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Abstract

We present a model to study in a self-consistent way the interplay between in-
trabeam scattering and wake-field forces in low-emittance high-intensity electron
storage rings. The regime of interest is that of the damping rings for the next
generation of linear colliders.
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1 Introduction

This work is being motivated by recent measurements at the ATF [1] - a prototype damping
ring for future linear colliders - that have shown the relevance of the interplay between
(multiple collision) intrabeam scattering (IBS) and longitudinal wake fields. The interplay
stems from the fact that both effects help determine and in turn are affected by the bunch
phase-space distribution. The proper framework to study the combination of these two
effects is a Vlasov-Fokker-Planck (VFP) equation. In plasma physics a FP modeling of
particle collisions has long been established. Here we recall how to adapt the general FP
description to the case of charged-particle beams and we then derive a reduced 1D VFP
equation for the sole longitudinal motion with the inclusion of wake field forces and radiation
effects. In this form the problem can be studied by numerically solving the reduced PDE for
the longitudinal beam distribution and two ordinary differential equations for the evolution
of the transverse emittances. A code for finding the solutions of the reduced problem has
been written and an example of equilibrium distribution for a choice of parameters relevant
for the ATF at moderate current is shown for illustration. Future work will include studying
equilibria at high current and the effects of IBS on the onset of microwave instability and
beam dynamics above the instability threshold.

2 The VFP Equation

Our model of beam dynamics is the equation

∂f

∂s
+ {f,H} =

(
∂f

∂s

)
c

+ FPrad(f) (1)

obeyed by the beam distribution function in the 6D phase space f = f(X; s), with X =
(x, px, y, py, z, pz). The first two pairs of canonical coordinates, are relative to the motion
in the horizontal and vertical planes, while z describes the longitudinal displacement with
respect to the synchronous particle and pz = ∆p/p is the relative deviation of the total
momentum from the design value; s is the independent ’time-like’ variable giving the location
of a particle along the lattice. The Hamiltonian H may include wake-field and possibly
space charge forces in addition to the external forces provided by the magnetic lattice and
RF cavities; {·, ·} are the Poisson brackets. The first term on the RHS represents the effect
of collisions and the second that of synchrotron radiation. For the collision term we use a
Fokker-Planck approximation (which can be obtained from the Boltzmann collision integral
by doing a small angle expansion and retaining the lowest order terms [2]), (∂f/∂t̃)c �
F̃Pc(X) with (i, j = x, y, z)

F̃Pc(X) = −∑
i

∂

∂p̃i

(f̃ D̃i) +
1

2

∑
i,j

∂2

∂p̃i∂p̃j

(f̃ D̃ij). (2)

The tilde ˜ denotes quantities in the beam rest frame; in this frame (x̃, p̃) ≡ X̃ are the
actual position and mechanical momentum. Drift D̃i and diffusion D̃ij coefficients can be
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written as

D̃i(x̃, p̃) = Γ
∂

∂p̃i

∫ f̃(x̃, p̃′)
|p̃ − p̃′|d

3p̃′, (3)

D̃ij(x̃, p̃) =
Γ

2

∂2

∂p̃i∂p̃j

∫
f̃(x̃, p̃′)|p̃ − p̃′|d3p̃′, (4)

where Γ = 8πm3c4r2c log Λc, with rc being the classical radius of the particle and log Λc �
log(2/θm) is the so called Coulomb logarithm. For emittance dominated beams the minimum
scattering angle θm is determined by bunch sizes. The integrals in (3) and (4) are known
in plasma physics as ‘Rosenbluth potentials’ although it appears they were first derived by
Landau.

