
STUDY OF INTRABEAM SCATTERING IN LOW-ENERGY ELECTRON
RINGS

Marco Venturini�

Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309 USA
Abstract

The paper contains a study of intrabeam scattering in a
low energy electron storage ring to be used as part of a
Compton back-scattering x-ray source. We discuss time
evolution of emittances and dependence of IBS growth
rates on lattice parameters.

1 INTRODUCTION

Practical use of Compton back-scattering for x-ray pro-
duction has been suggested by several authors. Recently Z.
Huang and R. Ruth [1] proposed a novel scheme that in-
volves the interaction between a laser pulse trapped in an
optical cavity and a fast recirculating electron bunch. The
proposal is currently being considered for implementation.

The size of the required storage ring is naturally small
(to boost the electron-photon collision rate) and the energy
low. Production of x-rays of the order of 1 Å– a value of in-
terest in many applications – using a 1 � wavelength laser
requires an electron energy of only about 25 MeV. While
appealing for obvious reasons such a low value for the en-
ergy gives the machine performance the unusual feature of
being limited by intrabeam scattering (IBS). Relatively low
emittances in all three degrees of freedom are desired to
achieve acceptably high brightness. Transverse (normal-
ized) emittances and relative momentum spread should be
of the order of 10�6 � 10�5 m and 10�3 respectively for
a given reasonable choice of the other relevant parameters
(N = 6 � 109 particles/bunch, 1 cm rms bunch length,
��x ' ��y ' 1 cm at interaction, 3 m ring circumference
and 3 mJ laser pulse energy in the optical cavity). With
these phase-space dimensions the IBS growth time is a few
msecs, much shorter than the radiation damping time due
to either synchrotron light or x-ray emission (which are of
the order of 1 sec). The goal of this study is to carry out a
detailed calculation of the IBS growth rates for a realistic
lattice and determine an adequate value for the repetition
rate necessary to maintain acceptable beam quality.

2 IBS THEORY

An IBS theory can be built on two basic assumptions:
i) particles undergo random and uncorrelated collisions ii)
collisions are properly described by the Rutherford cross
section. On this basis one can derive a diffusion equa-
tion with drift and diffusion coefficients depending on the
beam distribution [3]. By making additional assumptions
on the form of the beam distribution one can then derive
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Figure 1: Lattice functions; �–functions are in m, �x is in
units of 10 cm.
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Figure 2: Lattice functionHx (solid line) in units of 10 cm
and �Bx (dimensionless).

expressions for the emittance growth rates. This is done
in [2] for gaussian beams. The two theories by Bjorken-
Mtingwa (BM) and Piwinski are basically equivalent – ex-
cept for some different approximations employed. In this
study we mostly used the BM formulation – a part from oc-
casional comparisons with Piwinski’s. BM expressions for
the growth rates of the transverse (unnormalized) rms emit-
tances ��1x = "�1x d"x=dt, ��1y = "�1y d"y=dt and relative
momentum spread ��1p = �p

�1d�p=dt for a bunch of N
charged particles with relativistic factor 0 can be written
in the form
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where �Bi is the function�Bi = �0i+�i�i=�i and�i, �i, i
and �i are the usual lattice and dispersion functions in the
horizontal (i = x) and vertical (i = y) plane. The integrals
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are defined in terms of the matrix � = 1�+ L, with
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stant A = cr2cN log�c=(8��
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"x"y�p�s) involves the

classical radius of the particle rc, the rms bunch length �s,
the relativistic factor �0 and the so-called Coulomb loga-
rithm with �c ' 2=�m. In emittance dominated beams the
minimum Coulomb scattering angle �m is determined by
bunch sizes. We set log�c = 16. The quantities on the
RHS of (1)-(3) are understood to be averaged h� � �is along
the lattice. The following calculations were carried out
using the specifically written Mathematica package Math-
Lattice. The package (based in part on the package Syn-
chrotronDesign [4] for determining the lattice functions)
computes the integrals (4) efficiently using the Mathemat-
ica built-in functions. When the eigenvalues of L are non-
degenerate (degenerate) the integrals (4) reduce to combi-
nations elliptical integrals (elementary functions). Close
to degeneracy the integrals are most accurately evaluated
from their Taylor expansion in the differences of the eigen-
values.
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Figure 3: Local IBS growth rates along the lattice. Thick
lines refer to calculation done according to Bjorken-
Mtingwa; thin lines are calculated according to Piwinski.
The vertical growth rate 1=�y is magnified by a factor 100.

3 DISCUSSION

The present discussion will be mostly based on the case-
study lattice shown in Figs. 1 and 2 (the two pictures are
relative to half lattice). The lattice has a two-fold symme-
try and includes four 900 bends and 14 quads for a total
length of 3:36 m. The tunes are �x = 2:36 and �y = 1:40.

Dispersion is suppressed in the two main straight sections
to accommodate injection elements and an RF cavity on the
one side and interface with the optical cavity on the other.
At the IP (s = 0) with the laser pulse the betatron functions
have the values ��x = 0:86 cm and ��x = 0:99 cm. In the
IBS calculations we included no errors and in particular no
vertical dispersion (i.e. Hy = �By = 0). As a result of the
absence of coupling with the longitudinal motion the IBS
growth rate in the vertical plane ��1y is about two order of
magnitudes smaller than ��1x and ��1z . See Fig 3. Under
the assumption that the bunch distribution remains gaussian
in all three degrees of freedom one can use equation (1)-(3)
for the growth rates to evaluate the emittance and relative
momentum spread over time. The bunch length is related to
the relative momentum spread by �s(t) = �s0�p(t)=�p0,
with �s0 = �s(0) and �p0 = �p(0).

