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Abstract

In the presence of RF focusing and a purely inductive impedance bunch equilibria
in the form of Häıssinski distributions – when they exist – are linearly stable. This
is the case whether the potential well distortion associated with the impedance
causes bunch lengthening or shortening. We provide a general proof of this
fact using Hamiltonian methods and energy principles. In the presence of bunch
shortening our analysis indicates that there is a critical current for linear stability.
However, this threshold is identical to the critical current defining the condition
for the very existence of a Häıssinski equilibrium.
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1 Introduction

The study of linear stability of longitudinal beam dynamics in accelerators or storage rings
is usually done by normal mode analysis. While rigorous and well established in reference
to coasting beams the method is not totally satisfactory when applied to bunched beams.

For coasting beams the problem of linear stability is analogous to that of plasma waves
in a homogeneous medium, a complete solution of which was first provided by Landau [1]
– the only difference being in the form of the interaction potential. Landau’s method is
set as an initial value problem involving use of the Fourier (or Laplace) transform on the
linearized Vlasov equation but, as later shown by van Kampen and Case [2, 3], the procedure
is equivalent to determining the eigenmodes of the system.

The basic complication in treating bunched beams is the coupling between the azimuthal
modes that are very naturally introduced to represent the distribution function in phase
space. As a consequence, Landau’s technique in its original form cannot be applied. In-
stead, one introduces an additional expansion in radial modes and tries to cast the resulting
linearized Vlasov equation in the form of a finite-dimension eigenvalue problem – upon suit-
able truncation of the expansion [4]. There are various difficulties with this procedure. On
the one hand the linearized equation has the form of a singular integral equation – the sin-
gularity being where the coherent frequencies equal the single particle frequencies – and its
discretization is not well grounded mathematically [5], leaving the convergence with respect
to the order of truncation dubious at least. On the other hand, even if normal modes can
be determined exactly their completeness is usually difficult or impossible to prove – thus
excluding from consideration possible perturbations that cannot be represented as superpo-
sition of normal modes.

Because of these limitations it would be of great interest to be able to study the stabil-
ity problem using methods different from mode decomposition. Natural candidates are the
energy principles and Hamiltonian methods that have successfully been employed in a num-
ber of problems of plasma physics, astrophysics, and galactic dynamics [6, 7, 8, 9, 10, 11].
When they apply these methods can be very powerful and allow for full characterization of
linear and possibly even non-linear stability. Unfortunately, we have to temper the reader’s
enthusiasm and add that in the study of longitudinal beam dynamics they only apply if
the machine impedance is purely inductive. Although quite peculiar this is nevertheless a
sufficiently important case to deserve our attention. Purely inductive impedances are often
used in theoretical models, including those describing longitudinal space-charge effects [14].

We will discuss two different but closely related approaches. In both cases demonstra-
tion of (linear) stability is reduced to proving that a certain functional defined over the
space of distribution functions representing deviations from equilibrium is positive definite.
These techniques differ in the way the functional is constructed starting from the ascertained
existence of a suitable invariant.

The first method [6, 7, 8] tries to identify the desired invariant by exploiting the Hamil-
tonian nature of the system. One assumes the point of view that the beam distribution
function is itself a dynamical variable in an infinite dimensional Hamiltonian (although not
necessarily canonical) field theory. Upon suitable definition of a Hamiltonian functional and
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Lie-Poisson brackets, equivalence is established between the Vlasov equation and the equa-
tions of motion for this field theory. The sought invariant is then identified as the effective
Hamiltonian generating the linearized equations of motion.

The second method [9, 10, 11] uses the analogy between the linearized Vlasov equation
and that of a harmonic oscillator to identify an invariant quantity analogous to the energy.
The analogy is not immediate and only becomes apparent after re-expressing the linearized
Vlasov equation as a second order equation in time. This can be done by using a decomposi-
tion of the distribution function in even and odd components with respect to its dependence
on momentum.

By applying these methods we will be able to show that in the presence of a purely
inductive impedance bunch equilibria in the form of Häıssinski distributions are always
linearly stable – when they exist. We recall that the potential well distortion associated with
a purely inductive impedance can cause either bunch lengthening or shortening – depending
on the algebraic sign of the impedance, machine lattice, and beam energy. In the presence
of bunch shortening it is possible to determine a critical value for linear stability. However,
we will also show that for currents above this threshold a Häıssinski equilibrium does not
even exist implying that the linear theory does not apply. The collective forces are so
overwhelming that no stationary distribution can be put together.

