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Abstract

A G(224)/SO(10)-framework has been proposed (a few years ago) that successfully describes the

masses and mixings of all fermions including neutrinos. Baryogenesis via leptogenesis is considered

within this framework by allowing for natural phases (∼ 1/30-1/2) in the entries of the Dirac and

Majorana mass-matrices. It is shown that the framework leads quite naturally to the desired magnitude

for the baryon asymmetry, in full accord with the observed features of atmospheric and solar neutrino

oscillations, as well as with those of quark and charged lepton masses and mixings. Hereby one obtains

a unified description of fermion masses, neutrino oscillations and baryogenesis within a single predictive

framework.
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1 Introduction

The observed matter-antimatter asymmetry of the universe [1] is an important clue to physics

at truly short distances. A natural understanding of its magnitude (not to mention its

sign) is thus a worthy challenge. Since the discovery of the electroweak sphaleron effect

[2], baryogenesis via leptogenesis [3, 4] appears to be the most attractive and promising

mechanism to generate such an asymmetry. In the context of a unified theory of quarks and

leptons, leptogenesis involving decays of heavy right-handed (RH) neutrinos, is naturally

linked to the masses of quarks and leptons, neutrino oscillations and, of course, CP violation.

In this regard, the route to higher unification based on an effective four-dimensional gauge

symmetry of either G(224)=SU(2)L×SU(2)R×SU(4)C [5], or SO(10) [6] (that may emerge

from a string theory near the string scale and breaks spontaneously to the standard model

symmetry near the GUT scale [7]) offers some distinct advantages, which are directly rele-

vant to leptogenesis. These in particular include: (a) the existence of the RH neutrinos as

a compelling feature, (b) B-L as a local symmetry, and (c) quark-lepton unification through

SU(4)-Color. These three features, first introduced in Ref. [5], are common to both G(224)

and SO(10), though not to SU(5) [8] and [SU(3)]3 [9]. They, together with the seesaw mecha-

nism [10] and the supersymmetric unification-scale [11], help explain even quantitatively [12]

the scale of ντ -mass [or rather of ∆m2(νµ-ντ )] as observed at SuperKamiokande [13]. Fur-

thermore, these three features also provide just the needed ingredients - that is superheavy

νR’s and spontaneous violation of B-L at high temperatures - for implementing baryogenesis

via leptogenesis.

Now, in a theory with RH neutrinos having heavy Majorana masses, the magnitude of

the lepton-asymmetry is known to depend crucially on both the Dirac as well as Majorana

mass matrices of the neutrinos [14]. In this regard, a predictive SO (10)/G(224) framework,

describing the masses and mixings of all fermions, including neutrinos, has been proposed

[15] that appears to be remarkably successful. In particular it makes seven predictions

including: mb(mb) ≈ 4.9 GeV, m(ντ
L) ∼ (1/20) eV(1/2-2), Vcb ≈ 0.044, sin2 2θosc

νµντ
≈ 0.9-

0.99, Vus ≈ 0.20-0.23, Vub ≈ 0.0025-0.0032 and md ≈ 8 MeV, all in good accord with
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observations, to within 10% (see Sec. 2). It has been noted recently [16] that the large angle

MSW solution (LMA), which is preferred by experiments [17], can arise quite plausibly

within the same framework through SO(10)-invariant higher dimensional operators which

can contribute directly to the Majorana masses of the left-handed neutrinos (especially to

the νe
Lνµ

L mixing mass) without involving the familiar seesaw.

As an additional point, it has been noted by Babu and myself [18] that the framework

proposed in Ref. [15] can naturally accomodate CP violation by introducing complex phases

in the entries of the fermion mass-matrices, which preserve the pattern of the mass-matrices

suggested in Ref. [15] as well as its successes.

The purpose of the present paper is to estimate the lepton and thereby the baryon excess

that would typically be expected within this realistic G(224)/SO(10)-framework for fermion

masses and mixings [15, 18], by allowing for natural CP violating phases (∼ 1/30 to 1/2,

say) in the entries of the mass-matrices as in Ref. [18]. The goal would thus be to obtain

a unified description of (a) fermion masses, (b) neutrino oscillations, and (c) leptogenesis

within a single predictive framework [19].

