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Abstract

As circular accelerators move towards larger numbers of
bunches and higher beam currents, the task of diagnos-
ing and curing coupled-bunch instabilities becomes ever
harder. This paper describes the use of phase space track-
ing, i.e. reconstruction of bunch phase space trajectories, as
a comprehensive instability diagnostic. A new instability
cure is also presented, based on recent insights into the dy-
namics of unevenly-filled rings. Data is shown from PEP-II
and the ALS, where “optimally shaped” uneven fills have
yielded significant increases in instability thresholds.

1 INTRODUCTION

Modern synchrotron light sources and circular collid-
ers must store high-current charged-particle beams to meet
their design goals. The most serious consequence of high
currents is the possibility of collective instabilities, which
result from self-amplifying electromagnetic interactions
between the beam and its surroundings [1]. In the new ma-
chines, beam current is typically distributed among large
numbers of circulating bunches, so as to avoid single-bunch
instabilities, improve the beam lifetime, and reduce two-
beam effects (in the case of colliders). Consequently, un-
stable coupling between bunches through long-range wake
fields is often the main current-limiting factor.

An N -bunch beam hasN modes of coupled-bunch oscil-
lation. Thus, modern accelerators have hundreds or thou-
sands of potentially unstable modes. This makes insta-
bility diagnosis by conventional techniques quite difficult.
During commissioning, beam conditions are often rapidly
varying and poorly characterised, and during regular opera-
tion, not much time is available for diagnostic experiments.
There is a real need for quicker and more informative mea-
surement and analysis techniques, which must be comple-
mented by imaginative ways of damping coherent motion.

Section 2 describes an instability diagnostic that utilises
phase space trajectories reconstructed from measured
beam-position signals. In addition to enabling estimation
of coherent tunes and bunch tunes with accuracy of a few
Hz, phase space tracking allows new kinds of comparisons
between instability theory and experiment. Such compar-
isons are shown to be useful in distinguishing between the
fast beam-ion instability (FBII) [2, 3] and conventional in-
stabilities in the PEP-II High Energy Ring (HER).

The theory of coupled-bunch instabilities in even fills
(constant bunch spacing, bunch currents) is well under-
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stood [4, 5]. Unfortunately, there is no general analytic so-
lution for the eigenvalues (growth rates and coherent tune
shifts) of an uneven fill, though there have been useful in-
sights into some special cases [6, 7, 8, 9].

In practice, empirically selected uneven fills have suc-
cessfully raised instability thresholds at the Cornell Elec-
tron Storage Ring [10], the SPEAR storage ring [11], the
Advanced Photon Source [12], and a few other machines.
Recently, the longitudinally stabilising effect of interbunch
tune spreads, arising from RF cavity transients induced by
gaps in the fill, has been noted [8, 13].

The following problem is addressed in Section 3: given
an effective beam impedanceZeff (ω) and a maximum
allowable bunch currentimax, how does one distribute
the desired beam currentIo among theh RF buckets to
minimise the largest instability growth ratemaxl[Re(λl)]?
Solutions to this problem are presented in terms of two
physical phenomena that underlie uneven-fill dynamics:
modulation coupling of even-fill eigenmodes (EFEMs) and
fill-induced Landau damping. The term Landau damping
refers to damping of coherent oscillations via a spread in
the resonant frequencies of individual oscillators [14].

All of the experiments shown in this paper were per-
formed with the help of a programmable longitudinal feed-
back (LFB) system, which can digitise and store the oscil-
lation coordinate of each bunch while simultaneously ma-
nipulating feedback parameters [15, 16].

This paper condenses Chapters 5 and 7 of [17].

2 PHASE SPACE TRACKING

The LFB system has been used to record data on longi-
tudinal and transverse instabilities at various accelerators.
A typical piece of data consists of the downsampled oscil-
lation signals of all the bunches over a few tens of ms.

The measured position signalsk
n of bunchk (n is the

sample number) is taken to be the x-coordinate in phase
space. The y-coordinate is usually a scaled version of the
time-derivativeṡk(t), sampled at the same instants. How-
ever, for the purpose of estimating tunes and growth rates, it
is more convenient to calculate the y-coordinate by phase-
shifting the signalssk

n by 90o [18]. Thus, what is referred
to in this paper as the “phase space trajectory” is more ac-
curately termed theanalytic signal trajectoryin the com-
plex plane. In practice, the difference is very small because
bunch oscillations are usually narrowband.