The rest of the paper is organized as follows. After stating the problem and establishing
notation (Sec. 2), we will introduce the two methods separately in Sec. 3 and 4. A discussion
of the stability results will be presented in Sec. 5 and the Conclusions will follow.

2 Vlasov Equation

Longitudinal beam dynamics in a storage ring is the result of interaction with RF cavities
providing longitudinal focusing, coupling with wake fields and - if the current intensity is
particularly high - space charge. All these effects are Hamiltonian in nature. In this paper
non-Hamiltonian effects due to synchrotron radiation will be neglected except for the purpose
of defining physically meaningful equilibria (at least for high-energy electrons).

Following the notation used in [4, 13] we work with the normalized variables q = z/σz

and p = −(E − E0)/σE, where z is the distance from the synchronous particle, E is the
particle energy, and E0 the beam design energy. For bunched beams the scaling factors σz

and σE are conveniently chosen to obey σE/σz = E0νs/|η|R, where νs is the synchrotron
oscillation tune, η the slippage factor, and R the ring average radius. The above relationship
holds if – for instance – σz and σE are taken to be the rms longitudinal size and energy
spread of a gaussian bunch (in the limit of vanishing current). In passing, we recall that in
the relativistic limit the synchrotron tune νs depends on the RF wavelength λrf and peak
voltage Vrf as ν2

s = |η|eVrfR/E0λrf , where e is the particle charge.
A beam is customarily described by a distribution function f(q, p) in phase space obeying

the Vlasov equation
∂f

∂t
= [H, f ], (1)

where [., .] are the Poisson brackets and H is the ‘single-particle’ Hamiltonian. Assuming the
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linear approximation for the RF force, in the canonical coordinates q and p the Hamiltonian
H reads:

H =
1

2
p2 +

1

2
q2 + Uf (q), (2)

provided that we interpret the independent time-like variable t as t = sνs/R, where s is the
orbit arclength (in which case ∆t = 2π corresponds to one period of synchrotron oscillations).
The beam-distribution dependent potential Uf describes the action of the wake-field forces.
The effect of the wake force is usually modelled in terms of the wake function W (q − q′).
Specifically, W (q− q′)/2πR has the meaning of the longitudinal electric field per unit charge
acting on a test particle in q due to a point charge in q′. We have

Uf (q) = I
∫ q

−∞
dq′

∫ ∞

−∞
dq′′W (q′ − q′′)ρ(q′′), (3)

where ρ(q) =
∫

f(q, p)dp is the normalized longitudinal charge density and the parameter
I = sgn(η)Ne2/2πνsσE (with the meaning of a normalized current) is proportional to the
number of particles N in the bunch. Here, we shall be concerned with the specific case of
a purely inductive impedance [14] Z(ω) = −iωL. We will refer to this impedance as purely
inductive whether the parameter L is positive or negative although when L < 0 one often
speaks of purely capacitive impedance [14]. The latter provides a model for longitudinal
space-charge effects [14, 15].

The wake-function for a purely inductive impedance is the Fourier transform W (q) =∫
dω exp(−iωσzq/c)Z(ω)/2π = −(c2/σ2

z)δ̂
′(q) where δ̂ is the Dirac δ-function (here ′ denotes

derivation with respect to q). With this choice of wake-function the Vlasov equation (1)
takes the form:

∂f

∂t
− ∂f

∂p

(
q + IL

d

dq

∫ ∞

−∞
f(q, p′)dp′

)
+ p

∂f

∂q
= 0, (4)

where IL = Ic2/σ2
z . Equation (4) admits an infinite number of equilibria: any arbitrary

function of the Hamiltonian is, in fact, a stationary solution (i.e. ∂f0/∂t = 0). However, we
restrict ourselves to Häıssinski distributions [14], which are of the form f0 = f̂0 exp(−H0),
with f̂0 being a normalization constant and H0 the Hamiltonian evaluated at f = f0 , or
equivalently

f0 =
e−p2/2

√
2π

ρ0(q), (5)

where ρ(q) is solution of the Häıssinski equation

dρ0

dq
(1 + ILρ0) = −qρ0, (6)

with normalization
∫

ρ(q)dq = 1. We recall that Häıssinski distributions are physical equi-
libria that are realized in the presence of radiation effects. In the limit IL → 0 a Häıssinski
distribution becomes a gaussian. Solutions corresponding to IL > 0 (e.g. machine with
positive momentum compaction above transition and L > 0) and IL < 0 display bunch
lengthening and shortening respectively (see Fig. 1). We will comment more on the IL < 0
case later in Sec. 5.
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Figure 1: Examples of charge density profiles ρ0(q) of Häıssinski distributions for IL > 0
(displaying bunch lengthening), IL < 0 (displaying bunch shortening) and IL = 0 (gaussian
distribution).

