A Study of the Rare Decays $B^{0} \rightarrow D_{s}^{(*)+} \pi^{-}$and $B^{0} \rightarrow D_{s}^{(*)-} K^{+}$

B. Aubert, ${ }^{1}$ D. Boutigny, ${ }^{1}$ J.-M. Gaillard, ${ }^{1}$ A. Hicheur, ${ }^{1}$ Y. Karyotakis, ${ }^{1}$ J. P. Lees, ${ }^{1}$ P. Robbe, ${ }^{1}$ V. Tisserand, ${ }^{1}$ A. Zghiche, ${ }^{1}$ A. Palano, ${ }^{2}$ A. Pompili, ${ }^{2}$ J. C. Chen, ${ }^{3}$ N. D. Qi, ${ }^{3}$ G. Rong, ${ }^{3}$ P. Wang, ${ }^{3}$ Y. S. Zhu, ${ }^{3}$ G. Eigen, ${ }^{4}$ I. Ofte, ${ }^{4}$ B. Stugu, ${ }^{4}$ G. S. Abrams, ${ }^{5}$ A. W. Borgland, ${ }^{5}$ A. B. Breon, ${ }^{5}$ D. N. Brown,,${ }^{5}$ J. Button-Shafer, ${ }^{5}$ R. N. Cahn, ${ }^{5}$ E. Charles, ${ }^{5}$ M. S. Gill, ${ }^{5}$ A. V. Gritsan, ${ }^{5}$ Y. Groysman, ${ }^{5}$ R. G. Jacobsen, ${ }^{5}$ R. W. Kadel, ${ }^{5}$ J. Kadyk, ${ }^{5}$ L. T. Kerth, ${ }^{5}$ Yu. G. Kolomensky, ${ }^{5}$ J. F. Kral, ${ }^{5}$ C. LeClerc, ${ }^{5}$ M. E. Levi, ${ }^{5}$ G. Lynch, ${ }^{5}$ L. M. Mir, ${ }^{5}$ P. J. Oddone, ${ }^{5}$ T. J. Orimoto, ${ }^{5}$ M. Pripstein, ${ }^{5}$ N. A. Roe, ${ }^{5}$ A. Romosan, ${ }^{5}$ M. T. Ronan,,${ }^{5}$ V. G. Shelkov, ${ }^{5}$ A. V. Telnov, ${ }^{5}$ W. A. Wenzel, ${ }^{5}$ T. J. Harrison, ${ }^{6}$ C. M. Hawkes, ${ }^{6}$ D. J. Knowles, ${ }^{6}$ S. W. O'Neale, ${ }^{6}$ R. C. Penny, ${ }^{6}$ A. T. Watson, ${ }^{6}$ N. K. Watson, ${ }^{6}$ T. Deppermann, ${ }^{7}$ K. Goetzen, ${ }^{7}$ H. Koch, ${ }^{7}$ B. Lewandowski, ${ }^{7}$ K. Peters, ${ }^{7}$ H. Schmuecker, ${ }^{7}$ M. Steinke, ${ }^{7}$ N. R. Barlow, ${ }^{8}$ W. Bhimji, ${ }^{8}$ J. T. Boyd, ${ }^{8}$ N. Chevalier, ${ }^{8}$ P. J. Clark, ${ }^{8}$ W. N. Cottingham, ${ }^{8}$ C. Mackay, ${ }^{8}$ F. F. Wilson, ${ }^{8}$ K. Abe, ${ }^{9}$ C. Hearty, ${ }^{9}$ T. S. Mattison, ${ }^{9}$ J. A. McKenna, ${ }^{9}$ D. Thiessen, ${ }^{9}$ S. Jolly, ${ }^{10}$ A. K. McKemey, ${ }^{10}$ V. E. Blinov, ${ }^{11}$ A. D. Bukin, ${ }^{11}$ A. R. Buzykaev, ${ }^{11}$ V. B. Golubev, ${ }^{11}$ V. N. Ivanchenko, ${ }^{11}$ A. A. Korol, ${ }^{11}$
E. A. Kravchenko, ${ }^{11}$ A. P. Onuchin, ${ }^{11}$ S. I. Serednyakov, ${ }^{11}$ Yu. I. Skovpen, ${ }^{11}$ A. N. Yushkov, ${ }^{11}$ D. Best, ${ }^{12}$ M. Chao, ${ }^{12}$ D. Kirkby, ${ }^{12}$ A. J. Lankford, ${ }^{12}$ M. Mandelkern, ${ }^{12}$ S. McMahon, ${ }^{12}$ D. P. Stoker, ${ }^{12}$ C. Buchanan, ${ }^{13}$ S. Chun, ${ }^{13}$ H. K. Hadavand,,${ }^{14}$ E. J. Hill, ${ }^{14}$ D. B. MacFarlane, ${ }^{14}$ H. Paar, ${ }^{14}$ S. Prell, ${ }^{14}$ Sh. Rahatlou, ${ }^{14}$ G. Raven, ${ }^{14}$ U. Schwanke, ${ }^{14}$ V. Sharma, ${ }^{14}$ J. W. Berryhill, ${ }^{15}$ C. Campagnari, ${ }^{15}$ B. Dahmes, ${ }^{15}$ P. A. Hart, ${ }^{15}$ N. Kuznetsova, ${ }^{15}$ S. L. Levy, ${ }^{15}$ O. Long, ${ }^{15}$ A. Lu, ${ }^{15}$ M. A. Mazur, ${ }^{15}$ J. D. Richman, ${ }^{15}$ W. Verkerke, ${ }^{15}$ J. Beringer, ${ }^{16}$ A. M. Eisner, ${ }^{16}$
M. Grothe, ${ }^{16}$ C. A. Heusch, ${ }^{16}$ W. S. Lockman, ${ }^{16}$ T. Pulliam, ${ }^{16}$ T. Schalk, ${ }^{16}$ R. E. Schmitz, ${ }^{16}$ B. A. Schumm, ${ }^{16}$ A. Seiden, ${ }^{16}$ M. Turri, ${ }^{16}$ W. Walkowiak, ${ }^{16}$ D. C. Williams, ${ }^{16}$ M. G. Wilson, ${ }^{16}$ E. Chen, ${ }^{17}$ G. P. Dubois-Felsmann,,${ }^{17}$ A. Dvoretskii, ${ }^{17}$ D. G. Hitlin, ${ }^{17}$ F. C. Porter, ${ }^{17}$ A. Ryd, ${ }^{17}$ A. Samuel, ${ }^{17}$ S. Yang,,${ }^{17}$ S. Jayatilleke, ${ }^{18}$ G. Mancinelli,,${ }^{18}$
B. T. Meadows,,18 M. D. Sokoloff, ${ }^{18}$ T. Barillari, ${ }^{19}$ P. Bloom, ${ }^{19}$ W. T. Ford, ${ }^{19}$ U. Nauenberg, ${ }^{19}$ A. Olivas, ${ }^{19}$ P. Rankin, ${ }^{19}$ J. Roy, ${ }^{19}$ J. G. Smith, ${ }^{19}$ W. C. van Hoek, ${ }^{19}$ L. Zhang, ${ }^{19}$ J. L. Harton, ${ }^{20}$ T. Hu, ${ }^{20}$ M. Krishnamurthy, ${ }^{20}$ A. Soffer, ${ }^{20}$ W. H. Toki, ${ }^{20}$ R. J. Wilson, ${ }^{20}$ J. Zhang, ${ }^{20}$ D. Altenburg, ${ }^{21}$ T. Brandt, ${ }^{21}$ J. Brose, ${ }^{21}$ T. Colberg, ${ }^{21}$ M. Dickopp, ${ }^{21}$ R. S. Dubitzky, ${ }^{21}$ A. Hauke, ${ }^{21}$ E. Maly, ${ }^{21}$ R. Müller-Pfefferkorn, ${ }^{21}$ S. Otto, ${ }^{21}$ K. R. Schubert, ${ }^{21}$ R. Schwierz, ${ }^{21}$ B. Spaan, ${ }^{21}$ L. Wilden, ${ }^{21}$ D. Bernard, ${ }^{22}$ G. R. Bonneaud, ${ }^{22}$ F. Brochard, ${ }^{22}$ J. Cohen-Tanugi, ${ }^{22}$