It should be noted that there have in fact been several attempts in the literature [20] at

estimating the lepton and baryon asymmetries, many of which have actually been carried

out in the context of SO(10) [21], though (to my knowledge) without an accompanying

realistic framework for the masses and mixing of quarks, charged leptons as well as neutrinos

[22]. Also the results in these attempts as regards leptogenesis have not been uniformly

encouraging [23].

The purpose of this letter is to note that the G(224)/SO(10) framework, proposed in

Ref. [15] and [18], leads quite naturally to the desired magnitude for baryon asymmetry, in

full accord with the observed features of atmospheric and solar neutrino oscillations, as well

as with those of quark and charged lepton masses and mixings. To present the analysis it

would be useful to recall the salient features of prior works [15, 18]. This is what is done in

the next section.
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2 Fermion Masses and Neutrino Oscillations in G(224)/SO(10):

A Brief Review of Prior Work

The 3 × 3 Dirac mass matrices for the four sectors (u, d, l, ν) proposed in Ref. [15] were

motivated in part by the notion that flavor symmetries [24] are responsible for the hierarchy

among the elements of these matrices (i.e., for ”33”�”23”�”22”�”12”�”11”, etc.), and in

part by the group theory of SO(10)/G(224), relevant to a minimal Higgs system (see below).

Up to minor variants [25], they are as follows:

Mu =











0 ε′ 0

−ε′ ζu
22 σ + ε

0 σ − ε 1











M0
u; Md =











0 η′ + ε′ 0

η′ − ε′ ζd
22 η + ε

0 η − ε 1











M0
d

MD
ν =











0 −3ε′ 0

−3ε′ ζu
22 σ − 3ε

0 σ + 3ε 1











M0
u; Ml =











0 η′ − 3ε′ 0

η′ + 3ε′ ζd
22 η − 3ε

0 η + 3ε 1











M0
d

(1)

These matrices are defined in the gauge basis and are multiplied by Ψ̄L on left and ΨR on

right. Note the group-theoretic up-down and quark-lepton correlations: the same σ occurs

in Mu and MD
ν , and the same η occurs in Md and Ml. It will become clear that the ε and ε′

entries are proportional to B-L and are antisymmetric in the family space (as shown above).

Thus, the same ε and ε′ occur in both (Mu and Md) and also in (MD
ν and Ml), but ε → −3ε

and ε′ → −3ε′ as q → l. Such correlations result in enormous reduction of parameters and

thus in increased predictivity. Such a patern for the mass-matrices can be obtained, using a

minimal Higgs system 45H , 16H , 1̄6H and 10H and a singlet S of SO(10), through effective

couplings as follows [26]:

LYuk = h3316316310H

+
[

h2316216310H(S/M) + a2316216310H(45H/M ′)(S/M)p + g2316216316
d
H(16H/M ′′)(S/M)q

]

+
[

h2216216210H(S/M)2 + g2216216216
d
H(16H/M ′′)(S/M)q+1

]

+
[

g1216116216
d
H(16H/M ′′)(S/M)q+2 + a1216116210H(45H/M ′)(S/M)p+2

]

(2)
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Typically we expect M ′, M ′′ and M to be of order Mstring [27]. The VEV’s of 〈45H〉 (along

B-L), 〈16H〉 = 〈1̄6H〉 (along standard model singlet sneutrino-like component) and of the

SO(10)-singlet 〈S〉 are of the GUT-scale, while those of 10H and of the down type SU(2)L-

doublet component in 16H (denoted by 16
d
H) are of the electroweak scale [15,28]. Depending

upon whether M ′(M ′′) ∼ MGUT or Mstring (see footnote [27]), the exponent p(q) is either

one or zero [29].

The entries 1 and σ arise respectively from h33 and h23 couplings, while η̂ ≡ η − σ and

η′ arise respectively from g23 and g12-couplings. The (B-L)-dependent antisymmetric entries

ε and ε′ arise respectively from the a23 and a12 couplings. [Effectively, with 〈45H〉 ∝ B-L,

the product 10H × 45H contributes as a 120, whose coupling is family-antisymmetric.] The

small entry ζu
22 arises from the h22-coupling, while ζd

22 arises from the joint contributions of

h22 and g22-couplings. As discussed in [15], using some of the observed masses as inputs, one

obtains |η̂| ∼ |σ| ∼ |ε| ∼ O(1/10), |η′| ≈ 4 × 10−3 and |ε′| ∼ 2 × 10−4. The success of the

framework presented in Ref. [15] (which set ζu
22 = ζd

22 = 0) in describing fermion masses and

mixings remains essentially unaltered if |(ζu
22, ζ

d
22)| ≤ (1/3)(10−2) (say).