The problem we are concerned with is whether Häıssinski equilibria are stable under
small perturbations obeying the linearized Vlasov equation. As usual one sets f = f0 + f1,
where f1 is a small perturbation and H = H0 +H1 (where H0 and H1 are the portions of the
Hamiltonian that depend on f0 and f1 respectively) so that the linearized Vlasov equation
reads:

∂f1

∂t
= [H0, f1] + [H1, f0], (7)

with

[H1, f0] = IL
∂f0

∂p

d

dq

∫ ∞

−∞
dp′f1(q, p

′) ≡ Kf1, (8)

[H0, f1] =

(
q + IL

dρ0

dq

)
∂f1

∂p
− p

∂f1

∂q
≡ Df1. (9)

The last equalities serve as definitions of the operators D and K, which will be used later.
The analysis presented in the following will apply to bunched as well to unbunched beams.

It is useful then to mention how our notation changes for coasting beams. First, in scaling
the canonical variable z it is convenient to set the scaling factor σz equal to the machine
average radius σz = R so that q = z/R has the meaning of an angle. Next, by defining the
’time’ as t = s|η|σE/E0R the Hamiltonian becomes formally the same as in Eq. (2) with the
term q2/2 dropped and with the definition of I given by I = e2NcE0/2πσ2

Eη, where Nc is the
total number of circulating particles. The Häıssinski distribution is the same as in Eq. (5)
but with constant ρ0(q) = 1/2π.
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3 Hamiltonian Method

3.1 The Non-Canonical Infinite-Dimensional Formalism

It was first pointed out by Morrison [6] that the Vlasov-Maxwell equations can be viewed in
the framework of infinite-dimensional Hamiltonian systems. Here we apply this perspective
to the Vlasov equation describing charged particle beams. This entails interpreting a beam
distribution function as a ‘point’ in an infinite dimensional ‘phase space’.

The key ingredient in a Hamiltonian system is the existence of a bilinear operator such
that the set of dynamical variables together with this operator is a Lie-algebra. We recall
that by definition dynamical variables are functions (or functionals – in the infinite dimen-
sional case) with domain in phase space. For finite-dimension canonical Hamiltonian systems
such an operator is represented by the familiar Poisson brackets [·, ·]. The Hamiltonian is
characterized as the generator of the time evolution of any dynamical variable including the
canonical variables themselves

q′ = [q, H], p′ = [p,H]. (10)

As we move to infinite-dimensional and not necessarily canonical systems we want to
maintain the notion that a Hamiltonian still generates the equations of motion in conjunction
with a more general linear operator – the Lie-Poisson brackets – with all the properties
(antisymmetry, Jacobi identity) that one demands in order to have a Lie-algebra.

The challenge is to find suitable definitions of a Hamiltonian H and Lie-Poisson brackets
{·, ·} so that the equation of motion for this infinite dimensional theory

d

dt
F [f ] = {F [f ],H[f ]} (11)

is equivalent to the Vlasov equation (1). We emphasize that (11) is a functional equation,
the Hamiltonian H itself is a functional and the Lie-Poisson brackets define an operation
between functionals.

Quite naturally, the choice for the Hamiltoninan H proposed by Morrison is the mean
energy of the system. In our case the single-particle Hamiltonian H is

H(q, p; t) =
1

2
p2 +

1

2
q2 +

IL

2

∫ ∞

−∞
dp′f(q, p′), (12)

so that for H we have

H[f ] =
∫

dqdpf(q, p)
(

1

2
p2 +

1

2
q2 +

IL

2

∫ ∞

−∞
dp′f(q, p′)

)
. (13)

The factor 1/2 before the last integral on the RHS comes from avoiding double counting of
particle interactions. In turn, the Lie-Poisson brackets are defined through

{A,B}[f ] =
∫ ∫

dqdpf

[
δA
δf

,
δB
δf

,

]
, (14)
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where δ·/δf is the functional derivative and [·, ·] are the usual Poisson-brackets. This defi-
nition is consistent because functional derivatives are functions in q and p and the Poisson-
brackets operate on functions. We recall that the functional derivative δA/δf of a functional
A is defined as the kernel of the integral expression that identifies the first variation of that
functional