S. Ferrag, ${ }^{22}$ S. T'Jampens, ${ }^{22}$ Ch. Thiebaux, ${ }^{22}$ G. Vasileiadis, ${ }^{22}$ M. Verderi, ${ }^{22}$ A. Anjomshoaa, ${ }^{23}$ R. Bernet, ${ }^{23}$ A. Khan, ${ }^{23}$ D. Lavin, ${ }^{23}$ F. Muheim, ${ }^{23}$ S. Playfer, ${ }^{23}$ J. E. Swain, ${ }^{23}$ J. Tinslay, ${ }^{23}$ M. Falbo, ${ }^{24}$ C. Borean, ${ }^{25}$ C. Bozzi, ${ }^{25}$ L. Piemontese, ${ }^{25}$ A. Sarti, ${ }^{25}$ E. Treadwell, ${ }^{26}$ F. Anulli, ${ }^{27, *}$ R. Baldini-Ferroli, ${ }^{27}$ A. Calcaterra, ${ }^{27}$ R. de Sangro,,${ }^{27}$ D. Falciai, ${ }^{27}$ G. Finocchiaro, ${ }^{27}$ P. Patteri, ${ }^{27}$ I. M. Peruzzi, ${ }^{27, *}$ M. Piccolo, ${ }^{27}$ A. Zallo, ${ }^{27}$ S. Bagnasco, ${ }^{28}$ A. Buzzo, ${ }^{28}$ R. Contri, ${ }^{28}$ G. Crosetti, ${ }^{28}$ M. Lo Vetere, ${ }^{28}$ M. Macri, ${ }^{28}$ M. R. Monge, ${ }^{28}$ S. Passaggio, ${ }^{28}$ F. C. Pastore, ${ }^{28}$ C. Patrignani, ${ }^{28}$ E. Robutti, ${ }^{28}$ A. Santroni, ${ }^{28}$ S. Tosi, ${ }^{28}$ S. Bailey, ${ }^{29}$ M. Morii, ${ }^{29}$ R. Bartoldus, ${ }^{30}$ G. J. Grenier,,${ }^{30}$ U. Mallik,,${ }^{30}$ J. Cochran, ${ }^{31}$ H. B. Crawley, ${ }^{31}$ J. Lamsa, ${ }^{31}$ W. T. Meyer, ${ }^{31}$ E. I. Rosenberg, ${ }^{31}$ J. Yi, ${ }^{31}$ M. Davier, ${ }^{32}$ G. Grosdidier, ${ }^{32}$ A. Höcker, ${ }^{32}$ H. M. Lacker, ${ }^{32}$ S. Laplace,, , 32 F. Le Diberder, ${ }^{32}$ V. Lepeltier, ${ }^{32}$ A. M. Lutz, ${ }^{32}$
T. C. Petersen, ${ }^{32}$ S. Plaszczynski, ${ }^{32}$ M. H. Schune, ${ }^{32}$ L. Tantot, ${ }^{32}$ S. Trincaz-Duvoid, ${ }^{32}$ G. Wormser, ${ }^{32}$ R. M. Bionta, ${ }^{33}$ V. Brigljević, ${ }^{33}$ D. J. Lange, ${ }^{33}$ K. van Bibber, ${ }^{33}$ D. M. Wright, ${ }^{33}$ A. J. Bevan, ${ }^{34}$ J. R. Fry, ${ }^{34}$ E. Gabathuler, ${ }^{34}$ R. Gamet, ${ }^{34}$ M. George, ${ }^{34}$ M. Kay, ${ }^{34}$ D. J. Payne, ${ }^{34}$ R. J. Sloane, ${ }^{34}$ C. Touramanis, ${ }^{34}$ M. L. Aspinwall, ${ }^{35}$ D. A. Bowerman,,${ }^{35}$ P. D. Dauncey, ${ }^{35}$ U. Egede,,${ }^{35}$ I. Eschrich, ${ }^{35}$ G. W. Morton, ${ }^{35}$ J. A. Nash, ${ }^{35}$ P. Sanders, ${ }^{35}$ D. Smith, ${ }^{35}$ G. P. Taylor, ${ }^{35}$ J. J. Back, ${ }^{36}$ G. Bellodi, ${ }^{36}$ P. Dixon, ${ }^{36}$ P. F. Harrison, ${ }^{36}$ R. J. L. Potter, ${ }^{36}$ H. W. Shorthouse, ${ }^{36}$ P. Strother, ${ }^{36}$ P. B. Vidal, ${ }^{36}$ G. Cowan, ${ }^{37}$ H. U. Flaecher,${ }^{37}$ S. George, ${ }^{37}$ M. G. Green, ${ }^{37}$ A. Kurup, ${ }^{37}$ C. E. Marker,,${ }^{37}$ T. R. McMahon, ${ }^{37}$ S. Ricciardi, ${ }^{37}$ F. Salvatore, ${ }^{37}$ G. Vaitsas, ${ }^{37}$ M. A. Winter, ${ }^{37}$ D. Brown, ${ }^{38}$ C. L. Davis, ${ }^{38}$ J. Allison, ${ }^{39}$ R. J. Barlow, ${ }^{39}$ A. C. Forti, ${ }^{39}$ F. Jackson, ${ }^{39}$ G. D. Lafferty, ${ }^{39}$ A. J. Lyon, ${ }^{39}$ N. Savvas, ${ }^{39}$ J. H. Weatherall, ${ }^{39}$ J. C. Williams, ${ }^{39}$ A. Farbin, ${ }^{40}$ A. Jawahery, ${ }^{40}$ V. Lillard, ${ }^{40}$ D. A. Roberts, ${ }^{40}$ J. R. Schieck, ${ }^{40}$ G. Blaylock, ${ }^{41}$ C. Dallapiccola, ${ }^{41}$ K. T. Flood, ${ }^{41}$ S. S. Hertzbach, ${ }^{41}$ R. Kofler, ${ }^{41}$ V. B. Koptchev, ${ }^{41}$ T. B. Moore, ${ }^{41}$ H. Staengle,,${ }^{41}$ S. Willocq, ${ }^{41}$ B. Brau, ${ }^{42}$ R. Cowan, ${ }^{42}$ G. Sciolla, ${ }^{42}$ F. Taylor, ${ }^{42}$ R. K. Yamamoto, ${ }^{42}$ M. Milek, ${ }^{43}$ P. M. Patel,,${ }^{43}$ F. Palombo, ${ }^{44}$ J. M. Bauer, ${ }^{45}$ L. Cremaldi, ${ }^{45}$ V. Eschenburg, ${ }^{45}$ R. Kroeger, ${ }^{45}$ J. Reidy, ${ }^{45}$ D. A. Sanders, ${ }^{45}$ D. J. Summers, ${ }^{45}$ C. Hast,,${ }^{46}$ P. Taras, ${ }^{46}$ H. Nicholson, ${ }^{47}$ C. Cartaro, ${ }^{48}$ N. Cavallo, ${ }^{48}$ G. De