Such a hierarchical form of the mass-matrices, with h33-term being dominant, is attributed

in part to flavor gauge symmetry(ies) that distinguishes between the three families [30], and

in part to higher dimensional operators involving for example 〈45H〉/M ′ or 〈16H〉/M ′′, which

are supressed by MGUT/Mstring ∼ 1/10, if M ′ and/or M ′′ ∼ Mstring.

To discuss the neutrino sector one must specify the Majorana mass-matrix of the RH

neutrinos as well. These arise from the effective couplings of the form [31]:

LMaj = fij16i16j1̄6H 1̄6H/M (3)

where the fij’s include appropriate powers of 〈S〉/M , in accord with flavor charge assignments

of 16i (see [30]). For the f33-term to be leading, we must assign the charge −a to 1̄6H . This

leads to a hierarchical form for the Majorana mass-matrix [15]:

Mν
R =











x 0 z

0 0 y

z y 1











MR (4)
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Following the flavor-charge assignments given in footnote [30], we expect |y| ∼ 〈S/M〉 ∼
1/10, |z| ∼ (〈S/M〉)2 ∼ 10−2(1 to 1/2, say), |x| ∼ (〈S/M〉)4 ∼ (10−4-10−5) (say). The ”22”

element (not shown) is ∼ (〈S/M〉)2 and its magnitude is taken to be < |y2/3|, while the ”12”

element (not shown) is ∼ (〈S/M〉)3.. We expect MR = f33〈1̄6H〉2/Mstring ≈ (1015 GeV)(1/2-

2) for 〈1̄6H〉 ≈ 2×1016 GeV, Mstring ≈ 4×1017 GeV [32] and f33 ≈ 1. Allowing for 2-3 mixing,

this value of MR [together with the SU(4)-color relation m(νDirac
τ ) = mt(MGUT) ≈ 110 GeV]

leads to m(ντ
L) ≈ (1/20 eV)(1/2-2) [12, 15], in good accord with the SuperK data.

Ignoring possible phases in the parameters and thus the source of CP violation for a

moment, as was done in Ref. [15], the parameters (σ, η, ε, ε′, η′,M0
u,M0

D, and y) can be

determined by using, for example, mphys
t = 174 GeV, mc(mc) = 1.37 GeV, mS(1 GeV) = 110-

116 MeV, mu(1 GeV) = 6 MeV, the observed masses of e, µ, and τ and m(νµ
L)/m(ντ

L) ≈
1/15-1/8 (as suggested by a combination of atmospheric and solar neutrino data, including

SMA and LMA solutions) as inputs. One is thus led, for this CP conserving case, to the

following fit for the parameters, and the associated predictions [15]. [In this fit, we drop

|ζu,d
22 | . (1/3)(10−2) and leave the small quatities x and z in M ν

R undetermined and proceed

by assuming that they have the magnitudes suggested by flavor symmetries (i.e., x ∼ (10−4-

10−5) and z ∼ 10−2(1 to 1/2) (see remarks below Eq. (4))]:

σ ≈ 0.110, η ≈ 0.151, ε ≈ −0.095, |η′| ≈ 4.4 × 10−3,

ε′ ≈ 2 × 10−4, M0
u ≈ mt(MX) ≈ 110 GeV,

M0
D ≈ mb(MX) ≈ 1.5 GeV, y ≈ −(1/20 to 1/17).