δA[f ; δf ] =
∫ ∫ δA

δf
δfdqdp. (15)

In turn, first variations can be calculated using the familiar prescription †

δA[f ; δf ] =
d

dt
A[f + tδf ]

∣∣∣
t=0

. (16)

It can be verified [6] that the brackets {·, ·} are bilinear and are legitimate Lie-Poisson
brackets fulfilling the antisymmetry condition and Jacobi identity:

{A,B} = −{B,A},
{A, {B, C}}+ {B, {C,A}}+ {C, {A,B}} = 0. (17)

Equipped with the machinery of the calculus of variations one is ready to show that equation
(11) is, in fact, the Vlasov equation in disguise. To this end we first need to identify those
functionals F that can be related to beam distributions. We choose F = Fq,p[f ] ≡ f(q, p).
With abuse of notation Eq. (11) is then generally written as

∂

∂t
f = {f,H}. (18)

That is, one identifies the functional Fq,p with a point in the ’phase space’ of this system,
i.e. the function f itself. This is completely analogous to the abuse of notation that one
commits in writing the canonical equations (10) where the symbols q and p are used to
denote both a point in phase space (as arguments of the Hamiltonian function H) as well as
the components of the function expressing the coordinates of that point.

To verify the equivalence between (11) [or (18)] and (1) one has to make use of the
boundary conditions limq,p→±∞ f = 0 and the various definitions we have outlined. It helps
to observe that δFq,p[f ; δf ] = δf and from definition (15),

δFq,p

δf(q′, p′)
= δ̂(q − q′)δ̂(p− p′), (19)

δH
δf

= H, (20)

where the δ̂’s are Dirac δ-functions.

†Strictly speaking Eq. (16) defines a weak (or a ’Gâteaux’) differential, while what is needed is a strong
(or ’Fréchet’) differential. However, it can be shown that if a strong differential exists it is identical to the
weak differential.
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Before ending the Section one has to make some important observations concerning the
existence of the so-called Casimir functionals [7, 8]

C[f ] =
∫

dqdpχ(f), (21)

where χ(f) is an arbitrary function. These functionals are all invariant {H, C} = 0. The
existence of an infinite number of constant of motions has implications in the description of
the geometry of the phase space [6]. In the following, however, we will be more interested
in the additional property that the Lie-Poisson brackets of a Casimir with any f vanish:
{f, C} = 0. A consequence is that the Morrison Hamiltonian H is not uniquely defined.
Clearly any Hc = H + C will generate the same equation of motion as H. As we will see
next, this freedom in choosing the Hamiltonian will be crucial to our ability to characterize
stability of the linearized motion.

3.2 Linearized Equation

To study the solution of the Vlasov equation in the linear approximation we proceed by
making a Taylor expansion in (18) around the Häıssinski solution : f = f0 + f1. Alerted by
the observation made in the last paragraph we choose as Hamiltonian Hc = H+C with C to
be determined. To carry out the calculation we need a first order expansion around f = f0

for the functional derivative δHc/δf [7]

δHc

δf
' δHc

δf

∣∣∣∣∣
f0

+
1

2

δ(δ2Hc)

δf1

, (22)

where the second variation is defined as δ2Hc = δ2Hc[f0; f1, f1] = d/dt (δHc[f0 + tf1; f1]) |t=0.
Through first order

∂f1

∂t
'

∫
dqdpf1


δ̂(q − q′)δ̂(p− p′),

δHc

δf

∣∣∣∣∣
f0


 +

∫
dqdpf0

[
δ̂(q − q′)δ̂(p− p′),

1

2

δ(δ2Hc)

δf1

]
. (23)

Let us now focus our attention on the last term and notice the similarity with the ex-
pression defining the Lie-Poisson brackets in (14). The only difference is that here the kernel
of the integral is f0 as opposed to the dynamical variable f . As one can guess the last term
in Eq. (23) is yet another instance of Lie-Poisson brackets [7]. Indeed, one can verify that
the brackets {·, ·}L defined by

{A,B}L[f ] =
∫ ∫

dqdpf0

[
δA
δf

,
δB
δf

]
(24)

satisfy all the properties (17). Moreover, observe that if in (23) the term with the derivative
δHc/δf happened to vanish we could write the linearized equation in a Hamiltonian form

∂f1

∂t
= {f1,

1

2
δ2Hc}L (25)
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with the second variation δ2Hc/2 playing the role of an effective Hamiltonian for the lin-
earized motion. This is where we exploit the freedom of choosing Hc: we will show in a
moment that by selecting a suitable Casimir it is indeed possible to make Hc stationary in
f0 i.e. to have δHc/δf = 0 so as to remove the undesired term in (23).

