A Study of the Rare Decays $B^{0} \rightarrow D_{s}^{(*)+} \pi^{-}$and $B^{0} \rightarrow D_{s}^{(*)-} K^{+}$

The BABAR Collaboration

July 23, 2002

Abstract

We report on the evidence for the decays $B^{0} \rightarrow D_{s}^{+} \pi^{-}$and $B^{0} \rightarrow D_{s}^{-} K^{+}$and the results of a search for the decays $B^{0} \rightarrow D_{s}^{*+} \pi^{-}$and $B^{0} \rightarrow D_{s}^{*-} K^{+}$from a sample of 84 million $\Upsilon(4 S)$ decays into B meson pairs collected with the BABAR detector at the PEP II asymmetric-energy $e^{+} e^{-}$collider. The measured $B^{0} \rightarrow D_{s}^{+} \pi^{-}$yield has a probability of less than 10^{-3} to be a fluctuation of the background and we measure the branching fraction $\mathcal{B}\left(B^{0} \rightarrow D_{s}^{+} \pi^{-}\right)=\left(3.2 \pm 0.9\right.$ (stat.) ± 1.0 (syst.)) $\times 10^{-5}$. The measured $B^{0} \rightarrow D_{s}^{-} K^{+}$yield has a probability of less than 5×10^{-4} to be a fluctuation of the background and we measure the branching fraction $\mathcal{B}\left(B^{0} \rightarrow D_{s}^{-} K^{+}\right)=(3.2 \pm 1.0$ (stat.) ± 1.0 (syst.)) $\times 10^{-5}$. We also set 90% C.L. limits $\mathcal{B}\left(B^{0} \rightarrow D_{s}^{*+} \pi^{-}\right)<4.1 \times 10^{-5}$ and $\mathcal{B}\left(B^{0} \rightarrow D_{s}^{*-} K^{+}\right)<2.5 \times 10^{-5}$. All results are preliminary.

Contributed to the $31^{\text {st }}$ International Conference on High Energy Physics, 7/24-7/31/2002, Amsterdam, The Netherlands

Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309
Work supported in part by Department of Energy contract DE-AC03-76SF00515.

The BABAR Collaboration,
B. Aubert, D. Boutigny, J.-M. Gaillard, A. Hicheur, Y. Karyotakis, J. P. Lees, P. Robbe, V. Tisserand, A. Zghiche

Laboratoire de Physique des Particules, F-74941 Annecy-le-Vieux, France
A. Palano, A. Pompili

Università di Bari, Dipartimento di Fisica and INFN, I-70126 Bari, Italy
J. C. Chen, N. D. Qi, G. Rong, P. Wang, Y. S. Zhu

Institute of High Energy Physics, Beijing 100039, China
G. Eigen, I. Ofte, B. Stugu

University of Bergen, Inst. of Physics, N-5007 Bergen, Norway
G. S. Abrams, A. W. Borgland, A. B. Breon, D. N. Brown, J. Button-Shafer, R. N. Cahn, E. Charles, M. S. Gill, A. V. Gritsan, Y. Groysman, R. G. Jacobsen, R. W. Kadel, J. Kadyk, L. T. Kerth, Yu. G. Kolomensky, J. F. Kral, C. LeClerc, M. E. Levi, G. Lynch, L. M. Mir, P. J. Oddone, T. J. Orimoto, M. Pripstein, N. A. Roe, A. Romosan, M. T. Ronan, V. G. Shelkov, A. V. Telnov, W. A. Wenzel Lawrence Berkeley National Laboratory and University of California, Berkeley, CA 94720, USA
T. J. Harrison, C. M. Hawkes, D. J. Knowles, S. W. O'Neale, R. C. Penny, A. T. Watson, N. K. Watson University of Birmingham, Birmingham, B15 2TT, United Kingdom
T. Deppermann, K. Goetzen, H. Koch, B. Lewandowski, K. Peters, H. Schmuecker, M. Steinke Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
N. R. Barlow, W. Bhimji, J. T. Boyd, N. Chevalier, P. J. Clark, W. N. Cottingham, C. Mackay, F. F. Wilson

University of Bristol, Bristol BS8 1TL, United Kingdom
K. Abe, C. Hearty, T. S. Mattison, J. A. McKenna, D. Thiessen

University of British Columbia, Vancouver, BC, Canada V6T 1Z1
S. Jolly, A. K. McKemey

Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
V. E. Blinov, A. D. Bukin, A. R. Buzykaev, V. B. Golubev, V. N. Ivanchenko, A. A. Korol, E. A. Kravchenko, A. P. Onuchin, S. I. Serednyakov, Yu. I. Skovpen, A. N. Yushkov Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
D. Best, M. Chao, D. Kirkby, A. J. Lankford, M. Mandelkern, S. McMahon, D. P. Stoker