(5)
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These in turn lead to the following predictions for the quarks and light neutrinos [15]:

mb(mb) ≈ (4.7-4.9) GeV,

Vcb ≈
∣

∣

∣

∣

√

ms

mb

∣

∣

∣

η+ε
η−ε

∣

∣

∣

1/2

− √mc

mt

∣

∣

σ+ε
σ−ε

∣

∣

1/2

∣

∣

∣

∣

≈ 0.044,










θosc
νµντ

≈
∣

∣

∣

∣

√

mµ

mτ

∣

∣

∣

η−3ε
η+3ε

∣

∣

∣

1/2

+
√

mνµ

mντ

∣

∣

∣

∣

≈ |0.437 + (0.258 − 0.353)|,

Thus, sin2 2θosc
νµντ

≈ 0.92-0.99, (for m(νµ)/m(ντ ) ≈ 1/15-1/8),

Vus ≈
∣

∣

∣

√

md

ms
− √mu

mc

∣

∣

∣
≈ 0.20,

∣

∣

∣

Vub

Vcb

∣

∣

∣
≈ √mu

mc
≈ 0.07,

md(1 GeV) ≈ 8 MeV, m(ντ
L) ≈ (1/20 eV)(1/2-2),

θosc
νeνµ

≈ 0.06 (ignoring non-seesaw contributions).

(6)

The Majorana masses of the RH neutrinos (NiR ≡ Ni) are given by:

M3 ≈ MR ≈ 1015 GeV (1/2-2),

M2 ≈ |y2|M3 ≈ (2.5×1012 GeV)(1/2-2), (7)

M1 ≈ |x − z2|M3 ∼ (1/2-2)10−5M3 ∼ 1010 GeV(1/4-4).

Leaving out the νe-νµ oscillation angle for a moment, it seems remarkable that the first

seven predictions in Eq. (6) agree with observations, to within 10%. Particularly intriguing

is the group-theoretic correlation between the contribution from the first term in Vcb and that

in θosc
νµντ

, which explains simultaneously why one is small (Vcb) and the other is large (θosc
νµντ

).

That in turn provides some degree of confidence in the gross structure of the mass-matrices.

As regards νe-νµ and νe-ντ oscillations, the standard seesaw mechanism would typically

lead to rather small angles as in Eq. (6), within the framework presented above [15]. It

has, however, been noted recently [16] that small intrinsic (non-seesaw) masses ∼ 10−3 eV

of the LH neutrinos can arise quite plausibly through higher dimensional operators of the

form [33]: W12 ⊃ κ1216116216H16H10H10H/M3
eff , without involving the standard seesaw

mechanism [10]. One can verify that such a term would lead to an intrinsic Majorana mixing

mass term of the form m0
12ν

e
Lνµ

L, with a strength given by m0
12 ≈ κ12〈16H〉2(175 GeV)2/M3

eff ∼
(1.5-6)×10−3 eV, for 〈16H〉 ≈ (1-2)MGUT and κ12 ∼ 1, if Meff ∼ MGUT ≈ 2×1016 GeV [34].

Such an intrinsic Majorana and νeνµ mixing mass ∼ few×10−3 eV, though small compared
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to m(ντ
L), is still much larger than what one would generically get for the corresponding

term from the standard seesaw mechanism [as in Ref. [15]]. Now, the diagonal (νµ
Lνµ

L) mass-

term, arising from standard seesaw can naturally be ∼ (3-8)×10−3 eV for |y| ≈ 1/20-1/15,

say [15]. Thus, taking the net values of m22 ≈ (6-7)× 10−3 eV, m0
12 ∼ 3× 10−3 eV as above

and m0
11 � 10−3 eV (as in [15]), which are all plausible, we obtain mνµ

≈ (6-7) × 10−3 eV,

mνe
∼ (1 to few) × 10−3 eV, so that ∆m2

12 ≈ (3.6-5) × 10−5 eV2 and sin2 2θosc
12 ≈ 0.6-0.7.

These go well with the LMA MSW solution of the solar neutrino puzzle.

In summary, the intrinsic non-seesaw contribution to the Majorana masses of the LH

neutrinos can possibly have the right magnitude for νe-νµ mixing so as to lead to the LMA

solution within the G(224)/SO(10)-framework, without upsetting the successes of the first

seven predictions in Eq. (6). [In contrast to the near maximality of the νµ-ντ oscillation

angle, however, which emerges as a compelling prediction of the framework [15], the LMA

solution, as obtained above, should, be regarded only as a consistent possibility within this

framework.]