From definition (21) evaluation of the functional derivative of the Casimir is straightfor-

ward δC
δf

= dχ(f)
df

. Now, we wish to determine a χ(f) such that

δHc

δf

∣∣∣∣∣
f0

=
δH
δf

∣∣∣∣∣
f0

+
δC
δf

∣∣∣∣∣
f0

= H0 +
dχ

df

∣∣∣∣∣
f0

= 0. (26)

Being interested in stationary solutions of Häıssinski form f0 = f̂0 exp(−H0) we can imme-
diately conclude that the equation above is satisfied if dχ(f)/df |f=f0 = log(f0/f̂0).

Once the equation for the linearized motion has been established we can immediately
draw some conclusions regarding stability. First of all, one should observe that the effective
Hamiltonian δ2Hc is an invariant under linear motion (i.e. {δ2Hc, δ

2Hc}L = 0, because of
the antisymmetry property of {·, ·}L). This suggests that if δ2Hc or −δ2Hc were positive
definite over the set of all perturbations one could use δ2Hc itself to define a norm ‡ i.e.
‖f1‖ ≡ |δ2Hc[f0; f1, f1]|. The fact that for all times t > 0 one has ‖f1(t)‖ ≤ ‖f1(t = 0)‖ is a
statement of linear stability.

The last task is to evaluate δ2Hc = δ2H+ δ2C in f0. From the expression of the Morrison
Hamiltonian (13):

δ2H =
d2

dt2
H[f0 + tf1]

∣∣∣∣∣
t=0

= IL

∫
dqdpf1(q, p)

∫
dp′f1(q, p

′), (27)

while the second variation of the Casimir functional is

δ2C =
d2

dt2

∫
dqdp

∫ f0+tf1

log

(
f

f̂0

)
df

∣∣∣∣∣
t=0

=
∫

dqdp
f 2

1

f0

. (28)

In summary,
1

2
δ2Hc =

1

2

∫
dqdp

f 2
1

f0

+
IL

2

∫
dq

[∫
f1(q, p)dp

]2

. (29)

It is a useful exercise to verify that indeed the reduced equation (25) is identical to the
linearized Vlasov equation (7) and that (29) is a linear invariant.

Because the first term on the RHS of (29) is always positive a sufficient condition for
linear stability is

δ2Hc[f0; f1, f1] > 0, ∀f1 ∈ Σ, (30)

where Σ is the set of all physically admissible perturbations. The functions f1 belonging to
Σ are required to satisfy the following very mild conditions. They should i) be differentiable,

‡One has to make sure that this is, in fact, a legitimate definition of a norm – it is in our case.

9



ii) decay sufficiently fast at infinity in order for the integrals in (29) to exist, and iii) be
consistent with charge conservation

∫ ∫
f1dqdp = 0.

A simple inspection of the functional (29) shows that condition (30) is always satisfied if
IL > 0. The case IL < 0 requires some more work and will be discussed in detail in Sec. 5.
We remark that within this framework one cannot prove that (30) is necessary for stability.
However, a necessary condition can be established by using the different but closely related
argument that will be presented in the next Section.

4 The Laval-Mercier-Pellat Energy Principle

Suppose we were presented with an equation of the form

∂2f1

∂t2
= −Lf1, (31)

where L is a linear operator defined on the space Σ 3 f1 representing first order perturbations
f1. If L were a trivial operator whose action were to multiply the function f1 by a constant
L , i.e. Lf1 = Lf1, then the equation above would simply be that of a harmonic oscillator.
Energy conservation would imply stability if the potential energy term Lf 2/2 were positive
for all f1 - i.e. if L > 0. A generalization of this idea to non-trivial operators underlies the
Laval-Mercier-Pellat (LMP) energy principle [9, 10]. The key ingredient is the existence of
a scalar product 〈·, ·〉 in the space Σ with respect to which the operator L is self-adjoint. It
is easy to verify that if such a scalar product exists the ‘energy’ functional