University of California at Irvine, Irvine, CA 92697, USA
C. Buchanan, S. Chun

University of California at Los Angeles, Los Angeles, CA 90024, USA
H. K. Hadavand, E. J. Hill, D. B. MacFarlane, H. Paar, S. Prell, Sh. Rahatlou, G. Raven, U. Schwanke, V. Sharma

University of California at San Diego, La Jolla, CA 92093, USA
J. W. Berryhill, C. Campagnari, B. Dahmes, P. A. Hart, N. Kuznetsova, S. L. Levy, O. Long, A. Lu, M. A. Mazur, J. D. Richman, W. Verkerke University of California at Santa Barbara, Santa Barbara, CA 93106, USA
J. Beringer, A. M. Eisner, M. Grothe, C. A. Heusch, W. S. Lockman, T. Pulliam, T. Schalk, R. E. Schmitz, B. A. Schumm, A. Seiden, M. Turri, W. Walkowiak, D. C. Williams, M. G. Wilson University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, CA 95064, USA
E. Chen, G. P. Dubois-Felsmann, A. Dvoretskii, D. G. Hitlin, F. C. Porter, A. Ryd, A. Samuel, S. Yang California Institute of Technology, Pasadena, CA 91125, USA
S. Jayatilleke, G. Mancinelli, B. T. Meadows, M. D. Sokoloff

University of Cincinnati, Cincinnati, OH 45221, USA
T. Barillari, P. Bloom, W. T. Ford, U. Nauenberg, A. Olivas, P. Rankin, J. Roy, J. G. Smith, W. C. van Hoek, L. Zhang University of Colorado, Boulder, CO 80309, USA
J. L. Harton, T. Hu, M. Krishnamurthy, A. Soffer, W. H. Toki, R. J. Wilson, J. Zhang Colorado State University, Fort Collins, CO 80523, USA
D. Altenburg, T. Brandt, J. Brose, T. Colberg, M. Dickopp, R. S. Dubitzky, A. Hauke, E. Maly, R. Müller-Pfefferkorn, S. Otto, K. R. Schubert, R. Schwierz, B. Spaan, L. Wilden

Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
D. Bernard, G. R. Bonneaud, F. Brochard, J. Cohen-Tanugi, S. Ferrag, S. T'Jampens, Ch. Thiebaux, G. Vasileiadis, M. Verderi

Ecole Polytechnique, LLR, F-91128 Palaiseau, France
A. Anjomshoaa, R. Bernet, A. Khan, D. Lavin, F. Muheim, S. Playfer, J. E. Swain, J. Tinslay

University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
M. Falbo

Elon University, Elon University, NC 27244-2010, USA
C. Borean, C. Bozzi, L. Piemontese, A. Sarti

Università di Ferrara, Dipartimento di Fisica and INFN, I-44100 Ferrara, Italy
E. Treadwell

Florida A $\mathcal{G M}$ University, Tallahassee, FL 32307, USA
F. Anulli, ${ }^{1}$ R. Baldini-Ferroli, A. Calcaterra, R. de Sangro, D. Falciai, G. Finocchiaro, P. Patteri, I. M. Peruzzi, ${ }^{1}$ M. Piccolo, A. Zallo

Laboratori Nazionali di Frascati dell'INFN, I-00044 Frascati, Italy
S. Bagnasco, A. Buzzo, R. Contri, G. Crosetti, M. Lo Vetere, M. Macri, M. R. Monge, S. Passaggio, F. C. Pastore, C. Patrignani, E. Robutti, A. Santroni, S. Tosi

Università di Genova, Dipartimento di Fisica and INFN, I-16146 Genova, Italy

[^0]S. Bailey, M. Morii
Harvard University, Cambridge, MA 02138, USA
R. Bartoldus, G. J. Grenier, U. Mallik
University of Iowa, Iowa City, IA 52242, USA

J. Cochran, H. B. Crawley, J. Lamsa, W. T. Meyer, E. I. Rosenberg, J. Yi

Iowa State University, Ames, IA 50011-3160, USA
M. Davier, G. Grosdidier, A. Höcker, H. M. Lacker, S. Laplace, F. Le Diberder, V. Lepeltier, A. M. Lutz, T. C. Petersen, S. Plaszczynski, M. H. Schune, L. Tantot, S. Trincaz-Duvoid, G. Wormser

Laboratoire de l'Accélérateur Linéaire, F-91898 Orsay, France
R. M. Bionta, V. Brigljević, D. J. Lange, K. van Bibber, D. M. Wright

Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
A. J. Bevan, J. R. Fry, E. Gabathuler, R. Gamet, M. George, M. Kay, D. J. Payne, R. J. Sloane, C. Touramanis