The Cartesian phase space coordinates can be converted
to magnitude-and-phase coordinatesak

n andφk
n. The in-

stantaneous growth rate is1a
da
dt , and the instantaneous os-
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cillation frequency isdφ
dt .

A low-threshold vertical instability that showed up in the
PEP-II HER during commissioning was initially suspected
to be an FBII. Numerous experiments were performed to
confirm this hypothesis, or alternatively, to confirm the
competing hypothesis of an unexpectedly large impedance
resonance somewhere in the ring. These included studies
of the effects of variations in gas pressure, bunch spacing,
train length, and bunch currents on the spectrum of beta-
tron sidebands. These studies did not always give consis-
tent results, because conditions such as beam orbit, vacuum
pressure, coupling, beam size, feedback state, etc. were
sometimes not well controlled during commissioning.

In such cases, we require a diagnostic that is based on
a single measurement (insensitive to parameter drift), and
can be interpreted without knowledge of factors such as
beam size, vacuum pressure, etc. Phase space tracking fills
this need by enabling measurement of tune and growth-
rate variation along a bunch train. The FBII is expected to
produce exponential growth and linear variation of growth
rates and tune shifts along a short bunch train [19].

The vertical instability was investigated using a digi-
tised record of the exponentially growing oscillations of
each bunch, immediately after switching off feedback. The
150-bunch train had a 4.2 ns spacing andIo = 52 mA.
Phase space trajectories were constructed from the data,
and growth rates and tune shifts were calculated using
curve fitting.

Figure 1(a) shows the fitted tunes of bunches 46 to 150,
relative to the tune of bunch 150. The peak-to-peak vari-
ation is less than 50 rad/s. The first 45 bunches were ex-
cluded because they grew to smaller amplitudes and had
smaller signal-to-noise ratios. The growth rates are shown
in Fig. 1(b). As can be expected of conventional insta-
bilities, the growth rate variation across the train is small
enough to be accounted for by the presence of secondary
eigenmodes at small amplitudes. Clearly, growth rates and
tunes do not vary linearly with bunch number. As a result,
the FBII hypothesis was deemed improbable. It is of course
possible that some of the approximations made in [19] do
not apply to the relative time scales of this experiment.

The hypothesis that best fits the results of various experi-
ments performed to find the source of this instability is that
the beam was driven by a large impedance in the interaction
region (IR), which disappeared after subsequent changes to
the shape of the IR [20].

3 CURING INSTABILITIES WITH
UNEVEN FILLS

The most direct approach to solving the uneven-fill
eigenvalue problem is numerical computation of the eigen-
values of theN×N bunch coupling matrix [21]. Alterna-
tively, one could project the coupled-bunch motion onto the
N EFEMs, and calculate the “modal” coupling matrix [22].
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Figure 1: (a) Relative tunes of bunches 46 to 150, calcu-
lated using linear fits to the phase space angle signals of
the bunches. (b) Growth rates of the same bunches, from
exponential fits to the magnitude transientsak.

3.1 Derivation of Modal Coupling Matrix

Due to azimuthal symmetry, the N Fourier vectorsvl =
[1 ejlθ e2jlθ.. e(N−1)jlθ]T ; θ = 2π/N ; l = 0, ..N−1,
make up the eigenmodes of an N-bunch even fill. In the ab-
sence of wake fields, all modes have the same eigenvalue
−dr + jωs, wheredr is the radiation damping rate and
ωs is the longitudinal oscillation frequency. From here on,
we shall use the word “eigenvalue” only for the coherent
eigenvalue shift produced by wake fields.

In the general case, the longitudinal arrival-time errorτn

of thenth bunch centroid is given by

τ̈n + 2dr τ̇n + ω2
sτn = − αe

ETo
Vn, (1)

whereα is the momentum compaction factor,E/e is the
nominal beam energy in Volts,To = 2π/ωo is the revo-
lution period, andVn(t) is the total wake voltage seen by
bunchn. If the bunches are much shorter than relevant
impedance wavelengths,

Vn(t) =
∞∑

p=−∞

N−1∑

k=0

qkW [tpn,k + τn(t)− τk(t− tpn,k)],

whereqk is the charge of bunchk, tpn,k = (n−k−pN)Tb,
Tb is the bunch spacing (To/N ), and the longitudinal wake
function W (t) equals zero whent < 0. The total ring
impedance isZ(ω) =

∫∞
−∞W (t)e−jωtdt.