E [f ] = T [f ] + U [f ], (32)

naturally defined in terms of the ‘kinetic energy’ T [f ] = 〈f ′, f ′〉/2 and ‘potential energy’
functionals U [f ] = 〈f,Lf〉/2 is invariant (i.e. E ′ = 0) if f is solution of Eq. (31). Here a
prime ′ denotes differentiation with respect to time. Because T [f ] is always positive definite if
one can prove that the ’potential energy’ term U [f ] is positive over all possible displacements
f1 one can immediately conclude from energy invariance and Eq. (32) that the solution f
cannot grow indefinitely (i.e. 〈f ′, f ′〉 must be bounded). That is, like Eq. (29)

U [f1] > 0, ∀f1 ∈ Σ, (33)

is a sufficient condition for stability. In addition, one can prove that if there exists a dis-
placement ψ such that U [ψ] < 0 one can find at least one solution that grows exponentially
(see Appendix A). In other terms Eq. (33) unlike Eq. (29) is also necessary for stability.

This is an interesting result but, of course, useful only if one is able to cast the linearized
Vlasov equation (7) in the form (31) of a second order equation in time. This can be done
using a trick suggested by Antonov [12, 11]. The idea is to decompose f into even and odd
parts with respect to momentum inversion i.e. f1 = f+ + f− with

f±(q, p) =
1

2
[f1(q, p)± f1(q,−p)]. (34)
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If we insert this expression into Eq. (7) and set to zero the even and odd parts separately
we find:

∂f+

∂t
= Df−, (35)

∂f−
∂t

= Df+ +Kf+, (36)

having used the definitions of the operators H and K introduced in Eq. (8) and (9), the facts
that

∫∞
−∞ dpf−(q, p) = 0 and ∂f0/∂p is odd in p. After differentiating (36) with respect to

time the two equations above can be combined into

∂2f−
∂t2

= D2f− +KDf− ≡ −Lf−, (37)

which is in the form (31), as desired, with L = −(D2 +KD). The next step is to introduce
a scalar product 〈·, ·〉. A suitable choice for any two functions f, g ∈ Σ is

〈f, g〉 =
∫ fg

f0

dqdp, (38)

with the weigh function f0 being the equilibrium distribution.
The key point now is to show that the operator L is self-adjoint with respect to this

scalar product. This can be done, as usual in this kind of calculations, by carrying out
integration by parts and using the boundary conditions limq,p→±∞ f, g = 0. In terms of this
scalar product we can then evaluate the ‘potential energy’ functional

U [f−] =
1

2
〈f−,Lf−〉 = −1

2
〈f−,D2f−〉 − 1

2
〈f−,KDf−〉. (39)

Again, evaluation of the two terms requires carrying out integrations by parts and use of the
boundary conditions:

〈f−,D2f−〉 = −
∫ (Df−)2

f0

dqdp,

〈f−,KDf−〉 = −IL

2

∫
dq

[∫
dpDf−

]2

.

We finally obtain the following expression for the potential energy functional

U [f−] =
1

2

∫ (Df−)2

f0

dpdq +
IL

2

∫
dq

[∫
Df−dp

]2

. (40)

We recognize that (40) has a form very similar to that of the functional (29). Again,
if IL > 0 then U [f−] is certainly positive for all f− ∈ Σ− implying that the system is
linearly stable [recall (33)]. Here, with Σ− we indicate the subset of the physically admissible
perturbations belonging to Σ that are invariant under momentum inversion. On the ohter
hand, if IL < 0 and U [f−] < 0 for some displacement f− the motion is unstable.
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5 Discussion of Stability

We have already observed that the condition (30) for stability, i.e. δ2Hc > 0, is immediately
satisfied if IL > 0. For IL < 0 the requirement δ2Hc > 0 can be restated as

|IL| <
∫

f 2/f0dqdp
∫

dq (
∫

fdp)2 ≡M[f ], (41)

for all f ∈ Σ. The last equation defines the functional M[f ]. Clearly, the minimum of the
functional M[f ]

Iup
L = −min

f∈Σ
M[f ] (42)

yields a upper bound Iup
L to the threshold of stability. That is, the motion is stable if

IL > Iup
L .