University of Liverpool, Liverpool L69 3BX, United Kingdom
M. L. Aspinwall, D. A. Bowerman, P. D. Dauncey, U. Egede, I. Eschrich, G. W. Morton, J. A. Nash, P. Sanders, D. Smith, G. P. Taylor

University of London, Imperial College, London, SW7 2BW, United Kingdom
J. J. Back, G. Bellodi, P. Dixon, P. F. Harrison, R. J. L. Potter, H. W. Shorthouse, P. Strother, P. B. Vidal Queen Mary, University of London, E1 $4 N S$, United Kingdom
G. Cowan, H. U. Flaecher, S. George, M. G. Green, A. Kurup, C. E. Marker, T. R. McMahon, S. Ricciardi, F. Salvatore, G. Vaitsas, M. A. Winter

University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
D. Brown, C. L. Davis

University of Louisville, Louisville, KY 40292, USA
J. Allison, R. J. Barlow, A. C. Forti, F. Jackson, G. D. Lafferty, A. J. Lyon, N. Savvas, J. H. Weatherall, J. C. Williams

University of Manchester, Manchester M13 9PL, United Kingdom
A. Farbin, A. Jawahery, V. Lillard, D. A. Roberts, J. R. Schieck

University of Maryland, College Park, MD 20742, USA
G. Blaylock, C. Dallapiccola, K. T. Flood, S. S. Hertzbach, R. Kofler, V. B. Koptchev, T. B. Moore, H. Staengle, S. Willocq

University of Massachusetts, Amherst, MA 01003, USA
B. Brau, R. Cowan, G. Sciolla, F. Taylor, R. K. Yamamoto

Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, MA 02139, USA
M. Milek, P. M. Patel

McGill University, Montréal, QC, Canada H3A 2T8
F. Palombo

Università di Milano, Dipartimento di Fisica and INFN, I-20133 Milano, Italy
J. M. Bauer, L. Cremaldi, V. Eschenburg, R. Kroeger, J. Reidy, D. A. Sanders, D. J. Summers University of Mississippi, University, MS 38677, USA
C. Hast, P. Taras

Université de Montréal, Laboratoire René J. A. Lévesque, Montréal, QC, Canada H3C 3J7
H. Nicholson

Mount Holyoke College, South Hadley, MA 01075, USA
C. Cartaro, N. Cavallo, G. De Nardo, F. Fabozzi, C. Gatto, L. Lista, P. Paolucci, D. Piccolo, C. Sciacca

Università di Napoli Federico II, Dipartimento di Scienze Fisiche and INFN, I-80126, Napoli, Italy
J. M. LoSecco

University of Notre Dame, Notre Dame, IN 46556, USA
J. R. G. Alsmiller, T. A. Gabriel

Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
J. Brau, R. Frey, M. Iwasaki, C. T. Potter, N. B. Sinev, D. Strom, E. Torrence

University of Oregon, Eugene, OR 97403, USA
F. Colecchia, A. Dorigo, F. Galeazzi, M. Margoni, M. Morandin, M. Posocco, M. Rotondo, F. Simonetto, R. Stroili, C. Voci

Università di Padova, Dipartimento di Fisica and INFN, I-35131 Padova, Italy
M. Benayoun, H. Briand, J. Chauveau, P. David, Ch. de la Vaissière, L. Del Buono, O. Hamon, Ph. Leruste, J. Ocariz, M. Pivk, L. Roos, J. Stark
Universités Paris VI et VII, Lab de Physique Nucléaire H. E., F-75252 Paris, France
P. F. Manfredi, V. Re, V. Speziali

Università di Pavia, Dipartimento di Elettronica and INFN, I-27100 Pavia, Italy
L. Gladney, Q. H. Guo, J. Panetta

University of Pennsylvania, Philadelphia, PA 19104, USA
C. Angelini, G. Batignani, S. Bettarini, M. Bondioli, F. Bucci, G. Calderini, E. Campagna, M. Carpinelli, F. Forti, M. A. Giorgi, A. Lusiani, G. Marchiori, F. Martinez-Vidal, M. Morganti, N. Neri, E. Paoloni, M. Rama, G. Rizzo, F. Sandrelli, G. Triggiani, J. Walsh Università di Pisa, Scuola Normale Superiore and INFN, I-56010 Pisa, Italy
M. Haire, D. Judd, K. Paick, L. Turnbull, D. E. Wagoner Prairie View Aछ'M University, Prairie View, TX 77446, USA
J. Albert, G. Cavoto, ${ }^{2}$ N. Danielson, P. Elmer, C. Lu, V. Miftakov, J. Olsen, S. F. Schaffner, A. J. S. Smith, A. Tumanov, E. W. Varnes Princeton University, Princeton, NJ 08544, USA

[^1]F. Bellini, D. del Re, R. Faccini, ${ }^{3}$ F. Ferrarotto, F. Ferroni, E. Leonardi, M. A. Mazzoni, S. Morganti, G. Piredda, F. Safai Tehrani, M. Serra, C. Voena