Nardo, ${ }^{48}$ F. Fabozzi, ${ }^{48}$ C. Gatto, ${ }^{48}$ L. Lista, ${ }^{48}$ P. Paolucci, ${ }^{48}$ D. Piccolo, ${ }^{48}$ C. Sciacca, ${ }^{48}$ J. M. LoSecco, ${ }^{49}$ J. R. G. Alsmiller, ${ }^{50}$ T. A. Gabriel, ${ }^{50}$ J. Brau,,${ }^{51}$ R. Frey, ${ }^{51}$ M. Iwasaki, ${ }^{51}$ C. T. Potter, ${ }^{51}$ N. B. Sinev, ${ }^{51}$ D. Strom,,${ }^{51}$ E. Torrence, ${ }^{51}$ F. Colecchia, ${ }^{52}$ A. Dorigo, ${ }^{52}$ F. Galeazzi, ${ }^{52}$ M. Margoni, ${ }^{52}$ M. Morandin,,${ }^{52}$ M. Posocco, ${ }^{52}$ M. Rotondo, ${ }^{52}$ F. Simonetto, ${ }^{52}$ R. Stroili, ${ }^{52}$ C. Voci, ${ }^{52}$ M. Benayoun, ${ }^{53}$ H. Briand, ${ }^{53}$ J. Chauveau, ${ }^{53}$ P. David, ${ }^{53}$ Ch. de la Vaissière, ${ }^{53}$ L. Del Buono, ${ }^{53}$ O. Hamon, ${ }^{53}$ Ph. Leruste, ${ }^{53}$ J. Ocariz, ${ }^{53}$ M. Pivk, ${ }^{53}$ L. Roos, ${ }^{53}$ J. Stark, ${ }^{53}$ P. F. Manfredi, ${ }^{54}$ V. Re, ${ }^{54}$ V. Speziali, ${ }^{54}$ L. Gladney, ${ }^{55}$ Q. H. Guo, ${ }^{55}$ J. Panetta, ${ }^{55}$ C. Angelini, ${ }^{56}$ G. Batignani, ${ }^{56}$ S. Bettarini, ${ }^{56}$ M. Bondioli, ${ }^{56}$ F. Bucci, ${ }^{56}$ G. Calderini, ${ }^{56}$ E. Campagna, ${ }^{56}$ M. Carpinelli, ${ }^{56}$ F. Forti, ${ }^{56}$ M. A. Giorgi, ${ }^{56}$ A. Lusiani, ${ }^{56}$ G. Marchiori, ${ }^{56}$ F. Martinez-Vidal, ${ }^{56}$ M. Morganti, ${ }^{56}$ N. Neri, ${ }^{56}$ E. Paoloni, ${ }^{56}$ M. Rama, ${ }^{56}$ G. Rizzo, ${ }^{56}$ F. Sandrelli, ${ }^{56}$ G. Triggiani, ${ }^{56}$ J. Walsh, ${ }^{56}$ M. Haire, ${ }^{57}$ D. Judd,,${ }^{57}$ K. Paick, ${ }^{57}$ L. Turnbull, ${ }^{57}$ D. E. Wagoner,,${ }^{57}$ J. Albert, ${ }^{58}$ N. Danielson, ${ }^{58}$ P. Elmer,,58 C. Lu, ${ }^{58}$ V. Miftakov, ${ }^{58}$ J. Olsen, ${ }^{58}$ S. F. Schaffner, ${ }^{58}$ A. J. S. Smith, ${ }^{58}$ A. Tumanov, ${ }^{58}$ E. W. Varnes,,${ }^{58}$ F. Bellini, ${ }^{59}$ G. Cavoto, ${ }^{58,59}$ D. del Re, ${ }^{59}$ R. Faccini, ${ }^{14,59}$ F. Ferrarotto, ${ }^{59}$ F. Ferroni, ${ }^{59}$ E. Leonardi, ${ }^{59}$ M. A. Mazzoni, ${ }^{59}$ S. Morganti, ${ }^{59}$ G. Piredda, ${ }^{59}$ F. Safai Tehrani,,${ }^{59}$ M. Serra, ${ }^{59}$
C. Voena, ${ }^{59}$ S. Christ, ${ }^{60}$ G. Wagner, ${ }^{60}$ R. Waldi, ${ }^{60}$ T. Adye, ${ }^{61}$ N. De Groot, ${ }^{61}$ B. Franek,,${ }^{61}$ N. I. Geddes, ${ }^{61}$ G. P. Gopal, ${ }^{61}$ S. M. Xella, ${ }^{61}$ R. Aleksan, ${ }^{62}$ S. Emery, ${ }^{62}$ A. Gaidot, ${ }^{62}$ P.-F. Giraud, ${ }^{62}$ G. Hamel de Monchenault, ${ }^{62}$ W. Kozanecki, ${ }^{62}$ M. Langer, ${ }^{62}$ G. W. London, ${ }^{62}$ B. Mayer, ${ }^{62}$ G. Schott, ${ }^{62}$ B. Serfass, ${ }^{62}$ G. Vasseur, ${ }^{62}$ Ch. Yeche, ${ }^{62}$ M. Zito, ${ }^{62}$ M. V. Purohit, ${ }^{63}$ A. W. Weidemann, ${ }^{63}$ F. X. Yumiceva, ${ }^{63}$ I. Adam, ${ }^{64}$ D. Aston, ${ }^{64}$ N. Berger, ${ }^{64}$ A. M. Boyarski, ${ }^{64}$ M. R. Convery, ${ }^{64}$ D. P. Coupal, ${ }^{64}$ D. Dong, ${ }^{64}$ J. Dorfan, ${ }^{64}$ W. Dunwoodie, ${ }^{64}$ R. C. Field, ${ }^{64}$ T. Glanzman, ${ }^{64}$ S. J. Gowdy, ${ }^{64}$ E. Grauges, ${ }^{64}$ T. Haas, ${ }^{64}$ T. Hadig, ${ }^{64}$ V. Halyo, ${ }^{64}$ T. Himel, ${ }^{64}$ T. Hryn'ova, ${ }^{64}$ M. E. Huffer, ${ }^{64}$ W. R. Innes, ${ }^{64}$ C. P. Jessop, ${ }^{64}$ M. H. Kelsey, ${ }^{64}$ P. Kim, ${ }^{64}$ M. L. Kocian, ${ }^{64}$ U. Langenegger, ${ }^{64}$ D. W. G. S. Leith, ${ }^{64}$ S. Luitz, ${ }^{64}$ V. Luth, ${ }^{64}$ H. L. Lynch ${ }^{64}$ H. Marsiske, ${ }^{64}$ S. Menke, ${ }^{64}$ R. Messner, ${ }^{64}$ D. R. Muller, ${ }^{64}$ C. P. O’Grady, ${ }^{64}$ V. E. Ozcan, ${ }^{64}$ A. Perazzo, ${ }^{64}$ M. Perl, ${ }^{64}$ S. Petrak, ${ }^{64}$ H. Quinn, ${ }^{64}$ B. N. Ratcliff, ${ }^{64}$ S. H. Robertson, ${ }^{64}$ A. Roodman, ${ }^{64}$ A. A. Salnikov, ${ }^{64}$ T. Schietinger, ${ }^{64}$ R. H. Schindler, ${ }^{64}$ J. Schwiening, ${ }^{64}$ G. Simi, ${ }^{64}$ A. Snyder, ${ }^{64}$ A. Soha, ${ }^{64}$ S. M. Spanier, ${ }^{64}$ J. Stelzer, ${ }^{64}$ D. Su, ${ }^{64}$ M. K. Sullivan, ${ }^{64}$ H. A. Tanaka, ${ }^{64}$ J. Va'vra, ${ }^{64}$ S. R. Wagner, ${ }^{64}$ M. Weaver, ${ }^{64}$ A. J. R. Weinstein, ${ }^{64}$ W. J. Wisniewski, ${ }^{64}$ D. H. Wright, ${ }^{64}$ C. C. Young, ${ }^{64}$ P. R. Burchat, ${ }^{65}$ C. H. Cheng, ${ }^{65}$ T. I. Meyer, ${ }^{65}$ C. Roat, ${ }^{65}$ R. Henderson, ${ }^{66}$ W. Bugg, ${ }^{67}$ H. Cohn, ${ }^{67}$ J. M. Izen,,${ }^{68}$ I. Kitayama, ${ }^{68}$ X. C. Lou, ${ }^{68}$ F. Bianchi, ${ }^{69}$ M. Bona, ${ }^{69}$ D. Gamba, ${ }^{69}$ L. Bosisio, ${ }^{70}$ G. Della Ricca, ${ }^{70}$ S. Dittongo, ${ }^{70}$ L. Lanceri, ${ }^{70}$ P. Poropat, ${ }^{70}$ L. Vitale,,${ }^{70}$ G. Vuagnin, ${ }^{70}$ R. S. Panvini, ${ }^{71}$ Sw. Banerjee, ${ }^{72}$ C. M. Brown, ${ }^{72}$ D. Fortin, ${ }^{72}$ P. D. Jackson, ${ }^{72}$ R. Kowalewski, ${ }^{72}$ J. M. Roney, ${ }^{72}$ H. R. Band, ${ }^{73}$ S. Dasu, ${ }^{73}$ M. Datta, ${ }^{73}$ A. M. Eichenbaum, ${ }^{73}$ H. Hu, ${ }^{73}$ J. R. Johnson, ${ }^{73}$ R. Liu, ${ }^{73}$ F. Di Lodovico, ${ }^{73}$ A. Mohapatra, ${ }^{73}$ Y. Pan, ${ }^{73}$ R. Prepost, ${ }^{73}$ I. J. Scott, ${ }^{73}$ S. J. Sekula, ${ }^{73}$ J. H. von Wimmersperg-Toeller, ${ }^{73}$ J. Wu, ${ }^{73}$ S. L. Wu, ${ }^{73}$ Z. Yu, ${ }^{73}$ and H. Neal ${ }^{74}$
(The BABAR Collaboration)
${ }^{1}$ Laboratoire de Physique des Particules, F-74941 Annecy-le-Vieux, France
${ }^{2}$ Università di Bari, Dipartimento di Fisica and INFN, I-70126 Bari, Italy
${ }^{3}$ Institute of High Energy Physics, Beijing 100039, China
${ }^{4}$ University of Bergen, Inst. of Physics, N-5007 Bergen, Norway
${ }^{5}$ Lawrence Berkeley National Laboratory and University of California, Berkeley, CA 94720, USA
${ }^{6}$ University of Birmingham, Birmingham, B15 2TT, United Kingdom
${ }^{7}$ Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
${ }^{8}$ University of Bristol, Bristol BS8 1TL, United Kingdom
${ }^{9}$ University of British Columbia, Vancouver, BC, Canada V6T $1 Z 1$
${ }^{10}$ Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
${ }^{11}$ Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia ${ }^{12}$ University of California at Irvine, Irvine, CA 92697, USA
${ }^{13}$ University of California at Los Angeles, Los Angeles, CA 90024, USA
${ }^{14}$ University of California at San Diego, La Jolla, CA 92093, USA
${ }^{15}$ University of California at Santa Barbara, Santa Barbara, CA 93106, USA
${ }^{16}$ University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, CA 95064, USA
${ }^{17}$ California Institute of Technology, Pasadena, CA 91125, USA
${ }^{18}$ University of Cincinnati, Cincinnati, OH 45221, USA
${ }^{19}$ University of Colorado, Boulder, CO 80309, USA
${ }^{20}$ Colorado State University, Fort Collins, CO 80523, USA
${ }^{21}$ Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
${ }^{22}$ Ecole Polytechnique, LLR, F-91128 Palaiseau, France
${ }^{23}$ University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
${ }^{24}$ Elon University, Elon University, NC 27244-2010, USA
${ }^{25}$ Università di Ferrara, Dipartimento di Fisica and INFN, I-44100 Ferrara, Italy

