
result is obtained from a �t where the imposed correlations are the same as those for the results given
in the previous sections. This result is almost unchanged if the systematic part of the error on mW

from hadronisation e�ects is considered as uncorrelated between channels, although the uncertainty
increases by 16%. The study of the mass di�erence and the equivalent analysis for the W width are
not used to place limits on colour reconnection, for example using the study of the W mass bias in the
SK-I colour reconnection model reported in Section 11.2. This is because only one model is analysed
there, and, taken in isolation, the results are not suÆciently precise.

The masses from the two channels obtained from this �t with the BEC and CR errors now included
are:

mW(W+W�!qq`�e) = 80:448� 0:033(stat:)� 0:028(syst:) GeV;

mW(W+W�!qqqq) = 80:457� 0:030(stat:)� 0:054(syst:) GeV:

These two results are correlated and have a correlation coeÆcient of 0.28. The value of �2/d.o.f is
31.1/34, corresponding to a �2 probability of 62%. These results and the correlation between them
can be used to combine the two measurements or to form the mass di�erence. The LEP combined
results from the two channels are compared with those quoted by the individual experiments in Figure
11.3.

Experimentally, separatemW measurements are obtained from the W+W�!qq`�e and W+W�!qqqq
channels for each of the years of data. The combination using only the qq`�e measurements yields:

mindep
W (W+W�!qq`�e) = 80:448� 0:033(stat:)� 0:029(syst:) GeV:
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The systematic error is dominated by hadronisation uncertainties (�19 MeV) and the uncertainty in
the LEP beam energy (�17 MeV). The combination using only the qqqq measurements gives:

mindep
W (W+W�!qqqq) = 80:447� 0:030(stat:)� 0:054(syst:) GeV:

where the dominant contributions to the systematic error arise from BEC/CR (�47 MeV), hadroni-
sation (�17 MeV) and from the uncertainty in the LEP beam energy (�17 MeV).

11.5 LEP Combined W Boson Width

The method of direct reconstruction is also well suited to the direct measurement of the width of the
W boson. The results of the four LEP experiments are shown in Table 11.4 and in Figure 11.2.

Experiment �W (GeV)

ALEPH 2:13� 0:11� 0:09
DELPHI 2:11� 0:10� 0:07

L3 2:24� 0:11� 0:15
OPAL 2:04� 0:16� 0:09

Table 11.4: Preliminary W width measurements (
p
s = 172 � 209 GeV) from the individual experi-

ments. The �rst error is statistical and the second systematic.

Each experiment provided a W width measurement for both W+W�!qq`�e and W+W�!qqqq
channels for each of the data taking years (1996-2000) that it has analysed. A total of 25 measurements
are supplied: ALEPH provided 3 W+W�!qqqq results (1998-2000) and two W+W�!qq`�e results
(1998-1999), DELPHI 8 measurements (1997-2000), L3 8 measurements (1996-2000) having already
combined the 1996 and 1997 results and OPAL provided 4 measurements (1996-1998) where for the
�rst two years the W+W�!qq`�e and W+W�!qqqq results are already combined.

A common colour reconnection error of 65 MeV and a common Bose-Einstein correlation error of
35 MeV are used in the combination. This procedure resulted in the same error on �W as obtained
using the BEC/CR errors supplied by the experiments. The change in the value of the width is only
2 MeV.

A simultaneous �t to the results of the four LEP collaborations is performed in the same way
as for the mW measurement. Correlated systematic uncertainties are taken into account and the
combination gives:

�W = 2:150� 0:068(stat:)� 0:060(syst:) GeV;

with a �2/d.o.f. of 19.7/24, corresponding to a �2 probability of 71%.

11.6 Summary

The results of the four LEP experiments on the mass and width of the W boson are combined taking
into account correlated systematic uncertainties, giving:

mW = 80:450� 0:039 GeV;

�W = 2:150� 0:091 GeV:
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Figure 11.2: The combined results for the measurements of the W mass (left) and W width (right)
compared to the results obtained by the four LEP collaborations. The combined values take into
account correlations between experiments and years and hence, in general, do not give the same
central value as a simple average. In the LEP combination of the qqqq results common values (see
text) for the CR and BEC errors are used. The individual and combined mW results include the
measurements from the threshold cross section.
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Figure 11.3: The W mass measurements from the W+W�!qq`�e (left) and W+W�!qqqq (right)
channels obtained by the four LEP collaborations compared to the combined value. The combined
values take into account correlations between experiments, years and the two channels. In the LEP
combination of the qqqq results common values (see text) for the CR and BEC errors are used. The
ALEPH and L3 qq`�e and qqqq results are correlated since they are obtained from a �t to both
channels taking into account inter-channel correlations.
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Chapter 12

E�ective Couplings of the Neutral Weak

Current

Updates with respect to summer 2000:

E�ective vector and axial-vector coupling constants are also determined for the heavy quark 
avours.

12.1 The Coupling Parameters Af

The coupling parametersAf are de�ned in terms of the e�ective vector and axial-vector neutral current
couplings of fermions (Equation (2.4)). The LEP measurements of the forward-backward asymmetries

of charged leptons (Chapter 2) and b and c quarks (Chapter 5) determine the products A0; f
FB = 3

4AeAf

(Equation (2.3)). The LEP measurements of the � polarisation (Chapter 3), P�(cos �), determine
A� and Ae separately (Equation (3.2)). Owing to polarised beams at SLC, SLD measures the cou-
pling parameters directly with the left-right and forward-backward left-right asymmetries (Chapters 4
and 5).

Table 12.1 shows the results for the leptonic coupling parameter A` from the LEP and SLD
measurements, assuming lepton universality.

Using the measurements of A` one can extract Ab and Ac from the LEP measurements of the b
and c quark asymmetries. The SLD measurements of the left-right forward-backward asymmetries
for b and c quarks are direct determinations of Ab and Ac. Table 12.2 shows the results on the

A` Cumulative Average �2/d.o.f.

A0; `
FB 0:1512� 0:0042

P� 0:1465� 0:0033 0:1482� 0:0026 0.8/1

A` (SLD) 0:1513� 0:0021 0:1501� 0:0016 1.6/2

Table 12.1: Determination of the leptonic coupling parameter A` assuming lepton universality. The
second column lists the A` values derived from the quantities listed in the �rst column. The third
column contains the cumulative averages of the A` results up to and including this line. The �2 per
degree of freedom for the cumulative averages is given in the last column.
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LEP SLD LEP+SLD Standard

(A` = 0:1482� 0:0026) (A` = 0:1501� 0:0016) Model �t

Ab 0:891� 0:022 0:922� 0:020 0:899� 0:013 0.935

Ac 0:615� 0:033 0:670� 0:026 0:645� 0:020 0.668

Table 12.2: Determination of the quark coupling parameters Ab and Ac from LEP data alone (using
the LEP average for A`), from SLD data alone, and from LEP+SLD data (using the LEP+SLD
average for A`) assuming lepton universality.

quark coupling parameters Ab and Ac derived from LEP measurements (Equations 5.6) and SLD
measurements separately, and from the combination of LEP+SLD measurements (Equation 5.7).

The LEP extracted values of Ab and Ac are in agreement with the SLD measurements, but some-
what lower than the Standard Model predictions (0.935 and 0.668, respectively, essentially independent
of mt and mH). The combination of LEP and SLD of Ab is 2.8 sigma below the Standard Model,
while Ac agrees at the 1.2 sigma level. This is mainly because the Ab value, deduced from the mea-
sured A0;b

FB and the combined A`, is signi�cantly lower than both the Standard Model and the direct
measurement of Ab, this can also be seen in Figure 12.1.

12.2 The E�ective Vector and Axial-Vector Coupling Constants

The partial widths of the Z into leptons and the lepton forward-backward asymmetries (Section 2),
the � polarisation and the � polarisation asymmetry (Section 3) are combined to determine the e�ec-
tive vector and axial-vector couplings for e, � and � . The asymmetries (Equations (2.3) and (3.2))
determine the ratio gV`=gA` (Equation (2.4)), while the leptonic partial widths determine the sum of
the squares of the couplings:

�`` =
GFm

3
Z

6�
p

2
(g2V` + g2A`)(1 + Æ

QED

` ) ; (12.1)

where ÆQED` = 3q2`�(m2
Z)=(4�), with q` denoting the electric charge of the lepton, accounts for �nal

state photonic corrections. Corrections due to lepton masses, neglected in Equation 12.1, are taken
into account for the results presented below.

The averaged results for the e�ective lepton couplings are given in Table 12.3 for both the LEP
data alone as well as for the LEP and SLD measurements. Figure 12.2 shows the 68% probability
contours in the gA`-gV` plane for the individual lepton species. The signs of gA` and gV` are based
on the convention gAe < 0. With this convention the signs of the couplings of all charged leptons
follow from LEP data alone. The measured ratios of the e, � and � couplings provide a test of lepton
universality and are shown in Table 12.3. All values are consistent with lepton universality. The
combined results assuming universality are also given in the table and are shown as a solid contour in
Figure 12.2.

The neutrino couplings to the Z can be derived from the measured value of the invisible width
of the Z, �inv (see Table 2.4), attributing it exclusively to the decay into three identical neutrino
generations (�inv = 3���) and assuming gA� � gV � � g� . The relative sign of g� is chosen to be in
agreement with neutrino scattering data [201], resulting in g� = +0:50068� 0:00075.

90



0.7

0.8

0.9

1

0.13 0.14 0.15 0.16 0.17

Al

A
b

Preliminary

SM

0.5

0.6

0.7

0.8

0.13 0.14 0.15 0.16 0.17

Al
A

c

Preliminary

SM

Figure 12.1: The measurements of the combined LEP+SLD A` (vertical band), SLD Ab,Ac (horizontal

bands) and LEP A
0;b
FB ,A0; c

FB (diagonal bands), compared to the Standard Model expectations (arrows).
The arrow pointing to the left shows the variation in the Standard Model prediction for mH in the
range 300+700�186 GeV, and the arrow pointing to the right for mt in the range 174:3�5:1 GeV. Varying the

hadronic vacuum polarisation by ��
(5)
had(m

2
Z) = 0:02761� 0:00036 yields an additional uncertainty on

the Standard-Model prediction, oriented in direction of the Higgs-boson arrow and size corresponding
to the top-quark arrow. Also shown is the 68% con�dence level contour for the two asymmetry
parameters resulting from the joint analyses. Although the A0;b

FB measurements prefer a high Higgs
mass, the Standard Model �t to the full set of measurements prefers a low Higgs mass, for example
because of the in
uence of A`.