Università di Roma La Sapienza, Dipartimento di Fisica and INFN, I-00185 Roma, Italy
S. Christ, G. Wagner, R. Waldi

Universität Rostock, D-18051 Rostock, Germany
T. Adye, N. De Groot, B. Franek, N. I. Geddes, G. P. Gopal, S. M. Xella

Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
R. Aleksan, S. Emery, A. Gaidot, P.-F. Giraud, G. Hamel de Monchenault, W. Kozanecki, M. Langer, G. W. London, B. Mayer, G. Schott, B. Serfass, G. Vasseur, Ch. Yeche, M. Zito

DAPNIA, Commissariat à l'Energie Atomique/Saclay, F-91191 Gif-sur-Yvette, France
M. V. Purohit, A. W. Weidemann, F. X. Yumiceva

University of South Carolina, Columbia, SC 29208, USA
I. Adam, D. Aston, N. Berger, A. M. Boyarski, M. R. Convery, D. P. Coupal, D. Dong, J. Dorfan, W. Dunwoodie, R. C. Field, T. Glanzman, S. J. Gowdy, E. Grauges, T. Haas, T. Hadig, V. Halyo, T. Himel, T. Hryn'ova, M. E. Huffer, W. R. Innes, C. P. Jessop, M. H. Kelsey, P. Kim, M. L. Kocian, U. Langenegger, D. W. G. S. Leith, S. Luitz, V. Luth, H. L. Lynch, H. Marsiske, S. Menke, R. Messner, D. R. Muller, C. P. O’Grady, V. E. Ozcan, A. Perazzo, M. Perl, S. Petrak, H. Quinn, B. N. Ratcliff, S. H. Robertson, A. Roodman, A. A. Salnikov, T. Schietinger, R. H. Schindler, J. Schwiening, G. Simi, A. Snyder, A. Soha, S. M. Spanier, J. Stelzer, D. Su, M. K. Sullivan, H. A. Tanaka, J. Va'vra, S. R. Wagner, M. Weaver, A. J. R. Weinstein, W. J. Wisniewski, D. H. Wright, C. C. Young Stanford Linear Accelerator Center, Stanford, CA 94309, USA
P. R. Burchat, C. H. Cheng, T. I. Meyer, C. Roat

Stanford University, Stanford, CA 94305-4060, USA
R. Henderson

TRIUMF, Vancouver, BC, Canada V6T 2A3
W. Bugg, H. Cohn

University of Tennessee, Knoxville, TN 37996, USA
J. M. Izen, I. Kitayama, X. C. Lou

University of Texas at Dallas, Richardson, TX 75083, USA
F. Bianchi, M. Bona, D. Gamba

Università di Torino, Dipartimento di Fisica Sperimentale and INFN, I-10125 Torino, Italy
L. Bosisio, G. Della Ricca, S. Dittongo, L. Lanceri, P. Poropat, L. Vitale, G. Vuagnin Università di Trieste, Dipartimento di Fisica and INFN, I-34127 Trieste, Italy
R. S. Panvini

Vanderbilt University, Nashville, TN 37235, USA

[^2]S. W. Banerjee, C. M. Brown, D. Fortin, P. D. Jackson, R. Kowalewski, J. M. Roney University of Victoria, Victoria, BC, Canada V8W 3P6
H. R. Band, S. Dasu, M. Datta, A. M. Eichenbaum, H. Hu, J. R. Johnson, R. Liu, F. Di Lodovico, A. Mohapatra, Y. Pan, R. Prepost, I. J. Scott, S. J. Sekula, J. H. von Wimmersperg-Toeller, J. Wu, S. L. Wu, Z. Yu