The task now is to determine Iup
L by minimizing M[f ]. To this end it is convenient to

introduce a ’change of variable’ in the definition of M[f ] by re-scaling the trial functions
with respect to the Häıssinski solution f0 and write f = f̃

√
f0. With the understanding that

M is now defined in terms of the functions f̃ :

M[f̃ ] =

∫
f̃ 2dqdp

∫
dq

(∫
f̃
√

f0dp
)2 =

√
2π

∫
f̃ 2dqdp

∫
dqρ0(q)

(∫
f̃ e−p2/4dp

)2 ,

where in the second equality we have used the form (5) of the Häıssinski solution. Next, we
invoke the Schwartz inequality

(∫
f̃ e−p2/4dp

)2

≤
∫

f̃ 2dp
∫

e−p2/2dp, (43)

and write

M[f̃ ] ≥
∫

f̃ 2dqdp
∫

dqρ0

∫
f̃ 2dp

=

∫
f̃ 2dqdp

∫
ρ0f̃ 2dqdp

. (44)

Because Häıssinski solutions ρ0(q) at q = 0 have a maximum ρ̂0 (see remark at the end
of this Section), it is clear that the right hand side of (44) is always larger than 1/ρ̂0. One
can verify that 1/ρ̂0 is in fact a minimum for the operator M and not just a lower bound by
considering the family of functions f̃λ = e−p2/4hλ(q), where hλ(q) = e−q2/2λ/

√
2πλ−Aλ/[1+

(λq)2] with Aλ being a normalization constant chosen to guarantee that
∫ ∫

f̃λ

√
f0dqdp = 0

so that f̃λ

√
f0 ∈ Σ. It is easy to see that in the limit λ → 0 we have M[f̃λ] → 1/ρ̂0.

Therefore, we conclude that Iup
L = 1/ρ̂0.

Similarly, by considering the expression (40) for the functional U we recognize that con-
dition (33) when IL < 0 is equivalent to

|IL| <
∫
(Df−)2/f0dqdp

∫
dq (

∫ Df−dp)2 = M[Df−]. (45)

Notice that one cannot infer that minf−∈Σ−M[Df−] = minf∈ΣM[f ] simply on the basis
of the similarity between (41) and (45) because the codomain DΣ− is only a subset of Σ.
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However, the same conclusion can be reached by repeating the argument above with slight
modifications. As before, we do the scaling f− = f̃−

√
f0. Because Df0 = [H0, f0(H0)] = 0 it

is D(f−
√

f0) =
√

f0Df− enabling us to write

M[Df̃−] =

√
2π

∫
(Df̃−)2dqdp

∫
dqρ0

(∫
e−p2/4Df̃−dp

)2

≥
∫
(Df̃−)2dqdp

∫
ρ0(Df̃−)2dqdp

, (46)

where, again, we have made use of the Schwartz inequality. The last term on the right is ≥
1/ρ̂0. In fact, one can verify that 1/ρ̂0 is a minimum by evaluating the limit limλ→0M[Df̃λ

−] =

1/ρ̂0 over the family of functions f̃λ
− = h(q)pe−p2/4/(p2 + λ), with h(q) = qe−q2/2λ/

√
2λ.

Therefore, minf−∈Σ−M[Df̃−] = 1/ρ̂0.
Because (45) is a necessary condition for stability, we conclude that

Icrit
L = − 1

ρ̂0

. (47)

is in fact a critical current, that is the motion is stable if and only if IL > Icrit
L .

This conclusion applies to bunches as well to coasting beams. However, for bunched
beams we encounter the peculiar situation that the stability condition is the same as the
condition for the existence of the equilibrium (Häıssinski) solution. This can be easily seen
by inspection of the Häıssinski equation (6). Firstly, one observes that in order for physically
acceptable solutions to exists it must be ρ0(q)IL + 1 > 0 for all q. Indeed, if this quantity
were negative at one point the solution would not be normalizable. Secondly, the derivative
dρ0/dq of a normalizable solution is always negative for q > 0 and positive for q < 0. In
other terms, ρ̂0 = ρ0(q = 0) is the function maximum and the condition for a physical
solution to exist can be restated as ρ̂0IL + 1 > 0, consistent with (47). We conclude that in
the presence of a purely inductive impedance for bunched beams – both above and below
transition – a Häıssinski solution, if it exists, is always stable. For negative IL with IL < Icrit

L

an equilibrium solution, however, does not exist and a linear motion analysis does not apply.
Obviously, in this case it is still reasonable to interpret the motion as unstable.

For coasting beams ρ̂0 = 1/2π (see end of Sec. 2) so that Icrit
L = −2π. This is identical

to the threshold predicted by the standard (Landau) linear theory based on wave expansion
(see e.g. [15]). According to this theory one looks for solutions in the form f1 ∝ e−iωt+inq

and then determines the emergence of a positive imaginary part in the frequency ω with the
help of the dispersion relation 1 + IL

2π
[1 + i

√
πΩw(Ω)] = 0, where w is the error function of

complex argument and Ω = ω/
√

2n. The stability condition one deduces is IL/2π > −1, in
accordance with our analysis.
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6 Conclusions

The main result of this paper is a demonstration that longitudinal bunch distributions in
the form of Häıssinski equilibria – if they exist – are always stable in the presence of a purely
inductive impedance. This is the case whether the potential well distortion associated with
the impedance causes bunch lengthening or shortening.