In addition, the couplings analysis is extended to include also the heavy-
avour measurements as
presented in Section 5.3. Assuming neutral-current lepton universality, the e�ective coupling constants
are determined jointly for leptons as well as for b and c quarks. QCD corrections, modifying Equa-
tion 12.1, are taken from the Standard Model, as is also done to obtain the quark pole asymmetries,
see Section 5.2.3.

The results are also reported in Table 12.3 and shown in Figure 12.3. The deviation of the b-quark
couplings from the Standard-Model expectation is mainly caused by the combined value of Ab being
low as discussed in Section 12.1 and shown in Figure 12.1.
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Without Lepton Universality:

LEP LEP+SLD

gAe �0:50112� 0:00035 �0:50111� 0:00035

gA� �0:50115� 0:00056 �0:50120� 0:00054

gA� �0:50204� 0:00064 �0:50204� 0:00064

gVe �0:0378� 0:0011 �0:03816� 0:00047

gV� �0:0376� 0:0031 �0:0367� 0:0023

gV� �0:0368� 0:0011 �0:0366� 0:0010

Ratios of couplings:

LEP LEP+SLD

gA�=gAe 1:0001� 0:0014 1:0002� 0:0014

gA�=gAe 1:0018� 0:0015 1:0019� 0:0015

gV�=gVe 0:995� 0:096 0:962� 0:063

gV�=gVe 0:973� 0:041 0:958� 0:029

With Lepton Universality:

LEP LEP+SLD

gA` �0:50126� 0:00026 �0:50123� 0:00026

gV` �0:03736� 0:00066 �0:03783� 0:00041

g� +0:50068� 0:00075 +0:50068� 0:00075

With Lepton Universality

and Heavy Flavour Results:

LEP LEP+SLD

gA` �0:50126� 0:00026 �0:50125� 0:00026

gAb �0:5179� 0:0078 �0:5146� 0:0051

gAc +0:5032� 0:0079 +0:5043� 0:0052

gV` �0:03736� 0:00066 �0:03751� 0:00037

gVb �0:317� 0:012 �0:3221� 0:0077

gVc +0:173� 0:011 +0:1843� 0:0067

Table 12.3: Results for the e�ective vector and axial-vector couplings derived from the LEP data and
the combined LEP and SLD data without and with the assumption of lepton universality. Note that
the results, in particular for b quarks, are highly correlated.
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12.3 The Leptonic E�ective Electroweak Mixing Angle sin2
�
lept
e�

The asymmetry measurements from LEP and SLD can be combined into a single parameter, the
e�ective electroweak mixing angle, sin2 �lepte� , de�ned as:

sin2 �lepte� � 1

4

�
1� gV`

gA`

�
; (12.2)

without making strong model-speci�c assumptions.

For a combined average of sin2 �lepte� from A0; `
FB, A� and Ae only the assumption of lepton uni-

versality, already inherent in the de�nition of sin2 �lepte� , is needed. Also the value derived from the
measurements of A` from SLD is given. We also include the hadronic forward-backward asymmetries,
assuming the di�erence between sin2 �fe� for quarks and leptons to be given by the Standard Model.

This is justi�ed within the Standard Model as the hadronic asymmetries A0;b
FB and A0; c

FB have a re-
duced sensitivity to the small non-universal corrections speci�c to the quark vertex. The results of
these determinations of sin2 �lepte� and their combination are shown in Table 12.4 and in Figure 12.4.
The combinations based on the leptonic results plus A`(SLD) and on the hadronic forward-backward
asymmetries di�er by 3.3 standard deviations, mainly caused by the two most precise measurements
of sin2 �lepte� , A` (SLD) dominated by A0

LR, and A0;b
FB (LEP). This is the same e�ect as discussed already

in sections 12.1 and 12.2 and shown in Figures 12.1 and 12.3: the deviation in Ab as extracted from
A0;b
FB discussed above is re
ected in the value of sin2 �lepte� extracted from A0;b

FB in this analysis.

sin2 �lepte� Average by Group Cumulative

of Observations Average �2/d.o.f.

A0; `
FB 0:23099� 0:00053

A` (P�) 0:23159� 0:00041 0:23137� 0:00033

A` (SLD) 0:23098� 0:00026 0:23113� 0:00021 0.8/1

A0;b
FB 0:23226� 0:00031

A0; c
FB 0:23272� 0:00079

hQFBi 0:2324� 0:0012 0:23230� 0:00029 0:23152� 0:00017 12.8/5

Table 12.4: Determinations of sin2 �lepte� from asymmetries. The second column lists the sin2 �lepte� values
derived from the quantities listed in the �rst column. The third column contains the averages of these
numbers by groups of observations, where the groups are separated by the horizontal lines. The fourth
column shows the cumulative averages. The �2 per degree of freedom for the cumulative averages is
also given. The averages are performed including the small correlation between A0;b

FB and A0; c
FB.
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Figure 12.4: Comparison of several determinations of sin2 �lepte� from asymmetries. In the average, the

small correlation between A0;b
FB and A0; c

FB is included. Also shown is the prediction of the Standard
Model as a function of mH. The width of the Standard Model band is due to the uncertainties in
��

(5)
had(m

2
Z) (see Chapter 13), mZ and mt. The total width of the band is the linear sum of these

e�ects.
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Chapter 13

Constraints on the Standard Model

Updates with respect to summer 2000:

A new determination of the hadronic vacuum polarisation is used. For the �rst time, the atomic parity
violation parameter measured in cesium is included in the analysis.

13.1 Introduction

The precise electroweak measurements performed at LEP and SLC and elsewhere can be used to
check the validity of the Standard Model and, within its framework, to infer valuable information
about its fundamental parameters. The accuracy of the measurements makes them sensitive to the
mass of the top quark mt, and to the mass of the Higgs boson mH through loop corrections. While
the leading mt dependence is quadratic, the leading mH dependence is logarithmic. Therefore, the
inferred constraints on mH are much weaker than those on mt.

13.2 Measurements

The LEP and SLD measurements used are summarised in Table 13.1 together with the results of the
Standard Model �t. Also shown are the results of measurements ofmW from UA2 [202], CDF [203,204],
and D� [205]1, measurements of the top quark mass by CDF [207] and D� [208]2, measurements
of the neutrino-nucleon neutral to charged current ratios from CCFR [210] and NuTeV [211], and
measurements of atomic parity violation in cesium [212, 213] with the numerical result taken from
[214,215]. Although the combined preliminary3 �N result is quoted in terms of sin2 �W = 1�m2

W=m
2
Z,

radiative corrections result in small mt and mH dependences4 that are included in the �t. An additional
input parameter, not shown in the table, is the Fermi constant GF , determined from the � lifetime,
GF = 1:16637(1) � 10�5GeV�2 [217]. The relative error of GF is comparable to that of mZ; both errors
have negligible e�ects on the �t results.

1See Reference 206 for a combination of these mW measurements.
2See Reference 209 for a combination of these mt measurements.
3The �nal NuTeV result [216] is not used in this report as it was published only after the 2001 summer conferences.
4The formula used is Æ sin2 �W = �0:00142

m2
t
�(175GeV)2

(100GeV)2
+ 0:00048 ln( mH

150GeV ): See Reference 211 for details.

97



Measurement with Systematic Standard Pull

Total Error Error Model �t

��
(5)
had(m

2
Z) [218] 0:02761� 0:00036 0.00035 0.02774 �0:3

a) LEP

line-shape and

lepton asymmetries:

mZ [GeV] 91:1875� 0:0021 (a)0.0017 91.1874 0:0

�Z [GeV] 2:4952� 0:0023 (a)0.0012 2.4963 �0:5

�0h [nb] 41:540� 0:037 (b)0.028 41.481 1:6

R0
` 20:767� 0:025 (b)0.007 20.739 1:1

A0; `
FB 0:0171� 0:0010 (b)0.0003 0.0165 0:7

+ correlation matrix Table 2.3

� polarisation:

A` (P�) 0:1465� 0:0033 0.0016 0.1483 �0:5

qq charge asymmetry:

sin2 �lepte� (hQFBi) 0:2324� 0:0012 0.0010 0.2314 0:9

mW [GeV] 80:450� 0:039 0.030 80.398 1:3

b) SLD [219]

A` (SLD) 0:1513� 0:0021 0.0010 0.1483 1:5

c) LEP and SLD Heavy Flavour

R0
b 0:21646� 0:00065 0.00053 0.215743 1:1

R0
c 0:1719� 0:0031 0.0022 0.1723 �0:1

A0;b
FB 0:0990� 0:0017 0.0009 0.1039 �2:9

A0; c
FB 0:0685� 0:0034 0.0017 0.0743 �1:7

Ab 0:922� 0:020 0.016 0.935 �0:6

Ac 0:670� 0:026 0.016 0.668 0:1

+ correlation matrix Table 5.3

d) pp and �N

mW [GeV] (pp [206]) 80:454� 0:060 0.050 80.398 0:9

sin2 �W (�N [210,211]) 0:2255� 0:0021 0.0010 0.2226 1:2

mt [GeV] (pp [209]) 174:3� 5:1 4.0 175.8 �0:3

QW(Cs) [215] �72:5� 0:7 0.6 �72:9 0:6

Table 13.1: Summary of measurements included in the combined analysis of Standard Model

parameters. Section a) summarises LEP averages, Section b) SLD results (sin2 �lepte� includes ALR and
the polarised lepton asymmetries), Section c) the LEP and SLD heavy 
avour results and Section d)
electroweak measurements from pp colliders and �N scattering. The total errors in column 2 include
the systematic errors listed in column 3. Although the systematic errors include both correlated and
uncorrelated sources, the determination of the systematic part of each error is approximate. The
Standard Model results in column 4 and the pulls (di�erence between measurement and �t in units
of the total measurement error) in column 5 are derived from the Standard Model �t including all
data (Table 13.2, column 5) with the Higgs mass treated as a free parameter.
(a)The systematic errors on mZ and �Z contain the errors arising from the uncertainties in the LEP energy
only.
(b)Only common systematic errors are indicated.
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13.3 Theoretical and Parametric Uncertainties

Detailed studies of the theoretical uncertainties in the Standard Model predictions due to missing
higher-order electroweak corrections and their interplay with QCD corrections are carried out in
the working group on `Precision calculations for the Z resonance' [220], and more recently in [15].
Theoretical uncertainties are evaluated by comparing di�erent but, within our present knowledge,
equivalent treatments of aspects such as resummation techniques, momentum transfer scales for vertex
corrections and factorisation schemes. The e�ects of these theoretical uncertainties are reduced by the
inclusion of higher-order corrections [221,222] in the electroweak libraries [223].