University of Wisconsin, Madison, WI 53706, USA
H. Neal

Yale University, New Haven, CT 06511, USA

The measurement of the $C P$-violating phase of the Cabibbo-Kobayashi-Maskawa (CKM) matrix [1] is an important part of the present scientific program in particle physics. $C P$ violation manifests itself as a non-zero area of the unitarity triangle [2]. While it is sufficient to measure one of the angles to demonstrate the existence of $C P$ violation, the unitarity triangle needs to be overconstrained by experimental measurements, in order to demonstrate that the CKM mechanism is the correct explanation of this phenomenon. Several theoretically clean measurements of the angle β exist [3], but there is no such measurement of the two other angles α and γ. A theoretically clean measurement of $\sin (2 \beta+\gamma)$ can be obtained from the study of the time evolution of the $B^{0} \rightarrow D^{(*)-} \pi^{+}$[4] decays, of which a large sample is already available at the B-factories, and of the corresponding Cabibbo suppressed mode $B^{0} \rightarrow D^{(*)+} \pi^{-}[5]$. This measurement requires the knowledge of the ratio between the decay amplitudes $R_{\lambda}^{(*)}=\left|A\left(B^{0} \rightarrow D^{(*)+} \pi^{-}\right) / A\left(B^{0} \rightarrow D^{(*)-} \pi^{+}\right)\right|$. Unfortunately the measurement of $\left|A\left(B^{0} \rightarrow D^{(*)+} \pi^{-}\right)\right|$via the measurement of $\mathcal{B}\left(B^{0} \rightarrow D^{(*)+} \pi^{-}\right)$is not possible with the currently available data sample due to the presence of the copious background from $\bar{B}^{0} \rightarrow D^{(*)+} \pi^{-}$. However, we can measure $\mathcal{B}\left(B^{0} \rightarrow D_{s}^{(*)+} \pi^{-}\right)$and relate it to $R_{\lambda}^{(*)}$ using $\operatorname{SU}(3)$ symmetry: $R_{\lambda}^{(*) 2} \propto \frac{\mathcal{B}\left(B^{0} \rightarrow D_{s}^{(*)+} \pi^{-}\right)}{\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{(*)}-\pi^{+}\right)}$, where the proportionality constant is, to first approximation, the ratio of the $D_{s}^{(*)+}$ and the $D^{(*)+}$ decay constants [5]. The decays $B^{0} \rightarrow D_{s}^{(*)+} \pi^{-}$have also been proposed to be used for the measurement of $\left|V_{u b} / V_{c b}\right|[6]$.

The decays $B^{0} \rightarrow D_{s}^{(*)-} K^{+}$are a probe of the dynamics in B decays because they are expected to proceed mainly via a W-exchange diagram, not observed so far. In addition, theses modes can be used to investigate the role of final state rescattering since its presence can substantially increase the expected rates [7]. In this letter we present measurements of the branching fractions for the decays $B^{0} \rightarrow D_{s}^{(*)+} \pi^{-}$and $B^{0} \rightarrow D_{s}^{(*)-} K^{+}$.

This analysis uses a sample of 84 million $\Upsilon(4 S)$ decays into $B \bar{B}$ pairs collected in the years 19992002 with the BABAR detector at the PEP-II asymmetric-energy B-factory [8]. Since the BABAR detector is described in detail elsewhere [9], only the components of the detector crucial to this analysis are summarized below. Charged particle tracking is provided by a five-layer silicon vertex tracker (SVT) and a 40-layer drift chamber (DCH). For charged-particle identification, ionization energy loss ($d E / d x$) in the DCH and SVT, and Cherenkov radiation detected in a ring-imaging device are used. Photons are identified and measured using the electromagnetic calorimeter, which comprises 6580 thallium-doped CsI crystals. These systems are mounted inside a 1.5 T solenoidal superconducting magnet. We use the GEANT [10] software to simulate interactions of particles traversing the BABAR detector, taking into account the varying detector conditions and beam backgrounds.

We select events with a minimum of three reconstructed charged tracks and a total measured energy greater than 4.5 GeV as determined using all charged tracks and neutral clusters with energy above 30 MeV . In order to reject continuum background, the ratio of the second and zeroth order Fox-Wolfram moments [11] must be less than 0.5.

So far, only upper limits on the modes studied in this letter exist [13]. Therefore the selection criteria are optimized to maximize the ratio of signal efficiency over the square-root of the expected number of background events.

The D_{s}^{+}mesons are reconstructed in the modes $D_{s}^{+} \rightarrow \phi \pi^{+}, K_{S}^{0} K^{+}$and $\bar{K}^{* 0} K^{+}$, with $\phi \rightarrow K^{+} K^{-}$, $K_{S}^{0} \rightarrow \pi^{+} \pi^{-}$and $\bar{K}^{* 0} \rightarrow K^{-} \pi^{+}$. The K_{S}^{0} candidates are reconstructed from two oppositely-charged tracks with an invariant mass $493<M_{\pi^{+} \pi^{-}}<501 \mathrm{MeV} / c^{2}$. All other tracks are required to originate from a vertex consistent with the $e^{+} e^{-}$interaction point. In order to identify charged kaons, two selections are used: a pion veto with an efficiency of 95% for kaons and a 20% pion misidentification,
and a tight kaon selection with an efficiency of 85% and 5% pion misidentification probability. If not otherwise specified, the pion veto is always adopted. The ϕ candidates are reconstructed from two oppositely-charged kaons with an invariant mass $1009<M_{K^{+} K^{-}}<1029 \mathrm{MeV} / c^{2}$. The $\bar{K}^{* 0}$ candidates are constructed from the K^{-}and a π^{+}candidates and are required to have an invariant mass in the range $856<M_{K^{-} \pi^{+}}<936 \mathrm{MeV} / c^{2}$. The polarizations of the $\bar{K}^{* 0}(\phi)$ mesons in the D_{s}^{+}decays are also utilized to reject backgrounds through the use of the helicity angle θ_{H}, defined as the angle between one of the decay products of the $\bar{K}^{* 0}(\phi)$ and the direction of flight of the meson itself, in the meson rest frame. Background events are distributed uniformly in $\cos \theta_{H}$ since they originate from random combinations, while signal events are distributed as $\cos ^{2} \theta_{H}$. The $\bar{K}^{* 0}$ candidates are therefore required to have $\left|\cos \theta_{H}\right|>0.4$, while for the ϕ candidates we require $\left|\cos \theta_{H}\right|>0.5$. In order to reject background from $D^{+} \rightarrow K_{S}^{0} \pi^{+}$or $\bar{K}^{* 0} \pi^{+}$, the K^{+}in the reconstruction of $D_{s}^{+} \rightarrow K_{S}^{0} K^{+}$or $\bar{K}^{* 0} K^{+}$is required to pass the tight kaon identification criteria introduced above. Finally, the D_{s}^{+}candidates are required to have an invariant mass within 10 MeV / c^{2} of the nominal mass [12].

