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Abstract

As circular accelerators move towards larger numbers of bunches and higher beam currents, the task of diag-
nosing and curing coupled-bunch instabilities becomes ever harder. This paper describes the use of phase space
tracking,i.e. reconstruction of bunch phase space trajectories, as a comprehensive instability diagnostic. A new
instability cure is also presented, based on recent insights into the dynamics of unevenly-filled rings. Data is

shown from PEP-II and the ALS, where “optimally shaped” uneven fills have yielded significant increases in
instability thresholds.
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Abstract stood [4, 5]. Unfortunately, there is no general analytic so-
. |ytion for the eigenvalues (growth rates and coherent tune
As circular accelerators move towards larger numbers of . ' .
: . shifts) of an uneven fill, though there have been useful in-
bunches and higher beam currents, the task of diagnos- .~ . .
. : : s Sights into some special cases [6, 7, 8, 9].
ing and curing coupled-bunch instabilities becomes evér . - '
In practice, empirically selected uneven fills have suc-

_hardpr. This paper describes the use of phase.spacg tr":lc(::eésfully raised instability thresholds at the Cornell Elec-
ing, i.e. reconstruction of bunch phase space trajectories, ?s

L o . ; ..’ fron Storage Ring [10], the SPEAR storage ring [11], the
a comprehensive instability diagnostic. A new instability :
. S . Advanced Photon Source [12], and a few other machines.
cure is also presented, based on recent insights into the dy- o o .
: . ; ) ecently, the longitudinally stabilising effect of interbunch
namics of unevenly-filled rings. Data is shown from PEP-I une spreads. arising from RE cavity transients induced b
and the ALS, where “optimally shaped” uneven fills have P ' 9 y y

) S ) 7 " gaps in the fill, has been noted [8, 13].
yielded significant increases in instability thresholds. The following problem is addressed in Section 3: given
an effective beam impedance®//(w) and a maximum
1 INTRODUCTION allowable bunch current,,.., how does one distribute
the desired beam currelf among theh RF buckets to

Modern synchrotron light sources and circular collid-_"~ "= the | {instabilit th ratease) | Re( A )]?
ers must store high-current charged-particle beams to mé%”'m'se € largest instability growth raiax;[Re(\;)]
i

their design goals. The most serious consequence of h lutions to this problem are presented in terms of two

currents is the possibility of collective instabilities, which yslclzatl_ phenorr|1_ena fthat u?_lcljer_lle une:j/en-fglF(é)I/\r/:amlcz:
result from self-amplifying electromagnetic interaction odulation coupling of even-fill eigenmodes ( s)an

between the beam and its surroundings [1]. In the new m I-induced Landau damping. The term Landau damping

chines, beam current is typically distributed among larg efers to damping of goherept pgcillationg via a spread in
numbers of circulating bunches, so as to avoid single-buné (erles?rtlsnt frequgnuets ofr:nd|V|QUet1LQSC|llators [14]

instabilities, improve the beam lifetime, and reduce two- ot the experiments shown In tnis paper were per-
beam effects (in the case of colliders). Consequently, UII](_)rmed with the help of a programmable longitudinal feed-

stable coupling between bunches through long-range wal?g_Ck (LFB) _system, which can d|g|t|_se a_nd store the oscil-
fields is often the main current-limiting factor. ation coordinate of each bunch while simultaneously ma-

An N-bunch beam ha¥ modes of coupled-bunch oscil- n|puI§1t|ng feedback parameters [15, 16].
lation. Thus, modern accelerators have hundreds or thou-ThIS paper condenses Chapters 5 and 7 of [17].
sands of potentially unstable modes. This makes insta-
bility diagnosis by conventional techniques quite difficult. 2 PHASE SPACE TRACKING
During commissioning, beam conditions are often rapidly The LFB system has been used to record data on longi-
varying and poorly characterised, and during regular operg,

: R . . ) ) dinal and transverse instabilities at various accelerators.
tion, not much time is available for diagnostic experiments ical pi f . fthe d | i
There is a real need for quicker and more informative meA- typical piece o data consists of the downsampled oscil-