The recently calculated complete fermionic two-loop corrections on mW [224] are currently only
used in the determination of the theoretical uncertainty. Their e�ect on mW is small compared to
the current experimental uncertainty on mW, however, the naive propagation of this new mW to
sin2 �lepte� = �(1 �m2

W=m
2
Z), keeping the electroweak form-factor � unmodi�ed, shows a more visible

e�ect as sin2 �lepte� is measured very precisely. Thus the corresponding calculations for sin2 �lepte� (or �)
and for the partial Z widths are urgently needed; in particular since partial cancellations of these new
corrections in the product �(1�m2

W=m
2
Z) = sin2 �

lept
e� are expected [225].

The use of the new QCD corrections [222] increases the value of �S(m2
Z) by 0.001, as expected. The

e�ects of missing higher-order QCD corrections on �S(m2
Z) covers missing higher-order electroweak

corrections and uncertainties in the interplay of electroweak and QCD corrections and is estimated
to be at least 0.002 [226]. A discussion of theoretical uncertainties in the determination of �S can be
found in References 220 and 226. The determination of the size of remaining theoretical uncertainties
is under continued study.

The theoretical errors discussed above are not included in the results presented in Table 13.2. At
present the impact of theoretical uncertainties on the determination of Standard Model parameters
from the precise electroweak measurements is small compared to the error due to the uncertainty in
the value of �(m2

Z), which is included in the results.

The uncertainty in �(m2
Z) arises from the contribution of light quarks to the photon vacuum

polarisation (��(5)had(m
2
Z)):

�(m2
Z) =

�(0)

1���`(m2
Z)���

(5)
had(m

2
Z)���top(m2

Z)
; (13.1)

where �(0) = 1=137:036. The top contribution, �0:00007(1), depends on the mass of the top quark,
and is therefore determined inside the electroweak libraries [223]. The leptonic contribution is calcu-
lated to third order [227] to be 0:03150, with negligible uncertainty.

For the hadronic contribution, we no longer use the value 0:02804�0:00065 [228], but rather the new
evaluation 0:02761� 0:0036 [218] which takes into account the recently published results on electron-
positron annihilations into hadrons at low centre-of-mass energies by the BES collaboration [229]. This

reduced uncertainty still causes an error of 0.00013 on the Standard Model prediction of sin2 �lepte� , and
errors of 0.2 GeV and 0.1 on the �tted values of mt and log(mH), all included in the results presented
below. The e�ect on the Standard Model prediction for �`` is negligible. The �S(m2

Z) values for the
Standard Model �ts presented in this Section are stable against a variation of �(m2

Z) in the interval
quoted.

There are also several evaluations of ��
(5)
had(m

2
Z) [230{237] which are more theory-driven. One of

the most recent of these (Reference 236) also includes the new results from BES, yielding 0:02738�
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0:00020. To show the e�ects of the uncertainty of �(m2
Z), we also use this evaluation of the hadronic

vacuum polarisation. Note that all these evaluations obtain values for ��
(5)
had(m

2
Z) consistently lower

than - but still in agreement with - the old value of 0:02804� 0:00065.

13.4 Selected Results

Figure 13.1 shows a comparison of the leptonic partial width from LEP (Table 2.4) and the e�ective
electroweak mixing angle from asymmetries measured at LEP and SLD (Table 12.4), with the Stan-
dard Model. Good agreement with the Standard Model prediction is observed. The point with the
arrow shows the prediction if among the electroweak radiative corrections only the photon vacuum
polarisation is included, which shows an that LEP+SLD data are sensitive to non-trivial electroweak
corrections. Note that the error due to the uncertainty on �(m2

Z) (shown as the length of the arrow)

is not much smaller than the experimental error on sin2 �lepte� from LEP and SLD. This underlines the
continued importance of a precise measurement of �(e+e� ! hadrons) at low centre-of-mass energies.

Of the measurements given in Table 13.1, R0
` is one of the most sensitive to QCD corrections. For

mZ = 91:1875 GeV, and imposing mt = 174:3 � 5:1 GeV as a constraint, �S = 0:1224 � 0:0038 is
obtained. Alternatively, �0` (see Table 2.4) which has higher sensitivity to QCD corrections and less
dependence on mH yields: �S = 0:1180 � 0:0030. Typical errors arising from the variation of mH

between 100 GeV and 200 GeV are of the order of 0:001, somewhat smaller for �0` . These results on
�S, as well as those reported in the next section, are in very good agreement with recently determined
world averages (�S(m2

Z) = 0:118� 0:002 [131], or �S(m
2
Z) = 0:1178� 0:0033 based solely on NNLO

QCD results excluding the LEP lineshape results and accounting for correlated errors [238]).

13.5 Standard Model Analyses

In the following, several di�erent Standard Model �ts to the data reported in Table 13.2 are discussed.
The �2 minimisation is performed with the program MINUIT [239], and the predictions are calculated
with TOPAZ0 [240] and ZFITTER [37]. The large �2/d.o.f. for all of these �ts is caused by the same
e�ect as discussed in the previous chapter, namely the large dispersion in the values of the leptonic
e�ective electroweak mixing angle measured through the various asymmetries. For the analyses pre-
sented here, this dispersion is interpreted as a 
uctuation in one or more of the input measurements,
and thus we neither modify nor exclude any of them.

To test the agreement between the LEP data and the Standard Model, a �t to the data (including
the LEP-II mW determination) leaving the top quark mass and the Higgs mass as free parameters is
performed. The result is shown in Table 13.2, column 1. This �t shows that the LEP data predicts the
top mass in good agreement with the direct measurements. In addition, the data prefer an intermediate
Higgs boson mass, albeit with very large errors. The strongly asymmetric errors on mH are due to the
fact that to �rst order, the radiative corrections in the Standard Model are proportional to log(mH).

The data can also be used within the Standard Model to determine the top quark and W masses
indirectly, which can be compared to the direct measurements performed at the pp colliders and
LEP-II. In the second �t, all the results in Table 13.1, except the LEP-II and pp colliders mW and
mt results are used. The results are shown in column 2 of Table 13.2. The indirect measurements of
mW and mt from this data sample are shown in Figure 13.2, compared with the direct measurements.
Also shown are the Standard Model predictions for Higgs masses between 114 and 1000 GeV. As can

100



be seen in the �gure, the indirect and direct measurements of mW and mt are in good agreement, and
both sets prefer a low value of the Higgs mass.

For the third �t, the direct mt measurement is used to obtain the best indirect determination
of mW. The result is shown in column 3 of Table 13.2 and in Figure 13.3. Also here, the indirect
determination of W boson mass 80:373� 0:023 GeV is in agreement with the combination of direct
measurements from LEP-II and pp colliders [206] of mW = 80:451 � 0:033 GeV. For the next �t,
(column 4 of Table 13.2 and Figure 13.4), the direct mW measurements from LEP and pp colliders
are included to obtain mt = 181+11�9 GeV, in very good agreement with the direct measurement of
mt = 174:3� 5:1 GeV. Compared to the second �t, the error on logmH increases due to e�ects from
higher-order terms.

Finally, the best constraints on mH are obtained when all data are used in the �t. The results
of this �t are shown in column 5 of Table 13.2 and Figure 13.5. In Figure 13.5 the observed value
of ��2 � �2 � �2min as a function of mH is plotted for the �t including all data. The solid curve
is the result using ZFITTER, and corresponds to the last column of Table 13.2. The shaded band
represents the uncertainty due to uncalculated higher-order corrections, as estimated by ZFITTER
and TOPAZ0. Compared to previous analyses, its width is enlarged towards lower Higgs-boson masses
due to the e�ects of the complete fermionic two-loop calculation of mW discussed above. The 95%
con�dence level upper limit on mH (taking the band into account) is 196 GeV. The lower limit on
mH of approximately 114 GeV obtained from direct searches [241] is not used in the determination of

this limit. Also shown is the result (dashed curve) obtained when using ��
(5)
had(m

2
Z) of Reference 236.

That �t results in log(mH=GeV) = 2:03 � 0:19 corresponding to mH = 106+57�38 GeV and an upper
limit on mH of approximately 222 GeV at 95% con�dence level.

In Figures 13.6 to 13.8 the sensitivity of the LEP and SLD measurements to the Higgs mass
is shown. As can be seen, the most sensitive measurements are the asymmetries, i.e., sin2 �lepte� . A
reduced uncertainty for the value of �(m2

Z) would therefore result in an improved constraint on logmH

and thus mH, as already shown in Figures 13.1 and 13.5.
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- 1 - - 2 - - 3 - - 4 - - 5 -

LEP including all data except all data except all data except all data
LEP-II mW mW and mt mW mt

mt [GeV] 186+13�11 169+12�9 173:3+4:7�4:6 181+11�9 175:8+4:4�4:3

mH [GeV] 260+404�155 81+109�40 108+70�44 126+182�69 88+53�35

log(mH=GeV) 2:42+0:41�0:39 1:91+0:37�0:29 2:03+0:22�0:23 2:10+0:39�0:34 1:94+0:21�0:22

�S(m2
Z) 0:1201� 0:0030 0:1187� 0:0027 0:1189� 0:0027 0:1186� 0:0028 0:1183� 0:0027

�2/d.o.f. 15:5=8 18:9=12 19:1=13 22:6=14 22:9=15

sin2 �lepte� 0:23162 0:23150 0:23151 0:23139 0:23136

�0:00018 �0:00016 �0:00016 �0:00015 �0:00014

sin2 �W 0:22282 0:22333 0:22313 0:22248 0:22263

�0:00051 �0:00063 �0:00045 �0:00045 �0:00036

mW [GeV] 80:389� 0:026 80:363� 0:032 80:373� 0:023 80:406� 0:023 80:398� 0:019

Table 13.2: Results of the �ts to: (1) LEP data alone, (2) all data except the direct determinations
of mt and mW (pp collider and LEP-II), (3) all data except direct mW determinations, (4) all data
except direct mt determinations, and (5) all data. As the sensitivity to mH is logarithmic, both mH

as well as log(mH=GeV) are quoted. The bottom part of the table lists derived results for sin2 �lepte� ,
sin2 �W and mW. See text for a discussion of theoretical errors not included in the errors above.