${ }^{26}$ Florida AछM University, Tallahassee, FL 32307, USA
${ }^{27}$ Laboratori Nazionali di Frascati dell'INFN, I-00044 Frascati, Italy
${ }^{28}$ Università di Genova, Dipartimento di Fisica and INFN, I-16146 Genova, Italy
${ }^{29}$ Harvard University, Cambridge, MA 02138, USA
${ }^{30}$ University of Iowa, Iowa City, IA 52242, USA
${ }^{31}$ Iowa State University, Ames, IA 50011-3160, USA
${ }^{32}$ Laboratoire de l'Accélérateur Linéaire, F-91898 Orsay, France
${ }^{33}$ Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
${ }^{34}$ University of Liverpool, Liverpool L69 3BX, United Kingdom
${ }^{35}$ University of London, Imperial College, London, SW7 2BW, United Kingdom
${ }^{36}$ Queen Mary, University of London, E1 4NS, United Kingdom
${ }^{37}$ University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
${ }^{38}$ University of Louisville, Louisville, KY 40292, USA
${ }^{39}$ University of Manchester, Manchester M13 9PL, United Kingdom
${ }^{40}$ University of Maryland, College Park, MD 20742, USA
${ }^{41}$ University of Massachusetts, Amherst, MA 01003, USA
${ }^{42}$ Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, MA 02139, USA
${ }^{43}$ McGill University, Montréal, QC, Canada H3A $2 T 8$
${ }^{44}$ Università di Milano, Dipartimento di Fisica and INFN, I-20133 Milano, Italy
${ }^{45}$ University of Mississippi, University, MS 38677, USA
${ }^{46}$ Université de Montréal, Laboratoire René J. A. Lévesque, Montréal, QC, Canada H3C 3J7
${ }^{47}$ Mount Holyoke College, South Hadley, MA 01075, USA
${ }^{48}$ Università di Napoli Federico II, Dipartimento di Scienze Fisiche and INFN, I-80126, Napoli, Italy
${ }^{49}$ University of Notre Dame, Notre Dame, IN 46556, USA
${ }^{50}$ Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
${ }^{51}$ University of Oregon, Eugene, OR 97403, USA
${ }^{52}$ Università di Padova, Dipartimento di Fisica and INFN, I-35131 Padova, Italy
${ }^{53}$ Universités Paris VI et VII, Lab de Physique Nucléaire H. E., F-75252 Paris, France
${ }^{54}$ Università di Pavia, Dipartimento di Elettronica and INFN, I-27100 Pavia, Italy
${ }^{55}$ University of Pennsylvania, Philadelphia, PA 19104, USA
${ }^{56}$ Università di Pisa, Scuola Normale Superiore and INFN, I-56010 Pisa, Italy
${ }^{57}$ Prairie View A $\mathcal{G M}$ University, Prairie View, TX 77446, USA
${ }^{58}$ Princeton University, Princeton, NJ 08544, USA
${ }^{59}$ Università di Roma La Sapienza, Dipartimento di Fisica and INFN, I-00185 Roma, Italy
${ }^{60}$ Universität Rostock, D-18051 Rostock, Germany
${ }^{61}$ Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
${ }^{62}$ DAPNIA, Commissariat à l'Energie Atomique/Saclay, F-91191 Gif-sur-Yvette, France
${ }^{63}$ University of South Carolina, Columbia, SC 29208, USA
${ }^{64}$ Stanford Linear Accelerator Center, Stanford, CA 94309, USA
${ }^{65}$ Stanford University, Stanford, CA 94305-4060, USA
${ }^{66}$ TRIUMF, Vancouver, BC, Canada V6T 2A3
${ }^{67}$ University of Tennessee, Knoxville, TN 37996, USA
${ }^{68}$ University of Texas at Dallas, Richardson, TX 75083, USA
${ }^{69}$ Università di Torino, Dipartimento di Fisica Sperimentale and INFN, I-10125 Torino, Italy
${ }^{70}$ Università di Trieste, Dipartimento di Fisica and INFN, I-34127 Trieste, Italy
${ }^{71}$ Vanderbilt University, Nashville, TN 37235, USA
${ }^{72}$ University of Victoria, Victoria, BC, Canada V8W 3P6
${ }^{73}$ University of Wisconsin, Madison, WI 53706, USA
${ }^{7 / 4}$ Yale University, New Haven, CT 06511, USA