We reconstruct D_{s}^{*+} candidates in the mode $D_{s}^{*+} \rightarrow D_{s}^{+} \gamma$, by combining D_{s}^{+}and photon candidates. Photons that form a π^{0} candidate, with $122<M_{\gamma \gamma}<147 \mathrm{MeV} / c^{2}$, in combination with any other photon with energy greater than 70 MeV are rejected. The mass difference between the D_{s}^{*+} and the D_{s}^{+}candidate is required to be within $14 \mathrm{MeV} / c^{2}$ of the nominal value [12].

We combine D_{s}^{+}or D_{s}^{*+} candidates with a track of opposite charge to form $B^{0} \rightarrow D_{s}^{(*)-} K^{+}$ or $B^{0} \rightarrow D_{s}^{(*)+} \pi^{-}$candidates depending on whether they pass the tight kaon selection criteria. In order to reject events where the D_{s}^{+}comes from a B candidate and the pion or kaon from the other B, we require the two candidates to have a probability greater than 0.25% of originating from a common vertex. The remaining background is predominantly combinatorial in nature and arises from continuum $q \bar{q}$ production. In order to suppress it using the event topology, we compute the angle $\left(\theta_{T}\right)$ between the thrust axis of the B meson decay product candidates and the thrust axis of all the other particles in the event. In the center-of-mass frame (c.m.), $B \bar{B}$ pairs are produced approximately at rest and produce a uniform $\cos \theta_{T}$ distribution. In contrast, $q \bar{q}$ pairs are produced back-to-back in the c.m. frame, which results in a $\left|\cos \theta_{T}\right|$ distribution peaking at 1. Depending on the background level of each mode, $\left|\cos \theta_{T}\right|$ is required to be smaller than a value which ranges between 0.7 and 0.8 . We further suppress backgrounds using a Fisher discriminant \mathcal{F} constructed from the scalar sum of the c.m. momenta of all tracks and photons (excluding the B candidate decay products) flowing into 9 concentric cones centered on the thrust axis of the B candidate [14]. The more spherical the event, the lower the value of \mathcal{F}. We require \mathcal{F} to be smaller than a threshold which varies from 0.04 to 0.2 depending on the background level.

We extract the signal using the kinematic variables $m_{\mathrm{ES}}=\sqrt{E_{\mathrm{b}}^{* 2}-\left(\sum_{i} \mathbf{p}_{i}^{*}\right)^{2}}$ and $\Delta E=$ $\sum_{i} \sqrt{m_{i}^{2}+\mathbf{p}_{i}^{* 2}}-E_{\mathrm{b}}^{*}$, where E_{b}^{*} is the beam energy in the c.m. frame, \mathbf{p}_{i}^{*} is the c.m. momentum of daughter particle i of the B meson candidate, and m_{i} is the mass hypothesis for particle i. For signal events, m_{ES} peaks at the B meson mass with a resolution of about $2.5 \mathrm{MeV} / c^{2}$ and ΔE peaks near zero, indicating that the candidate system of particles has total energy consistent with the beam energy in the c.m. frame. The ΔE signal band is defined by $|\Delta E|<36 \mathrm{MeV}$ and within it we define as signal candidates the events with $m_{\mathrm{ES}}>5.27 \mathrm{GeV} / c^{2}$.

After the aforementioned selection, three classes of backgrounds remain. First, the amount of combinatorial background in the signal region is estimated from the sidebands of the m_{ES} distribution and is described by a threshold function $\frac{d N}{d x}=x \sqrt{1-x^{2} / E_{b}^{* 2}} \exp \left[-\xi\left(1-x^{2} / E_{b}^{* 2}\right)\right]$, characterized by the shape parameter ξ [15].