) ) : ation signals of all the bunches over a few tens of ms.
surement and analysis techniques, which must be comple-

mented by imaginative ways of damping coherent motion The measured position signa] of bunchk (n is the
y 9 y ping Sample number) is taken to be the x-coordinate in phase

Section 2 describes an instability diagnostic that utlllse§ Gace_ The y-coordinate is usually a scaled version of the

Eg:;e zzﬁ;i ;ajne;tsonlensag%?ggr?t{gcéﬁgb;rnomesr:riii%r;[?}r)ne-derivativeék(t), sampled at the same instants. How-
of cohgrent tunegl and.bunch tunes with accu?ac of a few - for the purpose of estimating tunes and growth rates, it
y IS more convenient to calculate the y-coordinate by phase-

Hz, phase space tracking allows new kinds of comparisor%%ifting the signals* by 90° [18]. Thus, what is referred

between instability theory and experiment. Such compagz’ e paper as the “phase space trajectory” is more ac-

isons are shown to be useful in distinguishing between th L . . )
fast beam-ion instability (FBII) [2, 3] and conventional in_c%rately termed thanalytic signal trajectoryin the com

A . . lex plane. In practice, the difference is very small because
stabilities in the PEP-1l High Energy Ring (HER). Euncrr)w oscillatiF())ns are usually narrowband.y

The theory of coupl_ed-bunch instabilities_ in even fills The Cartesian phase space coordinates can be converted
(constant bunch spacing, bunch currents) is well unde{é magnitude-and-phase coordinatdsand ¢*. The in-

t shyam@stanford.edu stantaneous growth rate 315% and the instantaneous 0s-




cillation frequency is%?. 2 :
A low-threshold vertical instability that showed up in the }'j_: 01 @

PEP-II HER during commissioning was initially suspected Z 40t

to be an FBIl. Numerous experiments were performed to 2 5g}

confirm this hypothesis, or alternatively, to confirm the Ej

competing hypothesis of an unexpectedly large impedance _ :
resonance somewhere in the ring. These included studies? (b)
of the effects of variations in gas pressure, bunch spacing, ¢ I '
train length, and bunch currents on the spectrum of beta-§ 100t
tron sidebands. These studies did not always give consis+;

tent results, because conditions such as beam orbit, vacuum 0
pressure, coupling, beam size, feedback state, etc. were

sometimes not well controlled during commissioning.

In such cases, we require a diagnostic that is based pfyyre 1: (a) Relative tunes of bunches 46 to 150, calcu-
a smgle_measuremen_t (insensitive to parameter drift), angkeq using linear fits to the phase space angle signals of
can be interpreted without knowledge of factors such age punches. (b) Growth rates of the same bunches, from

beam size, vacuum pressure, etc. Phase space tracking fil$onential fits to the magnitude transieafts
this need by enabling measurement of tune and growth-

rate variation along a bunch train. The FBIl is expected to L ) .
produce exponential growth and linear variation of growtts-1 ~ Derivation of Modal Coupling Matrix

rates and tune shifts along a short bunch train [19]. Due to azimuthal symmetry, the N Fourier vectors=

The vertical instability was investigated using a digi{1 ¢7¢ ¢2110 , ¢WN-Di|T. ¢ — 27/N: | = 0,.N —1,
tised record of the exponentially growing oscillations ofmake up the eigenmodes of an N-bunch even fill. In the ab-
each bunch, immediately after switching off feedback. Theence of wake fields, all modes have the same eigenvalue
150-bunch train had a 4.2 ns spacing dpd= 52 mA. —d, + jw,, Whered, is the radiation damping rate and
Phase space trajectories were constructed from the datg,is the longitudinal oscillation frequency. From here on,
and growth rates and tune shifts were calculated usinge shall use the word “eigenvalue” only for the coherent
curve fitting. eigenvalue shift produced by wake fields.