(Dated: November 20, 2002)
We report evidence for the decays $B^{0} \rightarrow D_{s}^{+} \pi^{-}$and $B^{0} \rightarrow D_{s}^{-} K^{+}$and the results of a search for $B^{0} \rightarrow D_{s}^{*+} \pi^{-}$and $B^{0} \rightarrow D_{s}^{*-} K^{+}$in a sample of 84 million $\Upsilon(4 S)$ decays into $B \bar{B}$ pairs collected with the BABAR detector at the PEP II asymmetric-energy $e^{+} e^{-}$storage ring. We measure the branching fractions $\mathcal{B}\left(B^{0} \rightarrow D_{s}^{+} \pi^{-}\right)=(3.2 \pm 0.9$ (stat. $) \pm 1.0$ (syst.) $) \times 10^{-5}$ and $\mathcal{B}\left(B^{0} \rightarrow D_{s}^{-} K^{+}\right)=(3.2 \pm$ 1.0 (stat.) ± 1.0 (syst.)) $\times 10^{-5}$. We also set 90% C.L. limits $\mathcal{B}\left(B^{0} \rightarrow D_{s}^{*+} \pi^{-}\right)<4.1 \times 10^{-5}$ and $\mathcal{B}\left(B^{0} \rightarrow D_{s}^{*-} K^{+}\right)<2.5 \times 10^{-5}$.

PACS numbers: $12.15 . \mathrm{Hh}, 11.30 . \mathrm{Er}, 13.25 . \mathrm{Hw}$

The measurement of the $C P$-violating phase of the Cabibbo-Kobayashi-Maskawa (CKM) matrix [1] is an important part of the present scientific program in parti-
cle physics. $C P$ violation manifests itself as a non-zero area of the unitarity triangle [2]. While it is sufficient to measure one of the angles to demonstrate the exis-
tence of $C P$ violation, the unitarity triangle needs to be overconstrained by experimental measurements, in order to demonstrate that the CKM mechanism is the correct explanation of this phenomenon. Several theoretically clean measurements of the angle β exist [3], but there is no such measurement of the two other angles α and γ. A theoretically clean measurement of $\sin (2 \beta+\gamma)$ can be obtained from the study of the time evolution for $B^{0} \rightarrow D^{(*)-} \pi^{+}[4]$ decays, which are already available in large samples at the B factories, and for the corresponding CKM-suppressed mode $B^{0} \rightarrow D^{(*)+} \pi^{-}[5]$.

FIG. 1: The Feynman diagrams for the decays a) $B^{0} \rightarrow D^{(*)-} \pi^{+}$ b) $\quad B^{0} \rightarrow D^{(*)+} \pi^{-}, \quad$ c) $\quad B^{0} \rightarrow D_{s}^{(*)+} \pi^{-}, \quad$ d) $B^{0} \rightarrow D_{s}^{(*)-} K^{+}$.

This measurement requires a knowledge of the ratio of the decay amplitudes $R^{(*)}=$ $\left|A\left(B^{0} \rightarrow D^{(*)+} \pi^{-}\right) / A\left(B^{0} \rightarrow D^{(*)-} \pi^{+}\right)\right|$.

Unfortunately a determination of $\left|A\left(B^{0} \rightarrow D^{(*)+} \pi^{-}\right)\right|$ from a measurement of $\mathcal{B}\left(B^{0} \rightarrow D^{(*)+} \pi^{-}\right)$is not possible with the currently available data sample due to the presence of the large background from $\bar{B}^{0} \rightarrow D^{(*)+} \pi^{-}$. However it has been suggested [5] that $R^{(*)}$ can be inferred from measurements of the ratios of the branching fractions $\mathcal{B}\left(B^{0} \rightarrow D_{s}^{(*)+} \pi^{-}\right) / \mathcal{B}\left(B^{0} \rightarrow D^{(*)-} \pi^{+}\right)$using $\mathrm{SU}(3)$ symmetry relation. The decays $B^{0} \rightarrow D_{s}^{(*)+} \pi^{-}$have also been proposed as a means for measuring $\left|V_{u b} / V_{c b}\right|[6]$.

The decays $B^{0} \rightarrow D_{s}^{(*)-} K^{+}$are a probe of the dynamics in B decays because they are expected to proceed mainly via a W -exchange diagram, not observed so far. In addition, these modes can be used to investigate the role of final state rescattering, which can substantially increase the expected rates [7]. Figure 1 shows the Feynman diagrams for the decays $B^{0} \rightarrow D^{(*)-} \pi^{+}, B^{0} \rightarrow D^{(*)+} \pi^{-}$, $B^{0} \rightarrow D_{s}^{(*)+} \pi^{-}$and $B^{0} \rightarrow D_{s}^{(*)-} K^{+}$.

In this Letter we present measurements of the branching fractions for the decays $B^{0} \rightarrow D_{s}^{(*)+} \pi^{-}$and $B^{0} \rightarrow D_{s}^{(*)-} K^{+}$.

The analysis uses a sample of 84 million $\Upsilon(4 S)$ decays into $B \bar{B}$ pairs collected in the years 1999-2002 with the BABAR detector at the PEP-II asymmetric-energy B factory [8]. Since the BABAR detector is described in detail elsewhere [9], only the components that are crucial to this analysis are summarized here. Charged particle tracking is provided by a five-layer silicon vertex tracker (SVT) and a 40-layer drift chamber (DCH). For chargedparticle identification, ionization energy loss $(d E / d x)$ in the DCH and SVT, and Cherenkov radiation detected in a ring-imaging device are used. Photons are identified and measured using the electromagnetic calorimeter, which comprises 6580 thallium-doped CsI crystals. These systems are mounted inside a 1.5 T solenoidal superconducting magnet. We use the GEANT [10] software to simulate interactions of particles traversing the $B A B A R$ detector, taking into account the varying detector conditions and beam backgrounds.