We shall now switch to the following modal (EFEM) ba-
sis: νm =

∑N−1
n=0 τne−j2π mn

N , τn = 1
N

∑N−1
m=0 νmej2π mn

N .
This is a natural basis for studying fill shape effects. We as-
sume eigenmodes of the formτk = BkejΩt; k = 0, ..N−1.
Similarly, νm = DmejΩt; m = 0, ..N−1. If dr ¿ ωs

and|Ω− ωs| ¿ ωs, the projection ofτ andV onto thelth

EFEM gives:

ν̇l + (dr − jωs)νl =
αefrf

2EQs

N−1∑
m=0

Il−mZlm(ωs)νm
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=
N−1∑
m=0

Almνm, (2)

wherefrf is the RF frequency,Qs = ωs/ωo is the tune,
and the amplitude of thepth revolution harmonic in the
beam spectrum isIp =

∑N−1
k=0 ike−j2π pk

N ; ik = qk/To.

Zlm(ω) = Zeff (lωo + ω)− Zeff
[
(l −m)ωo

]
;

Zeff (ω) =
1

ωrf

∞∑
p=−∞

(pNωo + ω)Z(pNωo + ω) (3)

If the fill is even,Ik = 0 for k 6= 0, and the off-diagonal
elements of the coupling matrixA disappear. The diago-
nal terms yield the well-known equations [5] for even-fill
eigenvalues:λl = αefrf

2EQs
IoZ

eff (lωo+ωs); l = 0, ..N−1.
Most commonly-used fill shapes are close to even (Ik/Io ≈
0 for mostk). Also, Zlm has the same order of sparseness
asZeff . Since the off-diagonal terms are proportional to
Il−mZlm, it is apparent from Eq. (2) that the EFEM ba-
sis makesA sparse. In other words, theA-matrix is sparse
unless bothIk and Zeff are dense, which is not a very
common situation.

3.2 Modulation Coupling

Modulation coupling arises from terms of the form
Il−mZeff (lωo +ωs), which reflect the fact that the lon-
gitudinal beam signal is proportional toikτk, the modula-
tion product of the fill shape and bunch position signals.
For example, assume that the bunches oscillate in EFEMp,
and consequently, the bunch position signal has a frequency
component apω0 + ωs. If the fill shape has a sinusoidal
component atqω0 (Iq is nonzero), then the beam signal has
spectral lines at(p ± q)ω0 + ωs. Thus, modulation by the
fill shape causes coupling between EFEMsp and(p± q).

If IkZeff (kωo) is negligible for allk 6= 0, the modula-
tion coupling terms are the only manifestation of fill un-
evenness. In addition, ifZ(ω) is non-negligible only at
n revolution harmonics, wheren ¿ N , we can approxi-
mate the most unstable eigenvalues by those of an equiva-
lent A-matrix consisting only of then corresponding rows
and columns. This is a great simplification in large rings
with hundreds or thousands of bunches. If we now create
a fill so that onlyIl−m is large, where EFEMl is the most
unstable mode andm is the most stable, we get an equiv-
alentA-matrix that is diagonal except for the coupling be-
tweenνm andνl. This reduces the eigenvalue problem to
a quadratic equation with the solution:

λ =
1
2
(λl + λm)± 1

2

√
(λl − λm)2 + 4C2

l−mλlλm, (4)

where C is a modulation parameter defined byCp =
|Ip|/Io. If Cl−m = 0, the even-fill eigenvaluesλl andλm

are unperturbed. AsCl−m approaches unity (it can never
exceed 1), one eigenvalue approaches zero and the other
approachesλl + λm. This yields the maximum damping.
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Figure 2: Example of fill optimisation.h = 900, Io =450
mA. Solid lines: 50% fill and 25% fill maximise C3 for
imax =1 mA, 2 mA. Dashdot: Reference sinusoid at3ωo.