Figure 1(a) shows the fitted tunes of bunches 46 to 150, In the general case, the longitudinal arrival-time etor
relative to the tune of bunch 150. The peak-to-peak varPf then* bunch centroid is given by
ation is less than 50 rad/s. The first 45 bunches were ex- ae
cluded because they grew to smaller amplitudes and had 4 2007 + Wit = ==V, (1)

; ; ; ET, "™
smaller signal-to-noise ratios. The growth rates are shown °

in Fig. 1(b). As can be expected of conventional insta/here« is the momentum compaction factdt,/c is the
ominal beam energy in Voltg, = 27 /w, is the revo-

bilities, the growth rate variation across the train is small’™,

enough to be accounted for by the presence of second rp?ronhpenc;d,hangvn(t% is the total \;]vakhe voItage seeln by
eigenmodes at small amplitudes. Clearly, growth rates a ncdn. If the Iunc hes are much shorter than relevant
tunes do not vary linearly with bunch number. As a resulfMPedance wavelengths,
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the FBII hypothesis was deemed improbable. Itis of course oo N-1
possible that some of the approximations made in [19] do V,, () = Z Z Wt 1 (t) — m(t =8 )],
not apply to the relative time scales of this experiment. p=—00 k=0 7 '

The hypothesis that best fits the results of various eXpeWhereqk is the charge of bunch, £ , = (n— k — pN)T},

ments performed to find the source of this instability is th , is the bunch spacingl,/N) and the longitudinal wake
the beam was driven by a large impedance in the interac“%‘nction W (t) equals zero w’hem < 0. The total ring

region (IR), which disappeared after subsequent Changesirtr?pedance iZ(w) = [ W(t)e Itdt.

the shape of the IR [20]. We shall now switch to the following modal (EFEM) ba-

SIS Uy, =Y e TR 1, = LN L er2mR
This is a natural basis for studying fill shape effects. We as-
3 CURING INSTABILITIES WITH sume eigenmodes of the form = Be’*; k = 0,..N—1.
UNEVEN FILLS Similarly, v,, = D,,e?*;m = 0,.N—1. If d, < w,
and| — w,| < ws, the projection of- andV onto thel*"
The most direct approach to solving the uneven-flEFEM gives:
eigenvalue problem is numerical computation of the eigen-
values of thelV x NV bunch coupling matrix [21]. Alterna-
tively, one could project the coupled-bunch motion onto the D1+ (dy — jws )
N EFEMs, and calculate the “modal” coupling matrix [22].

N—
oefrs

2EQ

1
Il—lem(ws)Vm
0



N—-1 3 :
= Z Almym7 (2) — 2 2_5%' I
o & g ohoor
where f,; is the RF frequency), = w,/w, is the tune, .ot L L N L - L
and the amplitude of thg?” revolution harmonic in the — _q| .-~ Tl R |
. — . . pk . L L
beam spectrum i, :Zszol ike PN iy = qi/T. 0 300 . 600 900
Zim(w) = ZN (lwy +w) = 2T [(1 = m)w, ; Figure 2: Example of fill optimisationi = 900, I, =450
off 1 & mA. Solid lines: 50% fill and 25% fill maximise C; for
ZM(w) = o7 Y (PNwo +w)Z(pNw, +w) () ;1 mA, 2 mA. Dashdot: Reference sinusoidsat,.
p=—00

If the fill is even, I, = 0 for & # 0, and the off-diagonal
elements of the coupling matri® disappear. The diago-
nal terms yield the well-known equations [5] for even-fill
eigenvalues}; = %IOZeff(lwo—i—ws); 1=0,..N—1.

Algorithm for Optimising Fill Shape It can be shown
that the following algorithm maximise&s,, given the beam
current/,, and the maximum allowable bunch currént,,.:

2EQs 1) For each bucket in the N-bucket pattern, calculate a
Most commonly-used fill shapes are close to eVl ~ o responding “weighttos(22%). 2) Pick theB buckets

0 for mostk_). AlSO, Ziyy, has the same order of SParsenesg;i the highest weight, and fill each of them to the same
asZ¢ff. Since the off-diagonal terms are proportional 9 urrenti whereB = I, /i Leave the remaining
I_mZim, it is apparent from Eq. (2) that the EFEM ba’bucketsyg(rﬁbty. ofmar

sis makesA sparse. In other words, thématrix is sparse Figure 2 shows two example fills which maximieg
unless bothl;, and Z¢f/ are dense, which is not a very whenh — 900. I. — 450 mA. and; I mA 2 mA
common situation. 1o ) max ) .