We select events with a minimum of four reconstructed charged tracks and a total measured energy greater than 4.5 GeV , determined using all charged tracks and neutral clusters with energy above 30 MeV . In order to reject continuum background, the ratio of the second and zeroth order Fox-Wolfram moments [11] must be less than 0.5 .

So far, only upper limits have been reported for the modes studied here [12]. Therefore the selection criteria are optimized to maximize the ratio of signal efficiency over the square-root of the expected number of background events.

Candidates for D_{s}^{+}mesons are reconstructed in the modes $D_{s}^{+} \rightarrow \phi \pi^{+}, K_{S}^{0} K^{+}$and $\bar{K}^{* 0} K^{+}$, with $\phi \rightarrow K^{+} K^{-}$, $K_{S}^{0} \rightarrow \pi^{+} \pi^{-}$, and $\bar{K}^{* 0} \rightarrow K^{-} \pi^{+}$. The K_{S}^{0} candidates are reconstructed from two oppositely-charged tracks with an invariant mass $493<M_{\pi^{+} \pi^{-}}<501 \mathrm{MeV} / c^{2}$. All other tracks are required to originate from a vertex consistent with the $e^{+} e^{-}$interaction point. In order to identify charged kaons, two selections are used: a pion veto with an efficiency of 95% for kaons and 20% for pions, and a tight kaon selection with an efficiency of 85% and 5% pion misidentification probability. Unless the tight selection is specified, the pion veto is always adopted. The ϕ candidates are reconstructed from two oppositelycharged kaons with an invariant mass $1009<M_{K^{+} K^{-}}<$ $1029 \mathrm{MeV} / c^{2}$. The $\bar{K}^{* 0}$ candidates are constructed from K^{-}and π^{+}candidates and are required to have an invariant mass in the range $856<M_{K^{-} \pi^{+}}<936 \mathrm{MeV} / c^{2}$. The polarization of the $\bar{K}^{* 0}(\phi)$ mesons in the D_{s}^{+}decays are also utilized to reject backgrounds through the use of the helicity angle θ_{H}, defined as the angle between one of the decay products of the $\bar{K}^{* 0}(\phi)$ and the direction of flight of the D_{s}^{+}, in the $\bar{K}^{* 0}(\phi)$ rest frame. Background events are distributed uniformly in $\cos \theta_{H}$ since they originate from random combinations, while signal events are distributed as $\cos ^{2} \theta_{H}$. The $\bar{K}^{* 0}$ candidates are therefore required to have $\left|\cos \theta_{H}\right|>0.4$, while for the ϕ candidates we require $\left|\cos \theta_{H}\right|>0.5$. In order to
reject background from $D^{+} \rightarrow K_{S}^{0} \pi^{+}$or $\bar{K}^{* 0} \pi^{+}$, the K^{+} in the reconstruction of $D_{s}^{+} \rightarrow K_{s}^{0} K^{+}$or $\bar{K}^{* 0} K^{+}$is required to pass the tight kaon identification criteria introduced above. Finally, the D_{s}^{+}candidates are required to have an invariant mass within $10 \mathrm{MeV} / c^{2}$ of the nominal value [13].

We reconstruct D_{s}^{*+} candidates in the mode $D_{s}^{*+} \rightarrow D_{s}^{+} \gamma$, by combining D_{s}^{+}and photon candidates. Photons that form a π^{0} candidate, with $122<M_{\gamma \gamma}<$ $147 \mathrm{MeV} / c^{2}$, in combination with any other photon with energy greater than 70 MeV are rejected. The mass difference between the D_{s}^{*+} and the D_{s}^{+}candidate is required to be within $14 \mathrm{MeV} / c^{2}$ of the nominal value [13].

We combine $D_{s}^{(*)+}$ candidates with a track of opposite charge to form a B candidate, and assign the candidate to the $\bar{B}^{0} \rightarrow D_{s}^{(*)+} K^{-}$mode if the track satisfies the tight kaon selection and to the $B^{0} \rightarrow D_{s}^{(*)+} \pi^{-}$mode otherwise. In order to reject events where the D_{s}^{+}comes from a B decay and the pion or kaon comes from the other B, we require the two decay products to have a probability greater than 0.25% of originating from a common vertex.

The remaining background is predominantly combinatorial in nature and arises from continuum $q \bar{q}$ production. This source is suppressed based on event topology. We compute the angle $\left(\theta_{T}\right)$ between the thrust axis of the B meson candidate and the thrust axis of all other particles in the event. In the center-of-mass frame (c.m.), $B \bar{B}$ pairs are produced approximately at rest and form a uniform $\cos \theta_{T}$ distribution. In contrast, $q \bar{q}$ pairs are produced back-to-back in the c.m. frame, which results in a $\left|\cos \theta_{T}\right|$ distribution peaking at 1 . Based on the background level of each mode, $\left|\cos \theta_{T}\right|$ is required to be smaller than a value that ranges between 0.7 and 0.8 . We further suppress backgrounds using a Fisher discriminant \mathcal{F} constructed from the scalar sum of the c.m. momenta of all tracks and photons (excluding the B candidate decay products) flowing into 9 concentric cones centered on the thrust axis of the B candidate [14]. The more spherical the event, the lower the value of \mathcal{F}. We require \mathcal{F} to be smaller than a threshold that varies from 0.04 to 0.2 depending on the background level.

We extract the signal using the kinematic variables $m_{\mathrm{ES}}=\sqrt{E_{\mathrm{b}}^{* 2}-\left(\sum_{i} \mathbf{p}_{i}^{*}\right)^{2}}$ and $\Delta E=\sum_{i} \sqrt{m_{i}^{2}+\mathbf{p}_{i}^{* 2}}-$ E_{b}^{*}, where E_{b}^{*} is the beam energy in the c.m. frame, \mathbf{p}_{i}^{*} is the c.m. momentum of daughter particle i of the B meson candidate, and m_{i} is the mass hypothesis for particle i. For signal events, $m_{\text {ES }}$ peaks at the B meson mass with a resolution of about $2.5 \mathrm{MeV} / c^{2}$ and ΔE peaks near zero, indicating that the candidate system of particles has total energy consistent with the beam energy in the c.m. frame. The ΔE signal band is defined by $|\Delta E-5|<36 \mathrm{MeV}$ and within the band we define the events with $m_{\mathrm{ES}}>5.27 \mathrm{GeV} / c^{2}$ as the signal candidates.

After the aforementioned selection, three classes of backgrounds remain. First, the amount of com-

FIG. 2: The ΔE distribution for $B^{0} \rightarrow D_{s}^{+} \pi^{-}$(top) and $B^{0} \rightarrow D_{s}^{-} K^{+}$(bottom) candidates in data compared with the distributions of the combinatorial background, estimated from the m_{ES} sideband, the cross-contamination, estimated from the $M_{D_{s}}^{\text {cand }}$ sidebands, and the simulation of the signal, normalized to the observed yield. The insert shows the ΔE distribution of the separate contributions to the cross contamination to the $B^{0} \rightarrow D_{s}^{+} \pi^{-}$signal as predicted by simulation. The reflection backgrounds are normalized to the known branching fractions [13], while the normalization of the charmless background is arbitrary.
binatorial background in the signal region is estimated from the sideband of the m_{ES} distribution which is described by a threshold function $\frac{d N}{d x}=$ $x \sqrt{1-x^{2} / E_{b}^{* 2}} \exp \left[-\xi\left(1-x^{2} / E_{b}^{* 2}\right)\right]$, characterized by the shape parameter ξ [15].