Algorithm for Optimising Fill Shape It can be shown
that the following algorithm maximisesCp, given the beam
currentIo and the maximum allowable bunch currentimax:
1) For each bucketn in the N -bucket pattern, calculate a
corresponding “weight”cos(2π pn

N ). 2) Pick theB buckets
with the highest weight, and fill each of them to the same
currentimax, whereB = Io/imax. Leave the remaining
buckets empty.

Figure 2 shows two example fills which maximiseC3

whenh = 900, Io = 450 mA, andimax = 1 mA, 2 mA.

3.3 Fill-induced Landau Damping

The second important uneven-fill phenomenon is
potential-well distortion that varies from bucket to bucket,
causing bunch-to-bunch tune variation and Landau damp-
ing. Fill-induced Landau damping arises from terms of the
form Il−mZeff

[
(l − m)ωo

]
in Eq. (2). The tune shift of

bunchk relative to the mean tune is

δωk
s = j

αefrf

2EQs

N−1∑

l=1

[
IlZ

eff (lωo) ej2πkl/N
]

(5)

δωs is purely real, since the real part of the summand is an
odd function ofl, with period N. All unstable modes are
damped by the interbunch tune spread.

If n is the most unstable EFEM, Eq. (5) indicates that a
good strategy would be to design a fill that optimisesCn =
|In|/Io. The best value ofCn for damping EFEMn is
different from the optimum for other EFEMs:

A) Landau damping of EFEMs other thann can be
calculated in the usual way [14], if they are not coupled
to other prominent EFEMs by modulation coupling or by
tune-spread terms on thenth diagonal ofA.

B) Damping of EFEMn is larger than that of other
modes, since the combination of tune spread and fill un-
evenness introduces coupling betweenνn andνN−n. If
Landau damping and coupling toνN−n are the only sig-
nificant effects andλ−n ≈ −λ∗n [23], then the variation of
λn with fill fraction is shown in Fig. 3 (numerical computa-
tion, assuming use of the fill optimisation algorithm). This
figure is symmetric about both axes. Dashed lines show the
evolution ofλn from a few even-fill starting points. Inter-
estingly, in this special case, fill unevenness only seems to
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Figure 3: Graphical look-up table for fill-induced damping
of unstable longitudinal eigenvalueλn asCn is increased
from 0 (100% of ring filled) to0.5 (61% filled). Dashed
lines: Evolution ofλn from a few even-fill starting points.

reduce the growth rateRe(λ), without changing the coher-
ent tuneIm(λ) very much. EFEMn is best damped by
maximisingCn, i.e., by minimising the fill fraction.

3.4 Expt. Verification: Modulation Coupling

Figure 4(a) shows the estimated cavity-induced growth
rates in the PEP-II Low Energy Ring (LER) at the nominal
bunch spacing of 8.4 ns (N = 873), whenIo = 1 A. The
estimate is based on offline cavity measurements [24]. The
two largest cavity resonances are expected to drive bands
of modes centered at 93.1 MHz (EFEM 683) and 105 MHz
(EFEM 770) unstable. They also stabilise corresponding
bands at 25.9 MHz (EFEM 190) and 14 MHz (EFEM 103).
Here the best modulation-coupling cure would be to cou-
ple the modes around 105 MHz to those near 25.9 MHz
by maximisingC580, i.e., C293 (Cp = CN−p). This au-
tomatically couples 93.1 MHz to 14 MHz. In general, if
νa couples toνN−b, then νb couples toνN−a. Max-
imising C291 should work as well, sinceωo is small com-
pared to the bandwidths of the resonances. This is easily
achieved by filling every third nominally-spaced bucket,
since291 = 873/3. The calculation illustrated in Fig. 4(b)
shows that such a fill should be stable at 1 A.

Modulation coupling was expected to raise the instabil-
ity threshold from 305 mA (nominal spacing) to 1.16 A
(3× nominal spacing). The measured thresholds are 350
mA and 660 mA respectively. The improvement is sig-
nificant, though smaller than expected, probably because
the impedance resonances are located 3-5 MHz away from
their expected positions. Given our new knowledge of the
higher order mode resonant frequencies, it seems likely that
a bunch spacing of 11 RF buckets would have resulted in
even better damping.