Figure 1: The ΔE distribution in data compared with the distribution in the combinatorial background, estimated from the m_{ES} sidebands, and with the cross-contamination, which is estimated from the $M_{D_{s}}^{\text {cand }}$ sidebands. The insert shows separately the ΔE distribution of the contributions to the cross contamination as expected from the simulation. The reflection background is normalized to the known branching fractions [12], while the normalization of the charmless background is arbitrary.

Next, B meson decays such as $\bar{B}^{0} \rightarrow D^{+} \pi^{-}, \rho^{-}$with $D^{+} \rightarrow K_{S}^{0} \pi^{+}$or $\bar{K}^{* 0} \pi^{+}$can constitute a background for the $B^{0} \rightarrow D_{s}^{+} \pi^{-}$mode if the pion in the D decay is misidentified as a kaon (reflection background). This background has the same m_{ES} distributions as the signal but different distributions of ΔE. The corresponding background for the $B^{0} \rightarrow D_{s}^{-} K^{+}$mode ($B^{0} \rightarrow D^{-} K^{+}, K^{*+}$) has a branching fraction ten times smaller. Finally, rare B decays into the same final state, such as $B^{0} \rightarrow \bar{K}^{(*) 0} K^{+} \pi^{-}$or $\bar{K}^{(*) 0} K^{+} K^{-}$(charmless background), have the same m_{ES} and ΔE distributions as the signal. Figure shows the ΔE distribution for the signal and for the various sources of background.

The branching fraction of the charmless background is not well measured and we therefore need to estimate the sum of the reflection and charmless background (referred to as cross-contamination) directly on data. This is possible because both of these backgrounds have a flat distribution in the D_{s}^{+}candidate $\left(M_{D_{s}}^{\text {cand }}\right.$) mass while the signal has a Gaussian distribution. Possible peaking background from $B \rightarrow D_{s}^{+} X$ decays is negligible, as determined from simulation. The crosscontamination to the decays $B^{0} \rightarrow D_{s}^{*+} \pi^{-}$and $B^{0} \rightarrow D_{s}^{*-} K^{+}$is dominated by the reflection background which we estimate from simulation. Cross-feed between $B^{0} \rightarrow D_{s}^{(*)+} \pi^{-}$and $B^{0} \rightarrow D_{s}^{(*)-} K^{+}$ modes has been estimated to be less than 1%.

Figure 2: The m_{ES} distributions for the $B^{0} \rightarrow D_{s}^{+} \pi^{-}$(top left), $B^{0} \rightarrow D_{s}^{*+} \pi^{-}$(top right), $B^{0} \rightarrow D_{s}^{-} K^{+}$ (bottom left), and $B^{0} \rightarrow D_{s}^{*-} K^{+}$(bottom right) candidates on data after the selection, within the ΔE band. The fits used to obtain the signal yield are described in the text. The contribution from each D_{s}^{+}mode is shown.

Figure shows the m_{ES} distribution for each of the modes in the ΔE signal band. We perform an unbinned maximum-likelihood fit to each m_{ES} distribution with the threshold function to characterize the combinatorial background and a Gaussian function to describe the sum of the signal and cross-contamination contributions. The mean and the width of the Gaussian distribution are

Table 1: The number of signal candidates $\left(N_{\text {sigbox }}\right)$, the Gaussian yield ($N_{\text {gaus }}$) and the combinatorial background ($N_{\text {comb }}$) as extracted from the likelihood fit, the reconstruction efficiency (ε), the cross-contamination $\left(N_{\text {cross }}\right)$, the probability $\left(P_{b c k g}\right)$ of the data being consistent with the background fluctuating up to the level of the data in the absence of signal, the measured branching fraction (\mathcal{B}), and the 90% confidence level upper limit. $N_{\text {gaus }}, N_{\text {comb }}$ and \mathcal{B} are not available for modes with too few events. $N_{\text {cross }}$ is not reported if no event is found in the D_{s}^{+}mass sideband.