102



0.231

0.2315

0.232

0.2325

0.233

83.6 83.8 84 84.2

   ∆α
Preliminary 68% CL

Γl  [MeV]

si
n2 θle

pt

ef
f

mt= 174.3 ± 5.1 GeV
mH= 114...1000 GeV

mt

mH

Figure 13.1: LEP-I+SLD measurements of sin2 �lepte� (Table 12.4) and �`` (Table 2.4) and the Standard
Model prediction. The point shows the predictions if among the electroweak radiative corrections only
the photon vacuum polarisation is included. The corresponding arrow shows variation of this prediction
if �(m2

Z) is changed by one standard deviation. This variation gives an additional uncertainty to the
Standard Model prediction shown in the �gure.
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Chapter 14

Conclusions

The combination of the many precise electroweak results yields stringent constraints on the Standard
Model. In addition, the results are sensitive to the Higgs mass. Most measurements agree well
with the predictions. The spread in values of the various determinations of the e�ective electroweak
mixing angle is larger than expected. Within the Standard Model analysis, this seems to be caused
by the measurement of the forward-backward asymmetry in b-quark production, showing the largest
deviation w.r.t. the Standard-Model expectation.

The experiments wish to stress that this report re
ects a preliminary status at the time of the
2001 summer conferences. A de�nitive statement on these results must wait for publication by each
collaboration.

Prospects for the Future

Most of the measurements from data taken at or near the Z resonance, both at LEP as well as at
SLC, that are presented in this report are either �nal or are being �nalised. The main improvements
will therefore take place in the high energy data, with more than 700 pb�1 per experiment. The
measurements of mW are likely to reach a precision not too far from the uncertainty on the prediction
obtained via the radiative corrections of the Z data, providing a further important test of the Standard
Model. In the measurement of the triple and quartic electroweak gauge boson self couplings, the
analysis of the complete LEP-II statistics, together with the increased sensitivity at higher beam
energies, will lead to an improvement in the current precision.

Acknowledgements

We would like to thank the CERN accelerator divisions for the eÆcient operation of the LEP accel-
erator, the precise information on the absolute energy scale and their close cooperation with the four
experiments. The SLD collaboration would like to thank the SLAC accelerator department for the
eÆcient operation of the SLC accelerator. We would also like to thank members of the CDF, D� and
NuTeV Collaborations for making preliminary results available to us in advance of the conferences
and for useful discussions concerning their combination. Finally, the results of the section on Standard
Model constraints would not be possible without the close collaboration of many theorists.

111



Appendix A

The Measurements used in the Heavy-Flavour

Averages

In the following 20 tables the results used in the combination are listed. In each case an indication of
the dataset used and the type of analysis is given. Preliminary results are indicated by the symbol \y".
The values of centre-of-mass energy are given where relevant. In each table, the result used as input
to the average procedure is given followed by the statistical error, the correlated and uncorrelated
systematic errors, the total systematic error, and any dependence on other electroweak parameters.
In the case of the asymmetries, the measurement moved to a common energy (89.55 GeV, 91.26 GeV
and 92.94 GeV, respectively, for peak�2, peak and peak+2 results) is quoted as corrected asymmetry.

Contributions to the correlated systematic error quoted here are from any sources of error shared
with one or more other results from di�erent experiments in the same table, and the uncorrelated errors
from the remaining sources. In the case of Ac and Ab from SLD the quoted correlated systematic
error has contributions from any source shared with one or more other measurements from LEP
experiments. Constants such as a(x) denote the dependence on the assumed value of xused, which is
also given.
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ALEPH DELPHI L3 OPAL SLD

92-95 92-95 94-95 92-95 93-98y
[24] [25] [26] [27] [28]

R0
b 0.2158 0.2163 0.2173 0.2174 0.2164

Statistical 0.0009 0.0007 0.0015 0.0011 0.0009

Uncorrelated 0.0007 0.0004 0.0015 0.0009 0.0006
Correlated 0.0006 0.0004 0.0018 0.0008 0.0005

Total Systematic 0.0009 0.0005 0.0023 0.0012 0.0007

a(Rc) -0.0033 -0.0041 -0.0376 -0.0122 -0.0057
Rused
c 0.1720 0.1720 0.1734 0.1720 0.1710

a(BR(c ! `+)) -0.0133 -0.0067
BR(c ! `+)used 9.80 9.80

a(f(D+)) -0.0010 -0.0010 -0.0086 -0.0029 -0.0008

f(D+)
used

0.2330 0.2330 0.2330 0.2380 0.2370

a(f(Ds)) -0.0001 0.0001 -0.0005 -0.0001 -0.0003

f(Ds)
used 0.1020 0.1030 0.1030 0.1020 0.1140

a(f(�c)) 0.0002 0.0003 0.0008 0.0003 -0.0003

f(�c)
used 0.0650 0.0630 0.0630 0.0650 0.0730

Table A.1: The measurements of R0
b. All measurements use a lifetime tag enhanced by other features

like invariant mass cuts or high pT leptons.

ALEPH DELPHI OPAL SLD

91-95 91-95 92-95 92-95 92-95 91-94 90-95 93-97y
c-count D meson lepton c-count D meson c-count D meson vtx-mass

[33] [29] [29] [31] [30,31] [34] [32] [35]

R0
c 0.1735 0.1682 0.1670 0.1693 0.1610 0.1642 0.1760 0.1738

Statistical 0.0051 0.0082 0.0062 0.0050 0.0104 0.0122 0.0095 0.0031

Uncorrelated 0.0057 0.0077 0.0059 0.0050 0.0064 0.0126 0.0102 0.0019
Correlated 0.0094 0.0028 0.0009 0.0077 0.0060 0.0099 0.0062 0.0008

Total Systematic 0.0110 0.0082 0.0059 0.0092 0.0088 0.0161 0.0120 0.0021

a(Rb) -0.0050 -0.0433
Rused
b 0.2159 0.2166

a(BR(c ! `+)) -0.1646
BR(c ! `+)used 9.80

Table A.2: The measurements of R0
c . \c-count" denotes the determination of R0

c from the sum of
production rates of weakly decaying charmed hadrons. \D meson" denotes any single/double tag
analysis using exclusive and/or inclusive D meson reconstruction.
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ALEPH DELPHI OPAL

91-95 93-95y 92-95 90-95y 90-95
D-meson lepton D-meson lepton D-meson

[47] [39] [48] [41] [49]p
s (GeV) 89.370 89.433 89.434 89.490 89.490

Acc
FB(�2) -1.10 1.12 -5.02 -6.91 3.90

Acc
FB(�2)Corrected -0.02 1.82 -4.32 -6.55 4.26

Statistical 4.30 3.60 3.69 2.44 5.10

Uncorrelated 1.00 0.53 0.40 0.38 0.80
Correlated 0.09 0.16 0.09 0.23 0.30

Total Systematic 1.00 0.55 0.41 0.44 0.86

a(Rb) -0.2886 -3.4000
Rused
b 0.2164 0.2155

a(Rc) 1.0096 3.2000
Rused
c 0.1671 0.1720

a(Abb
FB(�2)) -1.3365

Abb
FB(�2)used 6.13

a(BR(b ! `�)) -1.0966 -1.7031

BR(b ! `�)
used

10.56 10.90

a(BR(b ! c ! `+)) 1.1156 -1.4128
BR(b ! c ! `+)used 8.07 8.30

a(BR(c ! `+)) 1.0703 3.3320
BR(c ! `+)used 9.90 9.80

a(�) -0.0856
�used 0.11770

a(f(D+)) -0.3868

f(D+)used 0.2210

a(f(Ds)) -0.1742

f(Ds)
used 0.1120

a(f(�c)) -0.0878

f(�c)
used 0.0840

Table A.4: The measurements of Acc
FB(�2). All numbers are given in %.
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ALEPH DELPHI L3 OPAL

91-95y 91-95 91-92 93-95y 92-95 90-95 90-95y 90-95
lepton D-meson lepton lepton D-meson lepton lepton D-meson

[38] [47] [39] [39] [48] [40] [41] [49]p
s (GeV) 91.210 91.220 91.270 91.223 91.235 91.240 91.240 91.240

Acc
FB(pk) 5.68 6.13 8.05 6.29 6.58 7.94 5.95 6.50

Acc
FB(pk)Corrected 5.93 6.32 8.00 6.47 6.70 8.04 6.05 6.60

Statistical 0.53 0.90 2.26 1.00 0.97 3.70 0.59 1.20

Uncorrelated 0.24 0.23 1.25 0.53 0.25 2.40 0.37 0.49
Correlated 0.36 0.17 0.49 0.27 0.04 0.49 0.32 0.23

Total Systematic 0.44 0.28 1.35 0.60 0.25 2.45 0.49 0.54

a(Rb) 1.4318 2.8933 -2.3087 4.3200 4.1000
Rused
b 0.2172 0.2170 0.2164 0.2160 0.2155

a(Rc) -2.9383 -6.4736 5.4307 -6.7600 -3.8000
Rused
c 0.1720 0.1710 0.1671 0.1690 0.1720

a(Abb
FB(pk)) -2.1333 6.4274

Abb
FB(pk)used 9.79 8.84

a(BR(b ! `�)) 1.8993 4.8529 -2.7618 3.5007 5.1094

BR(b ! `�)used 10.78 11.00 10.56 10.50 10.90

a(BR(b ! c ! `+)) -1.0745 -3.9500 2.2786 -3.2917 -1.7660
BR(b ! c ! `+)used 8.14 7.90 8.07 7.90 8.30

a(BR(c ! `+)) -3.2732 -7.2520 4.8965 -6.5327 -3.9200
BR(c ! `+)used 9.80 9.80 9.90 9.80 9.80

a(�) 0.0453 0.3852
�used 0.12460 0.11770

a(f(D+)) -0.0221

f(D+)used 0.2210

a(f(Ds)) 0.0788

f(Ds)
used 0.1120

a(f(�c)) 0.0115

f(�c)
used 0.0840

Table A.6: The measurements of Acc
FB(pk). All numbers are given in %.
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ALEPH DELPHI OPAL