3.3 Fill-induced Landau Damping

The second important uneven-fill phenomenon is
potential-well distortion that varies from bucket to bucket,
causing bunch-to-bunch tune variation and Landau damp-

gltudlnal beam S|gna_1l is proportional tgr, thg .mOdl.JIa' ing. Fill-induced Landau damping arises from terms of the
tion product of the fill shape and bunch position S|gnalsform I 2% [(I — m)w,] in Eq. (2). The tune shift of
For example, assume that the bunches oscillate in EEEMbunch;;rnellative to the meoan tune.is '

y

and consequently, the bunch position signal has a frequenc
component awy + w. If the fill shape has a sinusoidal
component agwy (I, is nonzero), then the beam signal has acf, N-1 .
spectral lines atp + q)wy + ws. Thus, modulation by the Swk = j2E77f Z {IlZeff(lwo) eﬂ”“/N} (5)
fill shape causes coupling between EFEMENd (p + q). @ =1

If I,Z¢7f (kw,) is negligible for allk # 0, the modula-
tion coupling terms are the only manifestation of fill un-

evenness. In addition, i (w) is non-negligible only at damped by the interbunch tune spread.

n revolution harmonics, vyhere < N, we can approxi- . _If n is the most unstable EFEM, Eg. (5) indicates that a
mate the most unstable eigenvalues by those of an equiva-

lent A-matrix consisting only of the corresponding rows good strategy would be to design a fill that optimisgs=

L Lo -~ |1,]/I,. The best value of’,, for damping EFEMn is
and columns. This is a great simplification in large rings,. . .
: ifferent from the optimum for other EFEMs:
with hundreds or thousands of bunches. If we now create .
: . . A) Landau damping of EFEMs other than can be
a fill so that only/;_,,, is large, where EFEM is the most : .
. . calculated in the usual way [14], if they are not coupled
unstable mode anah is the most stable, we get an equiv- ; : :
to other prominent EFEMs by modulation coupling or by

alent A-matrix that is diagonal except for the coupling be_tune-spread terms on thé* diagonal ofA,

tweenv,, _andul. This r_educes the_eigenvalue problem to B) Damping of EFEM~ is larger than that of other
a quadratic equation with the solution: . L :
modes, since the combination of tune spread and fill un-

evenness introduces coupling betweenandvy_,,. If

1\/0\[ —Am)2 +4CE XA, (4) Landau damping and coupling tey_,, are the only sig-

2 - nificant effects and\_,, ~ —\} [23], then the variation of

where C' is a modulation parameter defined 6y, = A, withfill fraction is shown in Fig. 3 (numerical computa-

|Ip|/ 1. If Ci—,n = 0, the even-fill eigenvalues; and),,, tion, assuming use of the fill optimisation algorithm). This

are unperturbed. A€;_,, approaches unity (it can never figure is symmetric about both axes. Dashed lines show the

exceed 1), one eigenvalue approaches zero and the otbeolution of \,, from a few even-fill starting points. Inter-

approaches; + A,,. This yields the maximum damping. estingly, in this special case, fill unevenness only seems to

3.2 Modulation Coupling

Modulation coupling arises from terms of the form
I 27 (lw, +ws), which reflect the fact that the lon-

dws is purely real, since the real part of the summand is an
odd function ofl, with period N. All unstable modes are

1
A= S A)
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Figure 3: Graphical look-up table for fill-induced dampingFigure 4: PEP-Il LER expected modal growth rates vs.
of unstable longitudinal eigenvalug, asC,, is increased mode frequencyll, + w,) at1, — 1 A for: a) Even fill at
from 0 (100% of ring filled) t00.5 (61% filled). Dashed nominal8.4 ns spacing (feedback required). b) Even fill at

lines: Evolution of),, from a few even-fill starting points. 3 x 8.4 ns spacing (stabilised by modulation coupling).