Before discussing leptogenesis, we need to discuss the origin of CP violation within the

G(224)/SO(10)-framework presented above. The discussion so far has ignored, for the sake

of simplicity, possible CP violating phases in the parameters (σ, η, ε, η ′, ε′, ζu,d
22 , y, z, and x)

of the Dirac and Majorana mass matrices [Eqs. (1), and (4)]. In general, however, these pa-

rameters can and generically will have phases [35]. Some combinations of these phases enter

into the CKM matrix and define the Wolfenstein parameters ρW and ηW [36], which in turn

induce CP violation by utilizing the standard model interactions. As observed in Ref. [18],

an additional and potentially important source of CP and flavor violations (as in K0 ↔ K̄0,

Bd,s ↔ B̄d,s, b → ss̄s, etc. transitions) arise in the model through supersymmetry [37],

involving squark and gluino loops (box and penguin), simply because of the embedding of

MSSM within a string-unified G(224) or SO(10)-theory near the GUT-scale, and the as-

sumption that primordial SUSY-breaking occurs near the string scale (Mstring > MGUT) [38].

It is shown that complexification of the parameters (σ, η, ε, η ′, ε′, etc.), through introduc-

tion of phases ∼ 1/30-1/2 (say) in them, still preserves the successes of the predictions as

regards fermion masses and neutrino oscillations shown in Eq. (6), as long as one maintains
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nearly the magnitudes of the real parts of the parameters and especially their relative signs

as obtained in Ref. [15] and shown in Eq. (5) [39]. Such a picture is also in accord with

the observed features of CP and flavor violations in εK, ∆mBd, and asymmetry parameter

in Bd → J/Ψ + Ks, while predicting observable new effects in processes such as Bs → B̄s

and Bd → Φ + Ks [18].

We therefore proceed to discuss leptogenesis concretely within the framework presented

above by adopting the Dirac and Majorana fermion mass matrices as shown in Eqs. (1) and

(4) and assuming that the parameters appearing in these matrices can have natural phases

∼ 1/30-1/2 (say) with either sign up to addition of ±π, while their real parts have the relative

signs and nearly the magnitudes given in Eq. (6).

3 Leptogenesis

In the context of an inflationary scenario [40] with a reheat temperature TRH ∼ (1 to few)109

GeV (say), one can avoid the well known gravitino problem if m3/2 ∼ (1 to 2) TeV [41] and

yet produce the lightest heavy neutrino N1 efficiently from the thermal bath for M1 ∼
(3 to 5) × 109 GeV [see Eq. (7)]. Given lepton number violation (through the Majorana

mass of N1) and CP violating phases in the fermion mass-matrices as mentioned above, the

out-of-equilibrium decays of N1 (produced from the thermal bath) into l + ΦH and l̄ + Φ̄H

systems would produce a lepton asymmetry. We will assume this commonly adopted scenario

to discuss leptogenesis. (We will comment later, however, on an interesting alternative

possibility proposed in Ref. [42].) The lepton asymmetry of the universe [YL ≡ (nL − nL̄)/s]

arising from decays of N1 into (l + ΦH) and (l̄ + Φ̄H) is given by:

YL = dε1/g
∗ (8)

where ε1 is the lepton-asymmetry produced per N1 decay (see below), d is a dilution factor

that represents washout effects due to inverse decay and lepton number violating scattering,

and g∗ ≈ 228 is the number of light degrees of freedom for MSSM.

The lepton asymmetry YL is converted to baryon asymmetry, by the sphaleron effects,
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which is given by:

YB =
nB − nB̄

s
≈ C YL, (9)

where, for MSSM, C = −8/15 ≈ −1/2. Taking into account the inteference between the

tree and loop-diagrams which induce N1 → (l + ΦH) and N1 → (l̄ + Φ̄H)-decays, the lepton-

asymmetry parameter ε1 is given by [14, 43]

ε1 =
1

8πv2(M †
DMD)11

∑

j=2,3

Im
[

(M †
DMD)j1

]2

f(M2
j /M2

1 ) (10)

where MD is the Dirac neutrino mass matrix evaluated in a basis in which the Majorana

mass matrix of the RH neutrinos M ν
R [see Eq. (4)] is diagonal, v = (174 GeV) sin β and

the function f ≈ −3(M1/Mj) for the case of SUSY with Mj � M1. The dilution factor

appearing in Eq. (8) is obtained by solving Boltzmann equations and is approximately given

by [40, 44]:

d ≈



















0.3
k(ln k)0.6 (10 . k . 106)

1
2k

(1 . k . 10)

1 (0 . k . 1)

(11)

where k ≡ [Γ(N1)/(2H)]T=M1
is given by:

k =
MP1

1.66
√

g∗(8πv2)

(M †
DMD)11

M1

. (12)

Here MP1 = Planck mass ≈ 1.2 × 1019 GeV.