This result should be contrasted to the standard analysis based on mode decomposition.
Using this method the frequencies ω2 for the normal modes ∝ exp(−iωt) are determined
as eigenvalues of an infinite-dimension matrix. For a purely inductive impedance the most
one can do without getting into a numerical calculation is to show that such a matrix is
symmetric implying that ω2 is real. This is consistent with ω being either real (implying
stability) or purely imaginary (implying instability) [4]. Incidentally, that for normal modes
ω2 must be real can also be quickly established from Eq. (31).

We conclude with three final remarks. First, we mention that results similar to those
highlighted in this paper could also have been derived by considering more general non-
Häıissinki equilibria in the form of strictly decreasing monotonic functions of the single-
particle Hamiltonian.

Next, it is worth noticing that the threshold (47) could have been obtained by invoking
the Boussard criterion [16]. Boussard stated that if the wavelength of the instability is
small compared to the bunch length one is permitted to apply the linear analysis valid for
coasting beams. The current of the equivalent coasting beam should be the same as the
peak current for the bunched beam. The example discussed in this paper is an interesting
instance in which Boussard’s criterion appears to give the exact answer. We recall that
Boussard formulated his statement purely on the basis of physical intuition – although later
there have been attempts to put it on a more rigorous ground [17].

Finally, we would like to follow up on the observation made in the Introduction regarding
the exclusive applicability of the methods discussed in this paper to purely inductive wakes.
The problem with more general wake-fields is the lack of symmetry in the interchange be-
tween q and q′ in the primitive of the wake field function S(q − q′) =

∫ q−q′ W (τ)dτ . In
the case of the LMP method of Sec. 4 this prevents the operator L of Eq.(31) from being
self-adjoint. As for the Hamiltonian method of Sec. 3 the difficulty is that the functional
derivative of the Morrison functional Hamiltonian (13) does not equal the single-particle
Hamiltonian [that is, Eq. (20) does not hold]. Whether a different choice of the functional
Hamiltonian could work in the more general case is not clear at this point.
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7 Appendix: Necessity of the Laval-Mercier-Pellat Con-

dition

Here we report the proof [10] that condition (33), i.e. U [f ] > 0, ∀f ∈ Σ is necessary for
instability. In particular it is shown that the functional I[f ] = 〈f, f〉 – representing a norm
of the displacement f – grows at least exponentially if there exists a displacement ψ such
that U [ψ] < 0. The reasoning goes as follows. We take such an ψ to be the initial condition
f+(t = 0) = ψ and we choose the initial time-derivative to be f ′+(t = 0) = p0ψ where p0 is

a positive number defined as p0 = [−U [ψ]/I[ψ]]
1
2 . First, observe that with this choice the

energy functional is initially zero

E [f+(t = 0)] =
1

2
〈p0ψ, p0ψ〉+

1

2
〈ψ,Lψ〉

=
1

2

(
p2

0I[ψ] + U [ψ]
)

= 0, (48)

and because the energy functional is invariant it remains zero at later times.
From the definition of I[f ] if we take the first derivative with respect to time we find

I ′ = 2〈f ′, f〉. As a result of the Schwartz inequality, 〈f, g〉2 ≤ 〈f, f〉〈g, g〉 we can write the
estimate

(I ′[f ])2 = 4〈f, f ′〉2 ≤ 4〈f, f〉〈f ′, f ′〉 = 8T [f ]I[f ]. (49)

On the other hand by taking the second derivative of I we have:

I ′′[f ] = 4T [f ]− 4U [f ] = 8T [f ], (50)

where the last equation follows from the energy E = T + U vanishing. Next, we combine
(49) and (50) to obtain

I ′2
I ≤ I ′′ or

I ′′
I − I ′2

I2
=

d

dt

(I ′
I

)
≥ 0, (51)

from which we infer that I ′
I ≥ const. (52)

The constant of integration is determined by the initial condition const = 2p0, (at t = 0
we have I ′ = 2〈p0ψ, ψ〉, that is I ′/I = 2p0). We finally conclude that I ′ ≥ 2p0I or
I ≥ I0 exp(2p0t).
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