reduce the growth ratBe()\), without changing the coher- )

ent tunelm()\) very much. EFEMn is best damped by utilised to measure the eigenvalues (groyvth rates and coher-
maximisingC,,, i.e., by minimising the fill fraction. ent tune shifts) of all unstable EFEMs simultaneously. The
measurement technique is described in [17]. In most cases,
only two of the 328 ALS modes were unstable: mo2es

and 233. The effective impedance &83f, was used to
Figure 4(a) shows the estimated cavity-induced growtbreate a tune spread by maximisi@igss (see Eq. (5)).

rates in the PEP-II Low Energy Ring (LER) at the nominal A baseline even-fill instability measurement was first
bunch spacing of 8.4 ns\(= 873), whenl, =1 A. The made atl, = 172 mA. This gave the following eigenval-
estimate is based on offline cavity measurements [24]. Thgss [25]: \yo4 = (0.4740.02) — (0.05+0.03)j ms~! and

two largest cavity resonances are expected to drive banfis;; = (0.61+0.02) — (1.16+0.03)j ms~! (assuming that

of modes centered at 93.1 MHz (EFEM 683) and 105 MHgz,. = 0.074 ms™1). It is evident from Fig. 3 that “Landau

(EFEM 770) unstable. They also stabilise correspondinlls” with fill fractions less than 60% almost completely
bands at 25.9 MHz (EFEM 190) and 14 MHz (EFEM 103)damp the primary target mode, which is EFESB in this

Here the best modulation-coupling cure would be to colcase. Thus, any residual instability in the Landau fill must
ple the modes around 105 MHz to those near 25.9 MHgorrespond to the Landau-damped madé.

by maximisingCsso, i-€, Ca03 (€, = Cn—p). This @U-  Ajthough many methods exist for calculating the insta-
tomatically couples 93.1 MHz to 14 MHz. In general, ifpjjity growth rate once the bunch tune distribution is calcu-
v, couples tovy_, thenw, couples tovy_,. Max-  |ated [14, 17], we use numerical computation of the eigen-

imising C91 should work as well, since, is small com- g4,cture of the mode coupling matrix, since it is the most
pared to the bandwidths of the resonances. This is easilysct For this we need to know the shunt impedaRce

achieved by filling every third nominally-spaced bucketiha resonant frequencf. and the quality facto) of the

since291 =873/3. The calculation illustrated in Fig. 4(b) ty0 cavity modes responsible for the measured values of
shows that such afill should be stable at 1 A. _ Xaos andass. If the effective impedance corresponding to
Modulation coupling was expected to raise the instabily, eyen-fill eigenvalue i+ X, then the shuntimpedance
ity threshold from 305 mA (nominal spacing) to 1.16 Ap  of the cavity mode obey(;f—rR ~R?+ X2 =
S rf S

(3% nominal spacing). The measured thresholds are 350, 9 lating thi it with d
mMA and 660 mA respectively. The improvement is sig WRS] [17]. By correlating this result with data on ALS

nificant, though smaller than expected, probably becau§8Vity modes [26], we get (nominally, = 11.36 kQ,
the impedance resonances are located 3-5 MHz away frofn = 1809.69 MHz and@ = 2900 for EFEM 204 and
their expected positions. Given our new knowledge of th&s = 43 k2, f, = 2852.92 MHz andQ = 9149 for
higher order mode resonant frequencies, it seems likely theFEM 233. The numerical calculation then gives us an

a bunch spacing of 11 RF buckets would have resulted figenvalue of0.1 & 0.04) + (1.62 = 0.06)j ms " for the
even better damping. landau-damped modi4. Error bars are calculated by as-

suming that errors in measured eigenvalues arise from fluc-
tuations inf,.. Note: The real part of the most unstable
eigenvalue is 6 times smaller than in the even-fill case. The

Theoretical predictions of fill-induced Landau dampingmeasured eigenvalue for a 175-mA beam withs = 0.67
were first tested at the ALS, where the diagnostic capabilis (0.09 4 0.003) + (1.63 + 0.005)j ms~*, in agreement
ties of a digital longitudinal feedback system [15, 16] weravith the theoretical prediction.

3.4 Expt. Verification: Modulation Coupling

3.5 Expt. Verification: Landau Damping
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