Given the Dirac and Majorana mass matrices of the neutrinos [Eqs. (1) and (4)], we are

now ready to evaluate lepton assymetry by using Eqs. (8)-(12).

The Majorana mass matrix [Eq. (4)] describing the mass-term νT
RCMν

RνR is diagonalized

by the transformation νR = U
(1)
R U

(2)
R NR, where (to a good approximation)

U
(1)
R ≈











1 0 z

0 1 y

−z −y 1











, (13)

and U
(2)
R = diag(eiφ1, eiφ2 , eiφ3) is a diagonal phase matrix that ensures real positive eigen-

values. The phases φi can of course be derived from those of the parameters in M ν
R [see Eq.
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(4)]. Applying this transformation to the neutrino Dirac mass-term ν̄LMD
ν νR given by Eq.

(1), we obtain MD = MD
ν U

(1)
R U

(2)
R , which appears in Eqs. (10) and (12). In turn, this yields:

(M †
DMD)21

(M0
u)

2 = ei(φ1−φ2){
(

−3ε′
∗ − ζ∗

13y
∗
)

(ζ11 − zζ13)

+ [ζu∗
22 − y∗ (σ∗ − 3ε∗)] [3ε′ − z (σ − 3ε)] + (ζ31 − z) [(σ∗ + 3ε∗) − y∗]}(14)

(M †
DMD)11

(M0
u)

2 = |3ε′ − z(σ − 3ε)|2 + |ζ31 − z|2 (15)

In writing Eqs. (14) and (15), we have allowed, for the sake of generality, the relatively small

“11”, “13”, and “31” elements in the Dirac mass-matrix MD
ν , denoted by ζ11, ζ13 and ζ31

respectively, which are not exibited in Eq. (4). Guided by considerations of flavor symmetry

(see footnote [30]), we would expect |ζ11| ∼ (〈S〉/M)4 ∼ 10−4-10−5, and |ζ13| ∼ |ζ31| ∼
(〈S〉/M)2 ∼ 10−2(1 to 1/3) (say). These small elements (neglected in [15]) would not, of

course, have any noticeable effects on the predictions of the fermion masses and mixings

given in Eq. (6), except possibly on md.

We now proceed to make numerical estimates of lepton and baryon-asymmetries by taking

the magnitudes and the relative signs of the real parts of the parameters (σ, η, ε, η ′, ε′, and

y) approximately the same as in Eq. (5), but allowing in general for natural phases in

them. As mentioned before [see for example the fit given in footnote [39] and Ref. [18]

(to appear)] such a procedure introduces CP violation in accord with observation, while

preserving the successes of the framework as regards its predictions for fermion masses and

neutrino oscillations [15, 18].

Given the magnitudes of the parameters (see Eqs. (5) and Ref. [39]), which are obtained

from considerations of fermion masses and neutrino oscillations [15, 18] – that is |σ| ≈ |ε| ≈
0.1, |y| ≈ 0.06, |ε′| ≈ 2 × 10−4, |z| ∼ (1/200)(1 to 1/2), |ζu

22| ∼ 10−3(1 to 3), |ζ13| ∼ |ζ31| ∼
(1/200)(1 to 1/2), with the real parts of (σ, ε and y) having the signs (+, -, -) respectively,
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we would expect the typical magnitudes of the three terms of Eq. (14) to be as follows:

|1st Term| =
∣

∣

(

−3ε′
∗ − ζ∗

13y
∗
)

(ζ11 − zζ13)
∣

∣

≈
[

(6 to 8) × 10−4
] [

(2.5 × 10−5)(1 to 1/4)
]

∼ 10−8

|2nd Term| = |{ζu∗
22 − y∗ (σ∗ − 3ε∗)} {3ε′ − z(σ − 3ε)}| (16)

≈
(

2 × 10−2
) [

2 × 10−3(1 to 1/2)
]

≈
(

4 × 10−5
)