0 0.005 0.01 0.015 0.02
t �sec�

1

1.5

2

2.5

3

Σp�Σp0

Εx
n�Εx0

n

Εy
n�Εy0

n

Figure 4: Evolution of (normalized) rms emittances (in m)
and relative momentum spread. E = 25 MeV.

Table 1: Evolution of emittances and momentum spread.
Initial values: "nx0 = "ny0 = 5�, �p0 = 10�3.

t=0.016 sec t=0.008 sec
E (MeV) 18 25 36 18 25 36
"nx (�) 13.5 13.2 12.7 10.8 10.6 10.1
"ny (�) 4.97 4.98 4.99 4.98 4.99 4.99

�p (10
�3) 2.66 2.32 2.00 2.26 1.98 1.7

In the calculation radiation effects can be neglected be-
cause, as already pointed out, the corresponding damping
time is much longer than the IBS time scale. An exam-
ple of solution with initial conditions "nx0 = "ny0 = 5 �,
�p0 = 10�3 is shown in Fig. 4. Other relevant parameters
are N = 6 � 109, �s0 = 1 cm, E = 25 MeV. One can
see that over an interval of 20 msec the vertical emittance
remains unchanged while the horizontal emittance and mo-
mentum spread increase by about a factor 3 and 2.5 respec-
tively. Intermediate changes at t = 0:0166 and t = 0:008
sec corresponding to repetition rates of 60 and 120 Hz are
reported in Table 1. Because the storage ring should func-
tion over a range of energies to allow tunability of the x-ray
source, the calculation has been repeated for E = 18 MeV
and E = 36 MeV – which define an interval of interest in
applications like, for example, protein crystallography. The



results are also reported in Table 1.
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Figure 5: Scaling of the s-averaged integrals Iij with re-
spect to the beam energy for "nx = "ny = 5 �, �p =
2� 10�3.
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Figure 6: Emittances and relative momentum spread devi-
ation as functions of tune after t = 0:0166 sec. Lattice
treated in the smooth approximation.

An interesting question concerns the possibility of con-
trolling the effect of IBS by an appropriate design of the lat-
tice. Let us take a closer look at Eqs. (1)–(3) and single out
the relevant terms. First observe that the s-averaged inte-
gral expressions hIxxis and hIzzis have about the same or-
der of magnitude for values of the emittances falling in our
range of interest, see Fig. 5. Moreover, these quantities ap-
pear to depend mainly on the averaged values of the lattice
functions rather than the details of their profile. The same
picture also shows hjIxzjis � jhIxxisj or hIzzis. Because
Hx ' 10 cm, �x ' 1 m and 0 ' 50 we conclude that on
the RHS of Eq. (1) the dominant term is 2

0
hHxIzzis="x.

These observations are consistent with the profiles of the
IBS growth rates reported in Fig 3. Notice that while 1=�x
shows a strong correlation with Hx (Fig. 2), 1=�z (i.e. Izz)
is roughly constant along the lattice except at the IP (s=0)
where both �–functions become very small causing the de-
nominator in the integrand (4) also to be small. Inciden-
tally, in Fig. 3 also observe the reasonably good agreement
between the IBS rates as calculated according to BM and
Piwinsky. Because the main difference in Piwinki calcula-
tion comes from neglecting derivatives of the lattice func-

tions the agreement suggests that the smooth approxima-
tion for the lattice we are considering may be reasonable
good.

In the smooth approximation we have Hx ' �3x=R
2

where R is the average radius of curvature. The expres-
sion ��1x ' 2

0
hHxIzzis="x = 2

0
�3xhIzzi=("xR2) sug-

gests that a way to minimize ��1x is to decrease �x (i.e. in-
crease the tune) provided that at the same time Izz does not
increase too much. Indeed this is the case. As it happens,
the net effect of increasing the tune is to make 1=�x smaller
and 1=�z larger. Another way to appreciate this comple-
mentarity between horizontal and longitudinal growth rates
is to recall the existence (again in the smooth approxima-
tion) of the invariant
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which was first pointed out by Piwinski. [Existence of this
invariant is not mentioned in the BM paper but can be easily
derived from (1)-(4) after observing that Ixx+Iyy+Izz = 0
and Ixz = 0 (the latter only holds in the smooth approxima-
tion)]. In the smooth approximation hHx=�xis = 1=�2x =
mom. compaction. Because for E ' 25 MeV, �x ' 2 we
have (1=2

0
� 1=�2x) < 0 (i.e. the machine is above transi-

tion), from (5) we deduce that an increase in �p results into
an increase in "x. However, for a given increase in �p the
growth of "x is less pronounced if the factor (1=20�1=�2x)
is smaller in absolute value. Above transition its absolute
value can be decreased by increasing the tune. This trade-
off is summarized in Fig. 6, which reports the variation of
emittances and momentum spread after t = 0:016 sec as
calculated by solving the equations for the evolution of the
emittances in the smooth approximation. A similar trade-
off is also expected to apply to the nonsmooth lattice, with
the difference that the function to minimize in order to keep
the growth of "x under control is hHxis rather than 1=�2x.

In conclusion, we have shown that a 0.5 m radius, 25
MeV electron storage ring can operate at a 120 Hz repeti-
tion rate with emittance degradation due to IBS of about a
factor 2. An exchange between the growth in momentum
spread and the horizontal emittance is possible in principle
by an appropriate modification of the lattice.

This work was carried out in close collaboration with R.
Loewen, A. Kabel, and R. Ruth and was supported by DOE
contract DE–AC03–76SF0051.
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