Second, B meson decays such as $\bar{B}^{0} \rightarrow D^{+} \pi^{-}, \rho^{-}$with $D^{+} \rightarrow K_{S}^{0} \pi^{+}$or $\bar{K}^{* 0} \pi^{+}$can constitute a background for the $B^{0} \rightarrow D_{s}^{+} \pi^{-}$mode if the pion in the D decay is misidentified as a kaon (reflection background). These backgrounds have the same $m_{\text {ES }}$ distributions as the signal but different distributions in ΔE. The corresponding backgrounds for the $B^{0} \rightarrow D_{s}^{-} K^{+}$mode $\left(B^{0} \rightarrow D^{-} K^{+}, K^{*+}\right)$ have a branching fraction ten times smaller.

Finally, rare B decays into the same final state, such as $B^{0} \rightarrow \bar{K}^{(*) 0} K^{+} \pi^{-}$or $\bar{K}^{(*) 0} K^{+} K^{-}$(charmless background), have the same m_{ES} and ΔE distributions as the $B^{0} \rightarrow D_{s}^{+} \pi^{-}$or $B^{0} \rightarrow D_{s}^{-} K^{+}$signal. Figure 2 shows the ΔE distribution for the $B^{0} \rightarrow D_{s}^{+} \pi^{-}$and $B^{0} \rightarrow D_{s}^{-} K^{+}$signal and for various sources of background. The branching fraction of the charmless background is not well measured; therefore we need to estimate the sum of the reflection and charmless background (referred to as crosscontamination) directly with data. This is possible because both of these background sources have a flat dis-
tribution in the D_{s}^{+}candidate mass $\left(M_{D_{s}}^{\text {cand }}\right)$ while the signal has a Gaussian distribution.

Possible contamination from $B \rightarrow D_{s}^{(*)} X$ decays is determined with simulation and found to be negligible. The cross-contamination for the decays $B^{0} \rightarrow D_{s}^{*+} \pi^{-}$and $B^{0} \rightarrow D_{s}^{*-} K^{+}$is dominated by the reflection background, which we estimate from simulation. Cross-feed between $B^{0} \rightarrow D_{s}^{(*)+} \pi^{-}$and $B^{0} \rightarrow D_{s}^{(*)-} K^{+}$modes is estimated to be less than 1%.

FIG. 3: The $m_{\text {ES }}$ distributions for the $B^{0} \rightarrow D_{s}^{+} \pi^{-}$(top left), $B^{0} \rightarrow D_{s}^{-} K^{+}$(top right), $B^{0} \rightarrow D_{s}^{*+} \pi^{-}$(bottom left), and $B^{0} \rightarrow D_{s}^{*-} K^{+}$(bottom right) candidates within the ΔE band in data after all selection requirements. The fits used to obtain the signal yield are described in the text. The contribution from each D_{s}^{+}mode is shown separately.

Figure 3 shows the $m_{\text {ES }}$ distribution in the ΔE signal band for each of the modes. We perform an unbinned maximum-likelihood fit to each m_{ES} distribution with a threshold function to characterize the combinatorial background and a Gaussian distribution to describe the sum of the signal and cross-contamination contributions. The mean and the width of the Gaussian distribution are fixed to the values obtained in a copious $B^{0} \rightarrow D^{(*)-} \pi^{+}$ control sample. For the $B^{0} \rightarrow D_{s}^{+} \pi^{-}$and $B^{0} \rightarrow D_{s}^{-} K^{+}$ analyses, we obtain the threshold parameter ξ from a fit to the distributions of m_{ES} in data, after loosening the $M_{D_{s}}^{\text {cand }}$ and ΔE requirements. In the case of $B^{0} \rightarrow D_{s}^{*+} \pi^{-}$ and $B^{0} \rightarrow D_{s}^{*-} K^{+}$, due to the low background level, we use simulated events to estimate ξ.

No fit is performed with the $B^{0} \rightarrow D_{s}^{*-} K^{+}$sample due to the small number of events. Whenever there are enough events, we fit each D_{s}^{+}decay mode separately, as well as the combination of all modes. The
cross-contamination is estimated by performing the same fit on the events in the data $M_{D_{s}}^{\text {cand }}$ sidebands $(4 \sigma<$ $\left|M_{D_{s}}^{\text {cand }}-1968.6 \mathrm{MeV} / c^{2}\right|<8 \sigma$, where the resolution is $\sigma=5 \mathrm{MeV} / c^{2}$). The number of observed events, the background expectations, and the reconstruction efficiencies estimated with simulated events are summarized in Table I.

In the $B^{0} \rightarrow D_{s}^{+} \pi^{-}\left(B^{0} \rightarrow D_{s}^{-} K^{+}\right)$mode the fit yields a Gaussian contribution of $21.4 \pm 5.1(16.7 \pm 4.3)$ events and a combinatorial background of $7.8 \pm 1.7(3.5 \pm 1.3)$ events. The cross-contamination is estimated to be 3.7 ± 2.4 (2.7 ± 1.9) events. The probability of the background to fluctuate to the observed number of events, taking into account both Poisson statistics and uncertainties in the background estimates, is $9.5 \times 10^{-4}\left(5.0 \times 10^{-4}\right)$. For a Gaussian distribution this would correspond to $3.3 \sigma(3.5 \sigma)$. Given the estimated reconstruction efficiencies we measure $\mathcal{B}\left(B^{0} \rightarrow D_{s}^{+} \pi^{-}\right)=(3.2 \pm 0.9) \times 10^{-5}$ $\left(\mathcal{B}\left(B^{0} \rightarrow D_{s}^{-} K^{+}\right)=(3.2 \pm 1.0) \times 10^{-5}\right)$, where the quoted error is statistical only. We also set the 90% C.L. limits $\mathcal{B}\left(B^{0} \rightarrow D_{s}^{*+} \pi^{-}\right)<4.1 \times 10^{-5}$ and $\mathcal{B}\left(B^{0} \rightarrow D_{s}^{*-} K^{+}\right)<$ 2.5×10^{-5}.

The systematic errors are dominated by the 25% relative uncertainty for $\mathcal{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)$. The uncertainties on the knowledge of the background come from uncertainties in the ξ parameter, for the combinatorial background, and from the limited number of events in the $M_{D_{s}}^{\text {cand }}$ sidebands for the cross-contamination. They amount to $14 \%, 16 \%, 7 \%$, and 36% of the measured branching fractions in the $B^{0} \rightarrow D_{s}^{+} \pi^{-}, B^{0} \rightarrow D_{s}^{-} K^{+}, B^{0} \rightarrow D_{s}^{*+} \pi^{-}$, and $B^{0} \rightarrow D_{s}^{*-} K^{+}$modes, respectively. The rest of the systematic errors, which include the uncertainty on tracking, K_{S}^{0} reconstruction, and charged-kaon identification efficiencies, range between 11% and 14% depending on the mode.