(1 to 1/2)

|3rd Term| = |(ζ31 − z) {(σ∗ + 3ε∗) − y∗}|

≈ [(1/200)(1 to 1/3)](0.14) ≈
(

0.7 × 10−3
)

(1 to 1/3)

Thus, assuming that the phases of the different terms are roughly comparable, the third

term would clearly dominate. The RHS of Eq. (15) is similarly estimated to be:
(

M †
DMD

)

11

(M0
u)

2 = |3ε′ − z(σ − 3ε)|2 + |ζ31 − z|2

≈
∣

∣6 × 10−4 ∓ 2 × 10−3(1 to 1/2)
∣

∣

2
+

∣

∣5 × 10−3(1 to 1/3)
∣

∣

2
(17)

≈ 2.5 × 10−5(1 to 1/9)

Since |ζ31| and |z| are each expected to be of order (1/200)(1 to 1/2), we have allowed for

a possible mild cancellation between their contributions to |ζ31 − z| by putting |ζ31 − z| ≈
(1/200)(1 to 1/3) (say). Note that this combination enters into the dominant terms of both

(M †
DMD)21/(M0

u)
2 [see the third term in Eq. (16)] and (M †

DMD)11/(M0
u)

2 [see the second

term in Eq. (17)]. As a result, to a good approximation, the lepton-asymmetry parameter

ε1 [given by Eq. (10)] becomes independent of the magnitude of |ζ31 − z|2 and thereby of the

uncertainty in it. It is given by:

ε1 ≈
1

8π

(M0
u

v

)2

|(σ + 3ε) − y|2 sin (2φ21) (−3)

(

M1

M2

)

≈ −
(

2.4 × 10−6
)

sin (2φ21) , (18)

where, φ21 = arg[(ζ31 − z)(σ∗ + 3ε∗ − y∗)] + (φ1 − φ2), and we have put (M0
u/v)2 ≈ 1/2,

|σ + 3ε − y| ≈ 0.14 (see Eq. (5) and Ref. [39]), and for concreteness M1/M2 ≈ (4 ×
109 GeV)/(2 × 1012 GeV) ≈ 2 × 10−3 [see Eq. (7)]. The parameter k, given by Eq. (12), is

(approximately) proportional to |ζ31 − z|2 [see Eqs. (16) and (17)]. It is given by:

k ≈ (MP l/M1)

1.66
√

g∗(8π)

(M0
u

v

)2

|ζ31 − z|2 ≈ 60(1 to 1/9), (19)

12



where, as before, we have put M1 = 4 × 109 GeV and |ζ31 − z| ≈ (1/200)(1 to 1/3). The

corresponding dilution factor d [given by Eq. (11)], lepton and baryon-asymmetries YL and

YB [given by Eqs. (8) and (9)] and the requirement on the phase-parameter φ21 are listed

below:

|ζ31 − z|

1/200 (1/200)(1/1.7) (1/200)(1/3)

k 60 20 7

d 1/466 1/129 1/14

YL/ sin(2φ21) −2.26 × 10−11 −8.2 × 10−11 −7.5 × 10−10

YB/ sin(2φ21) 1.13 × 10−11 4.1 × 10−11 3.7 × 10−10

φ21 ∼ π/4 & π/15 ∼ π/100-π/25

Table 1

The constraint on φ21 is obtained from considerations of Big-Bang nucleosynthesis, which

requires 1.7×10−11 . YB . 9×10−11 [1]. We see that the first case |ζ31−z| ≈ 1/200 leads to a

baryon asymmetry YB that is on the borderline even for a maximal sin(2φ21) ≈ 1. The other

cases with |ζ31 − z| ≈ (1/200)(1/1.7 to 1/3), which are of course perfectly plausible, lead to

the desired magnitude of the baryon asymmetry for natural values of the phase parameter

sin(2φ21) ∼ (1/5 to 1/30) [45].