91-95 93-95y 92-95 90-95y 90-95
D-meson lepton D-meson lepton D-meson

[47] [39] [48] [41] [49]p
s (GeV) 92.960 92.990 92.990 92.950 92.950

Acc
FB(+2) 10.82 10.50 11.78 15.62 16.50

Acc
FB(+2)Corrected 10.77 10.37 11.65 15.59 16.47

Statistical 3.30 2.90 3.20 2.02 4.10

Uncorrelated 0.79 0.41 0.52 0.57 0.92
Correlated 0.18 0.28 0.07 0.62 0.43

Total Systematic 0.81 0.50 0.52 0.84 1.02

a(Rb) -4.0402 9.6000
Rused
b 0.2164 0.2155

a(Rc) 7.5891 -8.9000
Rused
c 0.1671 0.1720

a(Abb
FB(+2)) -2.6333

Abb
FB(+2)used 12.08

a(BR(b ! `�)) -3.2492 9.5375

BR(b ! `�)
used

10.56 10.90

a(BR(b ! c ! `+)) 1.5191 -1.5894
BR(b ! c ! `+)used 8.07 8.30

a(BR(c ! `+)) 8.1341 -9.2120
BR(c ! `+)used 9.90 9.80

a(�) -0.2140
�used 0.11770

a(f(D+)) -0.2984

f(D+)used 0.2210

a(f(Ds)) 0.0539

f(Ds)
used 0.1120

a(f(�c)) 0.0764

f(�c)
used 0.0840

Table A.8: The measurements of Acc
FB(+2). All numbers are given in %.
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SLD

93-98y 93-98y 94-95y 96-98y
lepton jet charge K� multi

[50] [52] [53] [54]p
s (GeV) 91.280 91.280 91.280 91.280

Ab 0.924 0.907 0.855 0.921

Statistical 0.030 0.020 0.088 0.018

Uncorrelated 0.018 0.023 0.102 0.018
Correlated 0.008 0.001 0.006 0.001

Total Systematic 0.020 0.023 0.102 0.018

a(Rb) -0.1237 -0.0139 -0.7283
Rused
b 0.2164 0.2180 0.2158

a(Rc) 0.0308 0.0060 0.0359
Rused
c 0.1674 0.1710 0.1722

a(Ac) 0.0534 0.0211 -0.0112 0.0095
Aused
c 0.667 0.670 0.666 0.667

a(BR(b ! `�)) -0.1999

BR(b ! `�)
used

10.62

a(BR(b ! c ! `+)) 0.0968
BR(b ! c ! `+)used 8.07

a(BR(c ! `+)) 0.0369
BR(c ! `+)used 9.85

a(�) 0.2951
�used 0.11860

Table A.9: The measurements of Ab.
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SLD

93-98y 93-98y 96-98y
lepton D-meson K+vertex

[50] [51] [55]p
s (GeV) 91.280 91.280 91.280

Ac 0.589 0.688 0.673

Statistical 0.055 0.035 0.029

Uncorrelated 0.045 0.020 0.024
Correlated 0.021 0.003 0.002

Total Systematic 0.050 0.021 0.024

a(Rb) 0.1855 0.5395
Rused
b 0.2164 0.2158

a(Rc) -0.4053 -0.0682
Rused
c 0.1674 0.1722

a(Ab) 0.2137 -0.0673 -0.0187
Aused
b 0.935 0.935 0.935

a(BR(b ! `�)) 0.2874

BR(b ! `�)
used

10.62

a(BR(b ! c ! `+)) -0.1743
BR(b ! c ! `+)used 8.07

a(BR(c ! `+)) -0.3971
BR(c ! `+)used 9.85

a(�) 0.0717
�used 0.11860

Table A.10: The measurements of Ac.
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ALEPH DELPHI L3 OPAL

91-95y 94-95y 92 94-95y 92-95
multi multi lepton multi multi
[56] [57] [58] [26] [59]

BR(b ! `�) 10.70 10.70 10.68 10.22 10.85

Statistical 0.10 0.08 0.11 0.13 0.10

Uncorrelated 0.16 0.20 0.36 0.19 0.20
Correlated 0.23 0.45 0.22 0.31 0.21

Total Systematic 0.28 0.49 0.42 0.36 0.29

a(Rb) -9.2571 -0.1808
Rused
b 0.2160 0.2169

a(Rc) 1.4450 0.4867
Rused
c 0.1734 0.1770

a(BR(b ! c ! `+)) -1.1700 0.1618
BR(b ! c ! `+)used 9.00 8.09

a(BR(c ! `+)) -0.3078 -0.1960 -2.5480 0.9212
BR(c ! `+)used 9.85 9.80 9.80 9.80

a(�) 0.7683
�used 0.1178

a(f(D+)) 0.5523 0.1445

f(D+)
used

0.2330 0.2380

a(f(Ds)) 0.0213 0.0055

f(Ds)
used 0.1030 0.1020

a(f(�c)) -0.0427 -0.0157

f(�c)
used 0.0630 0.0650

Table A.11: The measurements of BR(b ! `�). All numbers are given in %.
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ALEPH DELPHI OPAL

91-95y 94-95y 92-95
multi multi multi
[56] [57] [59]

BR(b ! c ! `+) 8.18 7.98 8.41

Statistical 0.15 0.22 0.16

Uncorrelated 0.19 0.21 0.19
Correlated 0.15 0.19 0.34

Total Systematic 0.24 0.28 0.39

a(Rb) -0.1808
Rused
b 0.2169

a(Rc) 0.5026 0.3761
Rused
c 0.1709 0.1770

a(BR(c ! `+)) 0.3078
BR(c ! `+)used 9.85

a(�) -1.3884
�used 0.11940

a(f(D+)) 0.1190

f(D+)
used

0.2380

a(f(Ds)) 0.0028

f(Ds)
used 0.1020

a(f(�c)) -0.0110

f(�c)
used 0.0660

Table A.12: The measurements of BR(b ! c ! `+). All numbers are given in %.

DELPHI OPAL

92-95 90-95
D+lepton D+lepton

[30] [60]

BR(c ! `+) 9.64 9.58

Statistical 0.42 0.60

Uncorrelated 0.24 0.49
Correlated 0.13 0.43

Total Systematic 0.27 0.65

a(BR(b ! `�)) -0.5600 -1.4335

BR(b ! `�)
used

11.20 10.99

a(BR(b ! c ! `+)) -0.4100 -0.7800
BR(b ! c ! `+)used 8.20 7.80

Table A.13: The measurements of BR(c ! `+). All numbers are given in %.
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ALEPH DELPHI L3 OPAL

90-95 94-95y 90-95 90-95y
multi multi lepton lepton
[38] [57] [40] [41]

� 0.12446 0.12700 0.11920 0.11380

Statistical 0.00515 0.01300 0.00680 0.00540

Uncorrelated 0.00252 0.00484 0.00214 0.00306
Correlated 0.00394 0.00431 0.00252 0.00324

Total Systematic 0.00468 0.00648 0.00330 0.00445

a(Rb) 0.0341
Rused
b 0.2192

a(Rc) 0.0009 0.0004
Rused
c 0.1710 0.1734

a(BR(b ! `�)) 0.0524 0.0550 0.0170

BR(b ! `�)used 11.34 10.50 10.90

a(BR(b ! c ! `+)) -0.0440 -0.0466 -0.0318
BR(b ! c ! `+)used 7.86 8.00 8.30

a(BR(c ! `+)) 0.0035 -0.0020 0.0006 0.0039
BR(c ! `+)used 9.80 9.80 9.80 9.80

Table A.14: The measurements of �.

DELPHI OPAL

92-95 90-95
D-meson D-meson

[30] [32]

P(c ! D�+) � BR(D�+ ! �+D0) 0.1740 0.1514

Statistical 0.0100 0.0096

Uncorrelated 0.0040 0.0088
Correlated 0.0007 0.0011

Total Systematic 0.0041 0.0089

a(Rb) 0.0293
Rused
b 0.2166

a(Rc) -0.0158
Rused
c 0.1735

Table A.15: The measurements of P(c ! D�+) � BR(D�+ ! �+D0).
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ALEPH DELPHI OPAL

91-95 92-95 91-94
D meson D meson D meson

[33] [31] [34]

RcfD+ 0.0406 0.0384 0.0391

Statistical 0.0013 0.0013 0.0050

Uncorrelated 0.0014 0.0015 0.0042
Correlated 0.0032 0.0025 0.0031

Total Systematic 0.0035 0.0030 0.0052

a(f(D+)) 0.0008

f(D+)
used

0.2210

a(f(Ds)) -0.0002

f(Ds)
used 0.1120

Table A.16: The measurements of RcfD+ .

ALEPH DELPHI OPAL

91-95 92-95 91-94
D meson D meson D meson

[33] [31] [34]

RcfDs 0.0207 0.0213 0.0160

Statistical 0.0033 0.0017 0.0042

Uncorrelated 0.0011 0.0010 0.0016
Correlated 0.0053 0.0054 0.0043

Total Systematic 0.0054 0.0055 0.0046

a(f(D+)) 0.0007

f(D+)
used

0.2210

a(f(Ds)) -0.0009

f(Ds)
used 0.1120

a(f(�c)) -0.0001

f(�c)
used 0.0840

Table A.17: The measurements of RcfDs .
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ALEPH DELPHI OPAL

91-95 92-95 91-94
D meson D meson D meson

[33] [31] [34]

Rcf�c 0.0157 0.0170 0.0091

Statistical 0.0016 0.0035 0.0050

Uncorrelated 0.0005 0.0016 0.0015
Correlated 0.0044 0.0045 0.0035

Total Systematic 0.0045 0.0048 0.0038

a(f(D+)) 0.0002

f(D+)
used

0.2210

a(f(Ds)) -0.0001

f(Ds)
used 0.1120

a(f(�c)) -0.0002

f(�c)
used 0.0840

Table A.18: The measurements of Rcf�c .