To obtain the Fokker-Planck equation in the lab frame it is just a matter of applying the
proper transformation to Eq. (2). In the paraxial approximation the transformation from
the lab frame coordinates X to the beam frame coordinates X̃ is just a scaling, which can
be represented by a diagonal matrix M, X̃ = MX . Invariance of the number of scattered
particles as recorded in the two frames FPc(X)d6Xds = F̃Pc(X̃)d6X̃dt̃ permits writing
the Fokker-Planck term in the lab frame in terms of (2): FPc(X) = F̃Pc(MX)/|detM|γ0v0,
having used ds = v0dt, where v0 is the design beam velocity in the lab frame, and the
relativistic time dilation dt = γdt̃. If we denote as N the part of transformation M relative
to the momenta only we have N11 = N22 = p0 and N33 = p0/γ0 (off-diagonal terms vanish)
and the VFP equation in the Lab frame can be written as

∂f

∂s
+ {f,H} = −∑

i

∂

∂pi
(fDi) +

1

2

∑
i,j

∂2

∂pi∂pj
(fDij), (5)

with

Di =
Γ

γ2
0v0N

2
ii

∂

∂pi

∫
f(x,p′)

|N(p − p′)|d
3p′,

Dij =
Γ

2γ2
0v0N

2
iiN

2
jj

∂2

∂pi∂pj

∫
f(x,p′)|N(p − p′)|d3p′,

having also made use of f(X) = |detM|f̃(MX) = p3
0f̃(MX). For a discussion on the range

of applicability of the VFP equation we refer the reader to e.g. [2]. The familiar IBS growth
rates for the emittances [3] can obtained after multiplying both sides of Eq. (5) by second
powers of momenta and integrating over the phase space variables under the assumption
that the distribution function f is gaussian.

3 A Reduced 1-D VFP Equation

For the beam we assume a distribution of the form

f(X) =
Ng(z, pz)

(2π)2εxεy
exp [−Sx(X) − Sy(X)] , (6)
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with the horizontal and linear invariants given by

Sx = [βx(px − pzη
′
x)

2 + 2αx(x− pzηx)(px − pzη
′
x)

+ γx(x− pzηx)
2]/2εx. (7)

(Similar expression for Sy). Here αx, βx, γx are the Courant functions and ηx is the dispersion
function. Let the Hamiltonian Hz for the longitudinal motion be that of an ultra-relativistic
electron bunch experiencing linear RF forces and single-turn wake fields. Such a Hamiltonian
reads [4]

Hz =
1

2
p2

zαc +
1

2αc

(
νs

R

)2

z2 +

I
∫ ∞

z
dz′′

∫ ∞

−∞
dz′W (z′′ − z′)ρz(z), (8)

where W (z′′ − z′)/2πR has the meaning of averaged (over one turn) longitudinal electric
field per unit charge acting on a test particle in z′′ due to a point source at z′; R is the
machine radius; ρz =

∫
dpzg(z, pz) is the longitudinal beam density; νs the synchrotron

oscillation tune; αc the momentum compaction and finally I = e2N/2πRcp0. The reduced
VFP equation obeyed by g is obtained from Eq. (5) by integrating with respect to the
transverse coordinates. This leads to

∂g

∂s
+ {g,Hz} = − ∂

∂pz

(gD̂z) +
1

2

∂2

∂p2
z

(gD̂zz) + FPrad(g), (9)

where the drift and diffusion coefficients due to IBS are

D̂z =
∫
dx⊥dp⊥f(X)Dz(x,p), (10)

D̂zz =
∫
dx⊥dp⊥f(X)Dzz(x,p), (11)

with Dz and Dzz given by the expressions at the end of the previous Section. The last term
on the RHS of (9) represents the Fokker-Planck term associated with the effects of radiation
on the longitudinal motion. It can be written as

FPrad(g) =
2

cτ rad
p

∂

∂pz

(
pzg + σ2

p0

∂

∂pz
g

)
, (12)

where τ rad
p is the longitudinal damping time and σp0 the natural (relative) momentum spread

of a bunch at equilibrium due to sole radiation effects. The results of integration in (10) and
(11) are best written in terms of the auxiliary function

Fα(u) =
∫ ∞

0
dλ
λαe−[A33+λ−A13/(A11+λ)]u2/4

(λ+ βx/εx)
1
2 (λ+ βy/εy)

1
2

. (13)