3.5 Expt. Verification: Landau Damping

Theoretical predictions of fill-induced Landau damping
were first tested at the ALS, where the diagnostic capabili-
ties of a digital longitudinal feedback system [15, 16] were
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Figure 4: PEP-II LER expected modal growth rates vs.
mode frequency (lωo + ωs) at Io = 1 A for: a) Even fill at
nominal8.4 ns spacing (feedback required). b) Even fill at
3× 8.4 ns spacing (stabilised by modulation coupling).

utilised to measure the eigenvalues (growth rates and coher-
ent tune shifts) of all unstable EFEMs simultaneously. The
measurement technique is described in [17]. In most cases,
only two of the 328 ALS modes were unstable: modes204
and233. The effective impedance at233fo was used to
create a tune spread by maximisingC233 (see Eq. (5)).

A baseline even-fill instability measurement was first
made atIo = 172 mA. This gave the following eigenval-
ues [25]:λ204 = (0.47±0.02)− (0.05±0.03)j ms−1 and
λ233 = (0.61±0.02)−(1.16±0.03)j ms−1 (assuming that
dr = 0.074 ms−1). It is evident from Fig. 3 that “Landau
fills” with fill fractions less than 60% almost completely
damp the primary target mode, which is EFEM233 in this
case. Thus, any residual instability in the Landau fill must
correspond to the Landau-damped mode204.

Although many methods exist for calculating the insta-
bility growth rate once the bunch tune distribution is calcu-
lated [14, 17], we use numerical computation of the eigen-
structure of the mode coupling matrix, since it is the most
exact. For this we need to know the shunt impedanceRs,
the resonant frequencyfr and the quality factorQ of the
two cavity modes responsible for the measured values of
λ204 andλ233. If the effective impedance corresponding to
an even-fill eigenvalue isR+jX, then the shunt impedance
Rs of the cavity mode obeys( fr

frf
Rs − R)2 + X2 =

[ fr

frf
Rs]2 [17]. By correlating this result with data on ALS

cavity modes [26], we get (nominally)Rs = 11.36 kΩ,
fr = 1809.69 MHz andQ = 2900 for EFEM 204 and
Rs = 43 kΩ, fr = 2852.92 MHz and Q = 9149 for
EFEM 233. The numerical calculation then gives us an
eigenvalue of(0.1 ± 0.04) + (1.62 ± 0.06)j ms−1 for the
landau-damped mode204. Error bars are calculated by as-
suming that errors in measured eigenvalues arise from fluc-
tuations infr. Note: The real part of the most unstable
eigenvalue is 6 times smaller than in the even-fill case. The
measured eigenvalue for a 175-mA beam withC233 = 0.67
is (0.09 ± 0.003) + (1.63 ± 0.005)j ms−1, in agreement
with the theoretical prediction.
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4 SUMMARY

The use of phase space tracking as a new diagnostic for
coupled-bunch instabilities has been demonstrated. As the
PEP-II example shows, tracking facilitates more detailed
comparisons between theory and experiment than conven-
tional techniques. It is particularly useful in investigat-
ing complex phenomena such as two-stream instabilities.
Other uses include accurate beam-based impedance mea-
surement [27], quantification of the reactive component
of active feedback, eigenmode analysis of uneven-fill mo-
tion [17], and (potentially) measurement of nonlinear ef-
fects such as tune variation with amplitude.

A systematic approach has been laid out for designing
fill shapes that significantly damp coupled-bunch instabil-
ities. The method, which is based on the phenomena of
modulation coupling and fill-induced Landau damping, has
been experimentally verified at the ALS and PEP-II, and
also at SPEAR (see [17]). Instability cures based on these
ideas are currently being studied at the SRRC [28].

Since mixing of oscillation-coordinate and fill-shape sig-
nals occurs in all planes, modulation coupling also affects
transverse oscillations. Similarly, higher bunch-shape os-
cillations can also be damped by modulation coupling. Al-
though bunches that are axially centered in the beam pipe
induce no transverse steady-state wake, transverse Landau
damping might be achieved by shifting the beam orbit (or
a resonant structure) transversely.

Uneven-fill effects grow stronger as the maximum allow-
able bunch currentimax increases, and the beam current is
distributed among fewer buckets. Uneven-fill cures for in-
stabilities are thus limited by factors that limitimax, such
as heating of vacuum chamber elements, intrabunch scat-
tering (beam lifetime) and beam-beam effects in colliders.
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