ALEPH DELPHI OPAL

91-95 92-95 91-94
D meson D meson D meson

[33] [31] [34]

RcfD0 0.0965 0.0928 0.1000

Statistical 0.0029 0.0026 0.0070

Uncorrelated 0.0040 0.0038 0.0057
Correlated 0.0045 0.0023 0.0041

Total Systematic 0.0060 0.0044 0.0070

a(f(D+)) 0.0021

f(D+)used 0.2210

a(f(Ds)) -0.0004

f(Ds)
used 0.1120

a(f(�c)) -0.0004

f(�c)
used 0.0840

Table A.19: The measurements of RcfD0 .
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DELPHI OPAL

92-95 90-95
D meson D-meson

[31] [32]

RcP(c ! D�+)� BR(D�+ ! �+D0) 0.0282 0.0268

Statistical 0.0007 0.0005

Uncorrelated 0.0010 0.0010
Correlated 0.0007 0.0009

Total Systematic 0.0012 0.0013

a(f(D+)) 0.0006

f(D+)
used

0.2210

a(f(Ds)) -0.0001

f(Ds)
used 0.1120

a(f(�c)) -0.0004

f(�c)
used 0.0840

Table A.20: The measurements of RcP(c ! D�+)� BR(D�+ ! �+D0).
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Appendix B

Heavy-Flavour Fit including O�-Peak

Asymmetries

The full 18 parameter �t to the LEP and SLD data gave the following results:

R0
b = 0:21647� 0:00068

R0
c = 0:1719� 0:0031

Abb
FB(�2) = 0:0508� 0:0068

Acc
FB(�2) = �0:035� 0:017

Abb
FB(pk) = 0:0975� 0:0018

Acc
FB(pk) = 0:0620� 0:0036

Abb
FB(+2) = 0:1150� 0:0057

Acc
FB(+2) = 0:130� 0:013

Ab = 0:922� 0:020

Ac = 0:670� 0:026

BR(b ! `�) = 0:1067� 0:0021

BR(b ! c ! `+) = 0:0807� 0:0017

BR(c ! `+) = 0:0979� 0:0031

� = 0:1195� 0:0040

f(D+) = 0:234� 0:016

f(Ds) = 0:125� 0:023

f(cbaryon) = 0:096� 0:023

P(c ! D�+)� BR(D�+ ! �+D0) = 0:1620� 0:0048

with a �2=d.o.f. of 43=(99� 18). The corresponding correlation matrix is given in Table B.1. The
energy for the peak�2, peak and peak+2 results are respectively 89.55 GeV, 91.26 GeV and 92.94 GeV.
Note that the asymmetry results shown here are not the pole asymmetries shown in Section 5.3.2.
The non-electroweak parameters do not depend on the treatment of the asymmetries.
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Appendix C

Detailed inputs and results on W-boson and

four-fermion averages

Tables C.1, C.2, C.3, C.4, C.5, C.6, C.7 and C.8 give the details of the inputs and of the results for the
calculation of LEP averages of the WW cross section, of the WW cross section ratio RWW, of W decay
branching fractions, of the ZZ cross section, and of the total and hadronic single W cross sections. For
both inputs and results, whenever relevant, the splitup of the errors into their various components is
given in the table. For each measurement, the Collaborations provide additional information which is
necessary for the combination of LEP results, such as the expected statistical error or the splitup of
the systematic uncertainty into its correlated and uncorrelated components.
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(LCEC) (LUEU) (LUEC)p
s �WW ��statWW ��systWW ��systWW ��systWW ��systWW ��WW

ALEPH [102,106,110,115]
182.7 GeV 15.57 �0.62 �0.09 �0.09 �0.26 �0.29 �0.68
188.6 GeV 15.71 �0.34 �0.05 �0.09 �0.15 �0.18 �0.38
191.6 GeV 17.23 �0.89 �0.05 �0.09 �0.15 �0.18 �0.91
195.5 GeV 17.00 �0.54 �0.05 �0.09 �0.15 �0.18 �0.57
199.5 GeV 16.98 �0.53 �0.05 �0.09 �0.15 �0.18 �0.56
201.6 GeV 16.16 �0.74 �0.05 �0.09 �0.15 �0.18 �0.76
204.9 GeV 16.57 �0.52 �0.05 �0.09 �0.15 �0.18 �0.55
206.6 GeV 17.32 �0.41 �0.05 �0.09 �0.15 �0.18 �0.45

DELPHI [103,107,111,116]
182.7 GeV 15.86 �0.69 �0.09 �0.07 �0.24 �0.27 �0.74
188.6 GeV 15.83 �0.38 �0.07 �0.05 �0.18 �0.20 �0.43
191.6 GeV 16.90 �1.00 �0.07 �0.06 �0.20 �0.22 �1.02
195.5 GeV 17.86 �0.59 �0.07 �0.06 �0.20 �0.22 �0.63
199.5 GeV 17.35 �0.56 �0.07 �0.06 �0.20 �0.22 �0.60
201.6 GeV 17.67 �0.81 �0.08 �0.07 �0.21 �0.23 �0.84
204.9 GeV 17.44 �0.60 �0.06 �0.05 �0.21 �0.22 �0.64
206.6 GeV 16.50 �0.43 �0.06 �0.05 �0.20 �0.21 �0.48

L3 [104,108,114,117]
182.7 GeV 16.53 �0.67 �0.08 �0.14 �0.21 �0.26 �0.72
188.6 GeV 16.24 �0.37 �0.04 �0.08 �0.20 �0.22 �0.43
191.6 GeV 16.39 �0.90 �0.08 �0.08 �0.21 �0.24 �0.93
195.5 GeV 16.67 �0.55 �0.08 �0.08 �0.21 �0.24 �0.60
199.5 GeV 16.94 �0.57 �0.08 �0.08 �0.21 �0.24 �0.62
201.6 GeV 16.95 �0.85 �0.08 �0.08 �0.21 �0.24 �0.88
204.9 GeV 17.35 �0.59 �0.08 �0.08 �0.21 �0.24 �0.64
206.6 GeV 17.96 �0.45 �0.08 �0.08 �0.21 �0.24 �0.51

OPAL [105,109,112,113,118]
182.7 GeV 15.43 �0.61 �0.14 �0.00 �0.22 �0.26 �0.66
188.6 GeV 16.30 �0.34 �0.07 �0.00 �0.17 �0.18 �0.38
191.6 GeV 16.60 �0.88 �0.12 �0.00 �0.40 �0.42 �0.98
195.5 GeV 18.59 �0.60 �0.12 �0.00 �0.41 �0.43 �0.74
199.5 GeV 16.32 �0.54 �0.10 �0.00 �0.37 �0.38 �0.66
201.6 GeV 18.48 �0.81 �0.12 �0.00 �0.40 �0.42 �0.91
204.9 GeV 15.97 �0.52 �0.10 �0.00 �0.36 �0.37 �0.64
206.6 GeV 17.77 �0.42 �0.09 �0.00 �0.37 �0.38 �0.57

LEP Averages �2=d.o.f.
182.7 GeV 15.79 �0.32 �0.10 �0.04 �0.11 �0.15 �0.36

9>>>>>>>>>>=
>>>>>>>>>>;

27.42/24

188.6 GeV 16.00 �0.18 �0.05 �0.03 �0.08 �0.10 �0.21
191.6 GeV 16.72 �0.46 �0.07 �0.03 �0.11 �0.13 �0.48
195.5 GeV 17.43 �0.29 �0.07 �0.04 �0.10 �0.13 �0.32
199.5 GeV 16.84 �0.28 �0.07 �0.04 �0.10 �0.13 �0.31
201.6 GeV 17.23 �0.40 �0.07 �0.04 �0.10 �0.13 �0.42
204.9 GeV 16.71 �0.28 �0.07 �0.04 �0.10 �0.13 �0.31
206.6 GeV 17.33 �0.22 �0.06 �0.04 �0.10 �0.12 �0.25

Table C.1: W-pair production cross section (in pb) for di�erent centre{of{mass energies. The �rst column
contains the centre{of{mass energy, and the second, the measurements. Observed statistical uncertainties are
used in the �t and are listed in the third column; when asymmetric errors are quoted by the Collaborations,
the positive error is listed in the table and used in the �t. The fourth, �fth and sixth columns contain the
components of the systematic errors, as subdivided by the Collaborations into LEP-correlated energy-correlated
(LCEC), LEP-uncorrelated energy-uncorrelated (LUEU), LEP-uncorrelated energy-correlated (LUEC). The
total systematic error is given in the seventh column, the total error in the eighth. For the LEP averages, the
�2 of the �t is also given in the ninth column.
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p
s/ GeV 182.7 188.6 191.6 195.5 199.5 201.6 204.9 206.6

182.7 1.000 0.197 0.113 0.169 0.169 0.128 0.166 0.201

188.6 0.197 1.000 0.134 0.200 0.200 0.150 0.196 0.239

191.6 0.113 0.134 1.000 0.119 0.119 0.090 0.118 0.143

195.5 0.169 0.200 0.119 1.000 0.177 0.133 0.174 0.211

199.5 0.169 0.200 0.119 0.177 1.000 0.133 0.175 0.212

201.6 0.128 0.150 0.090 0.133 0.133 1.000 0.131 0.159

204.9 0.166 0.196 0.118 0.174 0.175 0.131 1.000 0.209

206.6 0.201 0.239 0.143 0.211 0.212 0.159 0.209 1.000

Table C.2: Correlation matrix for the LEP combined W-pair cross sections listed at the bottom of Table C.1.
Correlations are all positive and range from 9% to 24%.

p
s WW cross section (pb)

(GeV) �GENTLEWW �KORALWWW �YFSWW
WW �RACOONWW

WW

182.7 15:710� 0:020 15:619� 0:002 15:361� 0:005 15:368� 0:008

188.6 16:647� 0:020 16:554� 0:002 16:266� 0:005 16:249� 0:011

191.6 16:961� 0:020 16:865� 0:002 16:568� 0:006 16:519� 0:009

195.5 17:262� 0:020 17:165� 0:002 16:841� 0:006 16:801� 0:009

199.5 17:462� 0:020 17:361� 0:002 17:017� 0:007 16:979� 0:009

201.6 17:532� 0:020 17:428� 0:002 17:076� 0:006 17:032� 0:009

204.9 17:602� 0:020 17:497� 0:002 17:128� 0:006 17:079� 0:009

206.6 17:621� 0:020 17:516� 0:001 17:145� 0:006 17:087� 0:009

Table C.3: W-pair cross section predictions (in pb) for di�erent centre{of{mass energies, according to
GENTLE [126], KORALW [127], YFSWW [122] and RACOONWW [123], for mW = 80:35 GeV. The errors
listed in the table are only the statistical errors from the numerical integration of the cross section.
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(LCEU) (LCEC) (LUEU) (LUEC)p
s RWW �Rstat

WW �Rsyst
WW �Rsyst

WW �Rsyst
WW �Rsyst

WW �RWW �2=d.o.f.