We now comment briefly on the scenario proposed in Ref. [42], in which the inflaton

decays directly into a pair of heavy RH neutrinos, which in turn decay into l + ΦH and

l̄+Φ̄H and thereby generate lepton asymmetry, during the process of reheating. Confining to

the fermion mass-pattern in Sec. 2 [Eqs. (1), (4) and (7)], a very similar conclusion as above

as regards leptogenesis can be reached also within this alternative scenario. It turns out that

this scenario goes well with the mass-pattern of Sec. 2 [especially Eq. (7)], in full accord with

the gravitino-constraint and observed baryon-asymmetry, provided 2M2 > minfl > 2M1, so

that the inflaton decays into 2N1 rather than into 2N2 (contrast this from the case proposed in

Ref. [42]). In this case, defining the superpotential W = κS(−M 2 +Φ̄Φ)+(non-ren. terms),
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as in Ref. [42], where Φ and Φ̄ are the (1, 2, 4) and (1, 2, 4̄) Higgs fields and S is a singlet

field, one obtains [42]: minfl =
√

2κM , where M = 〈(1, 2, 4)H〉 ≈ 2 × 1016 GeV, Γinfl ≈
[1/(8π)](M1/M)2minfl and TRH ≈ (1/7)(ΓinflMPl)

1/2 ≈ (1/7)(M1/M)[minflMPl/(8π)]1/2. For

concreteness, take M2 ≈ 2×1012 GeV, M1 ≈ 1010 GeV (1 to 2) [in accord with Eq. (7)], and

minfl ≈ 3 × 1012 GeV (choosing κ ≈ 10−4). We then get: TRH ≈ (1 to 2)(0.8 × 108 GeV),

and thus (see e.g., Sec. 8 of Ref. [40]), YB ≈ −YL/2 ≈ (−1/2)(ε1TRH/minfl) ≈ (1 to 2)2(8 ×
10−11 sin 2φ21), where we have used Eq. (18) with appropriate (M1/M2), as above. This

agrees with the observed value of YB ≈ 4×10−11 (say), again for a natural value of the phase

parameter φ21 ≈ (1/4)(1 to 1/4), where the second factor corresponds to M1 ≈ 1010 GeV (1

to 2) [46].

To conclude, we have considered two alternative scenarios for inflation and leptogenesis.

We see that the G(224)/SO(10) framework provides a simple and unified description of not

only fermion masses and neutrino oscillations (consistent with maximal atmospheric and

large solar oscillation angles) but also of baryogenesis via leptogenesis, treated within either

scenario. The existence of the right-handed neutrinos, B-L as a local symmetry, quark-lepton

unification through SU(4)-color, the seesaw mechanism and the magnitude of the supersym-

metric unification-scale play crucial roles in realizing this unified and successful description.

These features in turn point to the relevance of either G(224) or SO(10) symmetry being

effective between the string and the GUT scales, in four dimensions. While the observed

magnitude of the baryon asymmetry seems to emerge naturally from within the framework,

understanding its observed sign (and thus the relevant CP violating phases) remains a chal-

lenging task.

Acknowledgements

I would like to thank Kaladi S. Babu for many collaborative discussions on CP violation,

as it arises within the G(224)/SO(10)-framework, which is directly relevant to the present

work. I have benefitted from discussions with Gustavo Branco, Tsutumo Yanagida, and

especially Qaisar Shafi on several aspects of this work. The sabbatical support by the

14



University of Maryland during the author’s visit to SLAC, as well as the hospitality of the

Theory Group of SLAC, where this work was carried out, are gratefully acknowledged. The

work is supported in part by DOE grant no. DE-FG02-96ER-41015.

References

[1] See e.g., K. A. Olive, G. Steigman and T. P. Walker, Phys. Rep. 333, 389 (2000); D. E.

Groom et al., Particle Data Group, Eur. Phys. J. C15, 1 (2000).

[2] V. Kuzmin, V. Rubakov and M. Shaposhnikov, Phys. Lett. B155, 36 (1985).

[3] M. Fukugita and T. Yanagida Phys. Lett. B174, 45 (1986); G. Lazarides and Q. Shafi,

Phys. Lett, B258, 305 (1991); M. A. Luty, Phys. Rev. D45, 455 (1992). The second

paper discusses leptogenesis in the context of inflationary cosmology.

[4] For an incomplete list of references on further works on leptogenesis see e.g., M. Flanz,

E. A. Pascos and U. Sarkar, Phys. Lett. B345, 248 (1995); L. Covi, E. Roulet and F.

Vissani, Phys. Lett. B384, 169 (1996); W. Buchmüller and M. Plümacher, Phys. Lett.
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