After defining A = Nr2c log(Λc)/2
√
πβ4

0γ
5
0εxεy and uz = (pz − p′z)/γ0 we have

D̂z = −A
∫ ∞

−∞
dp′zg(z, p

′
z)uzF 1

2
(uz),

D̂zz =
A

2

∫ ∞

−∞
dp′zg(z, p

′
z)[2F− 1

2
(uz) − u2

zF 1
2
(uz)].
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with A11 = βxεx, A122 = βyεy, A33 = Hx/εx and A13 = −(βxη
′
x + αxηx)εx. The RHS of the

above expressions are understood to be averaged over the lattice.
Eq. (9) is not self-contained because the IBS drift and diffusion coefficients depend on

the transverse emittances. The evolution of the transverse emittances can be determined
by solving a pair of ODE’s using the familiar expressions for the IBS growth [3], radiation
damping and excitation rates. At each time step these equations require specification of
longitudinal rms bunch size and momentum spread, which are determined from the solution
g of (9). Notice that this scheme is not completely self-consistent because the familiar IBS
growth rates are derived on the assumption that the beam distribution is gaussian while g,
in general, is not.

4 Numerical Study

To solve the VFP equation (9) with the FP term including both radiation and IBS effect
we follow the method proposed in [4] with a modified implementation to improve efficiency.
The longitudinal distribution function g is represented on a N × N cartesian grid (for the
calculations reported below N = 201). Evaluations of the Vlasov and the Fokker-Planck
part are carried out separately (operator splitting). While the FP part is treated using the
Crank-Nicholson method, propagation of the distribution function under the actions of the
Vlasov part of Eq. (9) is done using the map M ≡ Ms→s+δs expressing the Hamiltonian
flow from ’time’ s to s + δs, g(z, pz; s+ δs) = g (M−1(z, pz); s). For M we used a 2nd order
symplectic approximation, including the action of both the external and wake forces: this
an improvement over the first order integrator in [4]. A third order polynomial interpolation
is carried out at each time step to evaluate g on the grid points [in general, if (z, pz) is a grid
point M−1(z, pz) is not]. The evolution of the emittances is calculated using a second order
Runge-Kutta method.
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Figure 1: Evolution of relative momentum spread σp =
√
〈pz〉2/σp0 and transverse emit-

tances; I=1.0 mA.

For the purpose of illustrating the method we show an example of solution representing a
beam distribution approaching equilibrium. The various parameters are relative to the ATF
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Figure 2: Equilibrium distributions in the absence of IBS (Haissinski solutions) for I=1.0
and 1.9 mA; q = z/σs0 is the scaled longitudinal distance, σs0 the natural bunch length in
the zero-current limit.

[1, 5]. The wake field potential W (τ) is approximated by a RL model in the form W (τ) =
cR̂δ(τ) + c2L̂δ′(τ) where R̂ and L̂ are the resistive and inductive part of the impedance and
δ is the Dirac function. An estimate of R̂ and L̂ is reported in [5]. For this calculation
R̂ = 1.1 kΩ and L̂ = 39 nH. The example presented in the picture is relative to operations
at V=150 volts corresponding to a synchrotron oscillation frequency of ωs = 44.4 kHz. The
radiation longitudinal damping time is about 150 synchrotron oscillation periods. Fig. 1
shows the evolution of relative momentum spread and emittances for a circulating current
of I = 1 mA corresponding to N � 2.9 × 109 particles/bunch. The initial distribution
(s = 0) is set to be the equilibrium distribution both longitudinally and transversally in the
absence of IBS with the longitudinal profile of the distribution (Haissinski solution) shown
in Fig. 2 (the distribution in pz is a gaussian). The initial values of the transverse emittances
having assumed a 1% x/y-coupling [1] are εx0 = 10−9 m and εy0 = 10−11. The growth in
the bunch sizes in all three dimensions shown in the picture is entirely due to IBS. Afer
about np = 150 synchrotron oscillation periods (corresponding to the longitudinal radiation
damping time) the longitudinal distribution appears to be already close to equilibrium (the
transverse distribution is not settled yet because of the longer transverse damping times).
The relative momentum spread distribution at np = 380 is reported in Fig. 3 (solid line)
together with an equivalent gaussian distribution having the same second moment (the initial
p−distribution is also displayed). The picture shows that the momentum distribution (which
is not far from equilibrium) is different from but still very close to being gaussian.

I would like to thank A. Kabel, R. Ruth, and in particular R. Warnock and K. Bane for
useful discussions and assistance. Work supported by DOE contract DE–AC03–76SF0051.
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