GENTLE [126]
182.7 GeV 1.005 �0.021 �0.001 �0.006 �0.003 �0.007 �0.023

9>>>>>>>>>>=
>>>>>>>>>>;

27.42/24

188.6 GeV 0.961 �0.011 �0.001 �0.003 �0.002 �0.005 �0.013
191.6 GeV 0.986 �0.027 �0.001 �0.004 �0.002 �0.006 �0.028
195.5 GeV 1.010 �0.017 �0.001 �0.004 �0.002 �0.006 �0.018
199.5 GeV 0.964 �0.016 �0.001 �0.004 �0.002 �0.006 �0.018
201.6 GeV 0.983 �0.023 �0.001 �0.004 �0.002 �0.006 �0.024
204.9 GeV 0.949 �0.016 �0.001 �0.004 �0.002 �0.006 �0.018
206.6 GeV 0.984 �0.012 �0.001 �0.004 �0.002 �0.006 �0.014
Average 0.973 �0.006 �0.001 �0.004 �0.001 �0.006 �0.009 39.16/31

KORALW [127]
182.7 GeV 1.011 �0.021 �0.000 �0.006 �0.003 �0.007 �0.023

9>>>>>>>>>>=
>>>>>>>>>>;

27.42/24

188.6 GeV 0.967 �0.011 �0.000 �0.003 �0.002 �0.005 �0.013
191.6 GeV 0.991 �0.027 �0.000 �0.004 �0.002 �0.006 �0.028
195.5 GeV 1.015 �0.017 �0.000 �0.004 �0.002 �0.006 �0.018
199.5 GeV 0.970 �0.016 �0.000 �0.004 �0.002 �0.006 �0.018
201.6 GeV 0.989 �0.023 �0.000 �0.004 �0.002 �0.006 �0.024
204.9 GeV 0.955 �0.016 �0.000 �0.004 �0.002 �0.006 �0.018
206.6 GeV 0.989 �0.012 �0.000 �0.004 �0.002 �0.006 �0.014
Average 0.979 �0.006 �0.000 �0.004 �0.001 �0.006 �0.009 39.20/31

YFSWW [122]
182.7 GeV 1.028 �0.021 �0.000 �0.006 �0.003 �0.007 �0.023

9>>>>>>>>>>=
>>>>>>>>>>;

27.42/24

188.6 GeV 0.984 �0.011 �0.000 �0.003 �0.002 �0.005 �0.013
191.6 GeV 1.009 �0.028 �0.000 �0.004 �0.002 �0.006 �0.029
195.5 GeV 1.035 �0.017 �0.000 �0.004 �0.002 �0.006 �0.019
199.5 GeV 0.990 �0.016 �0.000 �0.004 �0.002 �0.006 �0.018
201.6 GeV 1.009 �0.024 �0.000 �0.004 �0.002 �0.006 �0.025
204.9 GeV 0.976 �0.016 �0.000 �0.004 �0.002 �0.006 �0.018
206.6 GeV 1.011 �0.013 �0.000 �0.004 �0.002 �0.006 �0.015
Average 0.998 �0.006 �0.000 �0.004 �0.001 �0.006 �0.009 39.04/31

RACOONWW [123]
182.7 GeV 1.028 �0.021 �0.001 �0.006 �0.003 �0.007 �0.023 9>>>>>>>>>>=

>>>>>>>>>>;
27.42/24

188.6 GeV 0.985 �0.011 �0.001 �0.003 �0.002 �0.005 �0.013
191.6 GeV 1.012 �0.028 �0.001 �0.004 �0.002 �0.006 �0.029
195.5 GeV 1.037 �0.017 �0.001 �0.004 �0.002 �0.006 �0.019
199.5 GeV 0.992 �0.016 �0.001 �0.004 �0.002 �0.006 �0.018
201.6 GeV 1.012 �0.024 �0.001 �0.004 �0.002 �0.006 �0.025
204.9 GeV 0.978 �0.016 �0.001 �0.004 �0.002 �0.006 �0.018
206.6 GeV 1.014 �0.013 �0.001 �0.004 �0.002 �0.006 �0.015
Average 1.000 �0.006 �0.000 �0.004 �0.001 �0.006 �0.009 39.14/31

Table C.4: Ratios of LEP combined W-pair cross section measurements to the expectations of the four theo-
retical models considered, for di�erent centre{of{mass energies and for all energies combined. The �rst column
contains the centre{of{mass energy, the second the combined ratios, the third the statistical errors. The fourth,
�fth, sixth and seventh columns contain the sources of systematic errors that are considered as LEP-correlated
energy-uncorrelated (LCEU), LEP-correlated energy-correlated (LCEC), LEP-uncorrelated energy-uncorrelated
(LUEU), LEP-uncorrelated energy-correlated (LUEC). The total error is given in the eighth column. The only
LCEU systematic sources considered are the statistical errors on the cross section theoretical predictions, while
the LCEC, LUEU and LUEC sources are those coming from the corresponding errors on the cross section
measurements.
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Decay (unc) (cor) 3�3 correlation

channel B �Bstat �Bsyst �Bsyst �Bsyst �B for �B

ALEPH [115]

B(W! e�e) 10.95 �0.27 �0.15 �0.04 �0.16 �0.31  1.000 -0.048 -0.271

-0.048 1.000 -0.253

-0.271 -0.253 1.000

!
B(W! ���) 11.11 �0.25 �0.14 �0.04 �0.15 �0.29
B(W! ��� ) 10.57 �0.32 �0.20 �0.04 �0.20 �0.38

DELPHI [116]

B(W! e�e) 10.36 �0.30 �0.15 �0.05 �0.16 �0.34  1.000 -0.050 -0.330

-0.050 1.000 -0.250

-0.330 -0.250 1.000

!
B(W! ���) 10.62 �0.26 �0.09 �0.05 �0.10 �0.28
B(W! ��� ) 10.99 �0.39 �0.26 �0.03 �0.26 �0.47

L3 [117]

B(W! e�e) 10.40 �0.26 �0.13 �0.06 �0.14 �0.30  1.000 -0.016 -0.279

-0.016 1.000 -0.295

-0.279 -0.295 1.000

!
B(W! ���) 9.72 �0.27 �0.14 �0.06 �0.15 �0.31
B(W! ��� ) 11.78 �0.38 �0.20 �0.06 �0.21 �0.43

OPAL [118]

B(W! e�e) 10.40 �0.25 �0.24 �0.05 �0.25 �0.35  1.000 0.141 -0.179

0.141 1.000 -0.174

-0.179 -0.174 1.000

!
B(W! ���) 10.61 �0.25 �0.23 �0.06 �0.24 �0.35
B(W! ��� ) 11.18 �0.31 �0.37 �0.05 �0.37 �0.48

LEP Average (without lepton universality assumption)

B(W! e�e) 10.54 �0.13 �0.08 �0.05 �0.10 �0.17  1.000 0.066 -0.214

0.066 1.000 -0.189

-0.214 -0.189 1.000

!
B(W! ���) 10.54 �0.13 �0.08 �0.05 �0.09 �0.16
B(W! ��� ) 11.09 �0.17 �0.13 �0.04 �0.14 �0.22
�2=d.o.f. 14.9/9

LEP Average (with lepton universality assumption)

B(W! `�`) 10.69 �0.06 �0.05 �0.05 �0.07 �0.09
B(W! had:) 67.92 �0.17 �0.15 �0.15 �0.21 �0.27
�2=d.o.f. 18.8/11

Table C.5: W branching fraction measurements (in %). The �rst column contains the decay channel, the second
the measurements, the third the statistical uncertainty. The fourth and �fth column list the uncorrelated and
correlated components of the systematic errors, as provided by the Collaborations. The total systematic error
is given in the sixth column and the total error in the seventh. Correlation matrices for the three leptonic
branching fractions are given in the last column. This table is identical to Table 7 of Ref. [95], because results
are not updated with respect to those presented for the winter 2001 conferences.
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p
s �ZZ ��statZZ ��syst (unc)ZZ ��syst (cor)ZZ ��systZZ ��ZZ ��stat (exp)ZZ

ALEPH [132,141,142]

182.7 GeV 0.11 +0:16
�0:11 �0.04 �0.01 �0.04 +0:16

�0:12 �0.14
188.6 GeV 0.67 +0:13

�0:12 �0.04 �0.01 �0.04 +0:14
�0:13 �0.13

191.6 GeV 0.53 +0:34
�0:27 �0.02 �0.01 �0.02 +0:34

�0:27 �0.33
195.5 GeV 0.69 +0:23

�0:20 �0.03 �0.01 �0.03 +0:23
�0:20 �0.23

199.5 GeV 0.70 +0:22
�0:20 �0.03 �0.01 �0.03 +0:22

�0:20 �0.23
201.6 GeV 0.70 +0:33

�0:28 �0.02 �0.01 �0.02 +0:33
�0:28 �0.35

204.9 GeV 1.21 +0:26
�0:23 �0.03 �0.01 �0.03 +0:26

�0:23 �0.27
206.6 GeV 1.01 +0:19

�0:17 �0.02 �0.01 �0.02 +0:19
�0:17 �0.18

DELPHI [133,143{145]
182.7 GeV 0.38 �0.18 �0.04 �0.01 �0.04 �0.18 �0.15
188.6 GeV 0.60 �0.13 �0.07 �0.02 �0.07 �0.15 �0.14
191.6 GeV 0.55 �0.33 �0.08 �0.02 �0.08 �0.34 �0.40
195.5 GeV 1.17 �0.27 �0.09 �0.03 �0.10 �0.29 �0.24
199.5 GeV 1.08 �0.24 �0.10 �0.03 �0.11 �0.26 �0.23
201.6 GeV 0.87 �0.31 �0.11 �0.03 �0.11 �0.33 �0.34
204.9 GeV 1.05 �0.23 �0.12 �0.04 �0.12 �0.26 �0.23
206.6 GeV 0.98 �0.18 �0.11 �0.03 �0.12 �0.22 �0.19