In conclusion, we report a 3.3σ signal for the $b \rightarrow u$ transition $B^{0} \rightarrow D_{s}^{+} \pi^{-}$and a 3.5σ signal for the decay $B^{0} \rightarrow D_{s}^{-} K^{+}$, and measure

$$
\begin{gathered}
\mathcal{B}\left(B^{0} \rightarrow D_{s}^{+} \pi^{-}\right)=(3.2 \pm 0.9(\text { stat. }) \pm 1.0(\text { syst. })) \times 10^{-5}, \\
\left.\mathcal{B}\left(B^{0} \rightarrow D_{s}^{-} K^{+}\right)=(3.2 \pm 1.0 \text { (stat. }) \pm 1.0(\text { syst. })\right) \times 10^{-5}
\end{gathered}
$$

Since the dominant uncertainty comes from the knowledge of the D_{s}^{+}branching fractions we also compute $\mathcal{B}\left(B^{0} \rightarrow D_{s}^{+} \pi^{-}\right) \times \mathcal{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)=(1.13 \pm 0.33 \pm 0.21) \times$ 10^{-6} and $\mathcal{B}\left(B^{0} \rightarrow D_{s}^{-} K^{+}\right) \times \mathcal{B}\left(D_{s}^{-} \rightarrow \phi \pi^{-}\right)=(1.16 \pm$ $0.36 \pm 0.24) \times 10^{-6}$. The search for $B^{0} \rightarrow D_{s}^{*+} \pi^{-}$and $B^{0} \rightarrow D_{s}^{*-} K^{+}$yields the 90% C.L. upper limits

$$
\begin{aligned}
& \mathcal{B}\left(B^{0} \rightarrow D_{s}^{*+} \pi^{-}\right)<4.1 \times 10^{-5} \\
& \mathcal{B}\left(B^{0} \rightarrow D_{s}^{*-} K^{+}\right)<2.5 \times 10^{-5}
\end{aligned}
$$

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by

TABLE I: The number of signal candidates ($N_{\text {sigbox }}$), the Gaussian yield ($N_{\text {gaus }}$) and the combinatorial background ($N_{\text {comb }}$) extracted from the likelihood fit, the cross-contamination ($N_{\text {cross }}$), the reconstruction efficiency (ε), the probability ($P_{\text {bckg }}$) of the data being consistent with the background fluctuating up to the level of the data in the absence of signal, the measured branching fraction (\mathcal{B}), and the 90% confidence-level upper limit. $N_{\text {gaus }}, N_{\text {comb }}$, and \mathcal{B} are not available for modes with too few events. $N_{\text {cross }}$ is not reported if no event is found in the D_{s}^{+}mass sideband.

B mode	$N_{\text {sigbox }}$	$N_{\text {gaus }}$	$N_{\text {comb }}$	$N_{\text {cross }}$	$\varepsilon(\%)$	$P_{\text {bckg }}$	$\mathcal{B}\left(10^{-5}\right)$	90% C.L. $\left(10^{-5}\right)$
$B^{0} \rightarrow D_{s}^{+} \pi^{-}$								
$D_{s}^{+} \rightarrow \phi \pi^{+}$	9	8.0 ± 3.0	2.1 ± 0.7	<0.7	16.9	1.4×10^{-3}	3.1 ± 1.2	-
$D_{s}^{+} \rightarrow \bar{K}^{* 0} K^{+}$	12	9.2 ± 3.4	3.8 ± 1.0	2.9 ± 1.8	9.6	2.3×10^{-2}	3.5 ± 1.9	-
$D_{s}^{+} \rightarrow K_{S}^{0} K^{+}$	5	4.2 ± 2.2	1.9 ± 0.6	1.2 ± 1.4	12.3	8.3×10^{-2}	2.4 ± 1.8	-
all	26	21.4 ± 5.1	7.8 ± 1.7	3.7 ± 2.4	$\mathrm{~N} / \mathrm{A}$	9.5×10^{-4}	$3.2 \pm 0.9 \pm 1.0$	-
$B^{0} \rightarrow D_{s}^{*+} \pi^{-}$								-
$D_{s}^{+} \rightarrow \phi \pi^{+}$	2	-	0.6 ± 0.3	<0.14	7.8	-	-	-
$D_{s}^{+} \rightarrow \bar{K}^{* 0} K^{+}$	3	$2.8_{-1.8}^{+2.7}$	0.4 ± 0.3	0.3 ± 0.2	3.3	3.9×10^{-2}	$4.3_{-3.1}^{+4.7}$	<12
$D_{s}^{+} \rightarrow K_{S}^{0} K^{+}$	0	-	0.4 ± 0.3	<0.14	5.1	-	-	-
all	5	$4.4_{-2.8}^{+2.7}$	1.2 ± 0.4	0.3 ± 0.2	$\mathrm{~N} / \mathrm{A}$	2.3×10^{-2}	$1.9_{-1.3}^{+1.2} \pm 0.5$	<4.1
$B^{0} \rightarrow D_{s}^{-} K^{+}$								
$D_{s}^{+} \rightarrow \phi \pi^{+}$	7	5.8 ± 2.6	1.3 ± 0.7	1.1 ± 1.2	13.0	4.5×10^{-2}	2.4 ± 1.3	-
$D_{s}^{+} \rightarrow \bar{K}^{* 0} K^{+}$	8	7.3 ± 2.9	1.7 ± 0.7	<0.7	7.8	1.9×10^{-3}	5.0 ± 2.0	-
$D_{s}^{+} \rightarrow K_{S}^{0} K^{+}$	4	3.7 ± 2.0	0.6 ± 0.4	1.3 ± 1.0	9.2	1.7×10^{-2}	2.5 ± 2.1	-
all	19	16.7 ± 4.3	3.5 ± 1.3	2.7 ± 1.9	$\mathrm{~N} / \mathrm{A}$	5.0×10^{-4}	$3.2 \pm 1.0 \pm 1.0$	-
$B^{0} \rightarrow D_{s}^{*-} K^{+}$								-
$D_{s}^{+} \rightarrow \phi \pi^{+}$	0	-	0.8 ± 0.6	<0.14	5.3	-	-	-
$D_{s}^{+} \rightarrow \bar{K}^{* 0} K^{+}$	1	-	0.4 ± 0.4	<0.14	2.7	-	-	-
$D_{s}^{+} \rightarrow K_{S}^{0} K^{+}$	1	-	0.4 ± 0.4	<0.14	4.3	-	-	-
all	2	-	1.6 ± 0.8	<0.14	$\mathrm{~N} / \mathrm{A}$	0.48	-	<2.5

DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation.

* Also with Università di Perugia, I-06100 Perugia, Italy [1] N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963); M. Kobayashi and T. Maskawa, Prog. Theo. Phys 49, 652 (1973).
[2] C. Jarlskog, in CP Violation, C. Jarlskog ed., World Scientific, Singapore (1988).
[3] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 87, 091801 (2001); Belle Collaboration, K. Abe et al., Phys. Rev. Lett. 87, 091802 (2001).
[4] Charge conjugation is implied throughout this letter, unless explicitly stated.
[5] I. Dunietz, Phys. Lett. B 427, 179 (1998).
[6] C.S. Kim, Y. Kwon, J. Lee, and W. Namgung, Phys. Rev. D 63, 094506 (2001).
[7] B. Block, M. Gronau, and J.L. Rosner, Phys. Rev. Lett. 78, 3999 (1997).
[8] PEP-II Conceptual Design Report, SLAC-0418 (1993).
[9] BABAR Collaboration, B. Aubert et al., Nucl. Instr. and Methods A479, 1 (2002).
[10] Geant4 Collaboration, "Geant4 - a simulation toolkit", CERN-IT-2002-003, submitted to Nucl. Instr. and Methods.
[11] G.C. Fox and S. Wolfram, Phys. Rev. Lett. 41, 1581 (1978).
[12] CLEO Collaboration, J. P. Alexander et al., Phys. Lett. B 319, 365 (1993).
[13] Particle Data Group, K. Hagiwara et al., Phys. Rev. 60, 010001 (2002).
[14] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 87, 151802 (2001).
[15] ARGUS Collaboration, H. Albrecht et al., Z. Phys. C 48 543 (1990).