L3 [134{136,138,146]

182.7 GeV 0.31 +0:16
�0:15 �0.05 �0.01 �0.05 +0:17

�0:15 �0.16
188.6 GeV 0.73 +0:15

�0:14 �0.03 �0.02 �0.04 +0:15
�0:14 �0.15

191.6 GeV 0.29 �0.22 �0.01 �0.02 �0.02 �0.22 �0.34
195.5 GeV 1.18 �0.24 �0.06 �0.07 �0.09 �0.26 �0.22
199.5 GeV 1.25 �0.25 �0.06 �0.07 �0.09 �0.27 �0.24
201.6 GeV 0.95 �0.38 �0.05 �0.05 �0.07 �0.39 �0.35
204.9 GeV 0.84 �0.22 �0.05 �0.05 �0.07 �0.23 �0.23
206.6 GeV 1.20 �0.18 �0.07 �0.07 �0.10 �0.21 �0.17

OPAL [137,139]

182.7 GeV 0.12 +0:20
�0:18 �0.03 �0.01 �0.03 +0:20

�0:18 �0.19
188.6 GeV 0.80 +0:14

�0:13 �0.06 �0.02 �0.06 +0:15
�0:14 �0.14

191.6 GeV 1.13 +0:46
�0:39 �0.11 �0.03 �0.11 +0:47

�0:41 �0.36
195.5 GeV 1.19 +0:27

�0:24 �0.09 �0.03 �0.09 +0:28
�0:26 �0.25

199.5 GeV 1.09 +0:25
�0:23 �0.08 �0.02 �0.08 +0:26

�0:24 �0.25
201.6 GeV 0.94 +0:37

�0:32 �0.07 �0.03 �0.08 +0:38
�0:33 �0.37

204.9 GeV 1.07 +0:26
�0:24 �0.09 �0.03 �0.09 +0:28

�0:26 �0.26
206.6 GeV 1.07 +0:20

�0:19 �0.07 �0.03 �0.08 +0:22
�0:21 �0.21

LEP Averages �2=d.o.f.
182.7 GeV 0.23 �0.08 �0.02 �0.01 �0.02 �0.08 2.28/3
188.6 GeV 0.70 �0.07 �0.03 �0.02 �0.03 �0.08 0.97/3
191.6 GeV 0.60 �0.18 �0.03 �0.02 �0.04 �0.18 2.88/3
195.5 GeV 1.04 �0.12 �0.03 �0.03 �0.05 �0.13 3.23/3
199.5 GeV 1.01 �0.12 �0.04 �0.03 �0.05 �0.13 2.80/3
201.6 GeV 0.86 �0.18 �0.04 �0.03 �0.05 �0.18 0.32/3
204.9 GeV 1.03 �0.12 �0.04 �0.03 �0.05 �0.13 1.11/3
206.6 GeV 1.06 �0.09 �0.04 �0.03 �0.05 �0.11 0.76/3

Table C.6: Z-pair production cross section (in pb) at di�erent energies. The �rst column contains the LEP
centre{of{mass energy, the second the measurements and the third the statistical uncertainty. The fourth and
the �fth columns list the uncorrelated and correlated components of the systematic errors, as provided by the
Collaborations. The total systematic error is given in the sixth column, the total error in the seventh. The
eighth column lists, for the four LEP measurements, the symmetrized expected statistical error, and for the
LEP combined value, the �2 of the �t.
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p
s �We� (tot) ��statWe� (tot) ��systWe� (tot) ��We� (tot) ��stat (exp)We� (tot)

ALEPH [149,152,155]

182.7 GeV 0.61 �0:26 �0.06 �0:27 �0.25
188.6 GeV 0.45 �0:14 �0.04 �0:15 �0.16
191.6 GeV 1.31 �0:47 �0.11 �0:48 �0.40
195.5 GeV 0.65 �0:24 �0.06 �0:25 �0.25
199.5 GeV 0.99 �0:25 �0.10 �0:27 �0.24
201.6 GeV 0.75 �0:35 �0.08 �0:36 �0.36
204.9 GeV 0.78 �0:26 �0.07 �0:27 �0.26
206.6 GeV 1.19 �0:22 �0.12 �0:25 �0.21

DELPHI [150,157]

188.6 GeV 0.75 +0:29
�0:25 �0.07 +0:30

�0:26 �0.26
191.6 GeV 0.17 +0:33

�0:17 �0.07 +0:34
�0:18 �0.61

195.5 GeV 0.94 +0:40
�0:35 �0.07 +0:41

�0:36 �0.36
199.5 GeV 0.51 +0:32

�0:31 �0.07 +0:33
�0:32 �0.30

201.6 GeV 1.15 +0:55
�0:45 �0.07 +0:55

�0:46 �0.47
204.9 GeV 0.56 +0:36

�0:31 �0.06 +0:36
�0:32 �0.35

206.6 GeV 0.58 +0:25
�0:22 �0.06 +0:26

�0:23 �0.28
L3 [151,153,154,158]

182.7 GeV 0.80 +0:28
�0:25 �0.05 +0:28

�0:25 �0.26
188.6 GeV 0.69 +0:16

�0:14 �0.04 +0:16
�0:15 �0.15

191.6 GeV 1.06 +0:48
�0:41 �0.09 +0:49

�0:42 �0.45
195.5 GeV 0.98 +0:27

�0:25 �0.09 +0:28
�0:27 �0.24

199.5 GeV 0.79 +0:26
�0:23 �0.06 +0:27

�0:24 �0.25
201.6 GeV 1.38 +0:45

�0:40 �0.13 +0:47
�0:42 �0.38

OPAL [159]

188.6 GeV 0.67 +0:16
�0:14 �0.06 +0:17

�0:15 �0.16
LEP Averages �2=d.o.f.

182.7 GeV 0.70 �0.18 �0.04 �0.19 0.26/1

188.6 GeV 0.62 �0.09 �0.03 �0.09 1.60/3

191.6 GeV 0.99 �0.27 �0.06 �0.28 2.38/2

195.5 GeV 0.84 �0.16 �0.05 �0.16 0.92/2

199.5 GeV 0.79 �0.15 �0.05 �0.16 1.40/2

201.6 GeV 1.06 �0.23 �0.06 �0.24 1.38/2

204.9 GeV 0.70 �0.21 �0.05 �0.22 0.24/1

206.6 GeV 0.94 �0.17 �0.08 �0.18 2.71/1

Table C.7: Single-W total production cross section (in pb) at di�erent energies. The �rst column contains
the LEP centre{of{mass energy, and the second the measurements. The third and fourth column list the
statistical and systematic uncertainties, and the �fth the total error. The sixth column lists, for the four LEP
measurements, the symmetrized expected statistical error, and for the LEP combined value, the �2 of the �t.
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p
s �We� (had) ��statWe� (had) ��systWe� (had) ��We� (had) ��stat (exp)We� (had)

ALEPH [149,152,155]

182.7 GeV 0.40 �0:23 �0.06 �0:24 �0.23
188.6 GeV 0.31 �0:13 �0.04 �0:14 �0.14
191.6 GeV 0.94 �0:43 �0.11 �0:44 �0.37
195.5 GeV 0.45 �0:22 �0.06 �0:23 �0.23
199.5 GeV 0.82 �0:24 �0.10 �0:26 �0.22
201.6 GeV 0.68 �0:34 �0.08 �0:35 �0.33
204.9 GeV 0.50 �0:24 �0.07 �0:25 �0.24
206.6 GeV 0.95 �0:21 �0.12 �0:24 �0.19

DELPHI [150,157]

188.6 GeV 0.44 +0:27
�0:24 �0.07 +0:28

�0:25 �0.25
191.6 GeV 0.01 +0:18

�0:01 �0.07 +0:19
�0:07 �0.57

195.5 GeV 0.78 +0:37
�0:33 �0.07 +0:38

�0:34 �0.33
199.5 GeV 0.16 +0:28

�0:16 �0.07 +0:29
�0:17 �0.27

201.6 GeV 0.55 +0:46
�0:39 �0.07 +0:47

�0:40 �0.43
204.9 GeV 0.50 +0:34

�0:30 �0.06 +0:35
�0:31 �0.33

206.6 GeV 0.37 +0:23
�0:20 �0.06 +0:24

�0:21 �0.26
L3 [151,153,154,158]

182.7 GeV 0.58 +0:23
�0:20 �0.04 +0:23

�0:20 �0.21
188.6 GeV 0.52 +0:14

�0:13 �0.03 +0:14
�0:13 �0.14

191.6 GeV 0.85 +0:45
�0:37 �0.06 +0:45

�0:37 �0.41
195.5 GeV 0.66 +0:24

�0:22 �0.05 +0:25
�0:23 �0.21

199.5 GeV 0.34 +0:23
�0:20 �0.03 +0:23

�0:20 �0.22
201.6 GeV 1.09 +0:41

�0:36 �0.08 +0:42
�0:37 �0.35

OPAL [159]

188.6 GeV 0.53 +0:13
�0:12 �0.05 +0:14

�0:13 �0.13
LEP Averages �2=d.o.f.

182.7 GeV 0.50 �0.16 �0.04 �0.16 0.31/1

188.6 GeV 0.46 �0.08 �0.02 �0.08 1.47/3

191.6 GeV 0.73 �0.25 �0.06 �0.25 1.94/2

195.5 GeV 0.60 �0.14 �0.03 �0.15 0.77/2

199.5 GeV 0.46 �0.14 �0.04 �0.14 3.60/2

201.6 GeV 0.80 �0.21 �0.05 �0.21 1.13/2

204.9 GeV 0.50 �0.20 �0.05 �0.20 0.00/1

206.6 GeV 0.71 �0.15 �0.08 �0.17 2.77/1

Table C.8: Single-W hadronic production cross section (in pb) at di�erent energies. The �rst column contains
the LEP centre{of{mass energy, and the second the measurements. The third and fourth column list the
statistical and systematic uncertainties, and the �fth the total error. The sixth column lists, for the four LEP
measurements, the symmetrized expected statistical error, and for the LEP combined value, the �2 of the �t.
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