B mode	$N_{\text {sigbox }}$	$N_{\text {gaus }}$	$N_{\text {comb }}$	$N_{\text {cross }}$	$\varepsilon(\%)$	$P_{b c k g}$	$\mathcal{B}\left(10^{-5}\right)$	$\begin{gathered} \hline 90 \% \text { C.L. } \\ \left(10^{-5}\right) \\ \hline \end{gathered}$
$B^{0} \rightarrow D_{s}^{+} \pi^{-}$								
$D_{s}^{+} \rightarrow \phi \pi^{+}$	9	8.0 ± 3.0	2.1 ± 0.7	<0.7	16.9	1.4×10^{-3}	3.1 ± 1.2	-
$D_{s}^{+} \rightarrow \bar{K}^{* 0} K^{+}$	12	9.2 ± 3.4	3.8 ± 1.0	2.9 ± 1.8	9.6	2.3×10^{-2}	3.5 ± 1.9	-
$D_{s}^{+} \rightarrow K_{S}^{0} K^{+}$	5	4.2 ± 2.2	1.9 ± 0.6	1.2 ± 1.4	12.3	8.3×10^{-2}	2.4 ± 1.8	-
all	26	21.4 ± 5.1	7.8 ± 1.7	3.7 ± 2.4	N/A	9.5×10^{-4}	$3.2 \pm 0.9 \pm 1.0$	-
$B^{0} \rightarrow D_{s}^{*+} \pi^{-}$								
$D_{s}^{+} \rightarrow \phi \pi^{+}$	2	-	0.6 ± 0.3	< 0.14	7.8	-	-	-
$D_{s}^{+} \rightarrow \bar{K}^{* 0} K^{+}$	3	$2.8{ }_{-1.8}^{+2.7}$	0.4 ± 0.3	0.3 ± 0.2	3.3	3.9×10^{-2}	$4.3{ }_{-3.1}^{+4.7}$	< 12
$D_{s}^{+} \rightarrow K_{S}^{0} K^{+}$	0	-	0.4 ± 0.3	< 0.14	5.1	-		-
all	5	$4.4_{-2.8}^{+2.7}$	1.2 ± 0.4	0.3 ± 0.2	N/A	2.3×10^{-2}	$1.9_{-1.3}^{+1.2} \pm 0.5$	< 4.1
$B^{0} \rightarrow D_{s}^{-} K^{+}$								
$D_{s}^{+} \rightarrow \phi \pi^{+}$	7	5.8 ± 2.6	1.3 ± 0.7	1.1 ± 1.2	13.0	4.5×10^{-2}	2.4 ± 1.3	-
$D_{s}^{+} \rightarrow \bar{K}^{* 0} K^{+}$	8	7.3 ± 2.9	1.7 ± 0.7	< 0.7	7.8	1.9×10^{-3}	5.0 ± 2.0	-
$D_{s}^{+} \rightarrow K_{S}^{0} K^{+}$	4	3.7 ± 2.0	0.6 ± 0.4	1.3 ± 1.0	9.2	1.7×10^{-2}	2.5 ± 2.1	-
all	19	16.7 ± 4.3	3.5 ± 1.3	2.7 ± 1.9	N/A	5.0×10^{-4}	$3.2 \pm 1.0 \pm 1.0$	-
$B^{0} \rightarrow D_{s}^{*-} K^{+}$								
$D_{s}^{+} \rightarrow \phi \pi^{+}$	0	-	0.8 ± 0.6	<0.14	5.3	-	-	-
$D_{s}^{+} \rightarrow \bar{K}^{* 0} K^{+}$	1	-	0.4 ± 0.4	<0.14	2.7	-	-	-
$D_{s}^{+} \rightarrow K_{S}^{0} K^{+}$	1	-	0.4 ± 0.4	<0.14	4.3	-	-	-
all	2	-	1.6 ± 0.8	< 0.14	N/A	0.48	-	<2.5

fixed to the values obtained in a copious $B^{0} \rightarrow D^{(*)-} \pi^{+}$control sample. For the $B^{0} \rightarrow D_{s}^{+} \pi^{-}$and $B^{0} \rightarrow D_{s}^{-} K^{+}$analyses, we obtain the threshold parameter ξ from a fit to the data distributions of m_{ES} after loosening the $M_{D s}^{\text {cand }}$ and ΔE requirements. In the case of $B^{0} \rightarrow D_{s}^{*+} \pi^{-}$and $B^{0} \rightarrow D_{s}^{*-} K^{+}$, due to the low background level, we use simulated events to estimate ξ.

No fit is performed to the $B^{0} \rightarrow D_{s}^{*-} K^{+}$sample, due to the low number of events. Whenever there are enough events we perform a fit to each D_{s}^{+}decay mode separately, as well as on the combination of all modes. The cross-contamination is estimated performing the same fit on the events in the data $M_{D_{s}}^{\text {cand }}$ sidebands $\left(4 \sigma<\left|M_{D_{s}}^{\text {cand }}-1968.6 \mathrm{MeV} / c^{2}\right|<8 \sigma\right.$, where the resolution is $\left.\sigma_{M_{D s}^{c a n d}}^{c}=5 \mathrm{MeV} / c^{2}\right)$. The number of observed events, the background expectations and the reconstruction efficiencies as estimated on simulated events are summarized in Table 1.

In the $B^{0} \rightarrow D_{s}^{+} \pi^{-}\left(B^{0} \rightarrow D_{s}^{-} K^{+}\right)$mode the fit yields a Gaussian contribution of 21.4土5.1 (16.7土 4.3) events and a combinatorial background of $7.8 \pm 1.7(3.5 \pm 1.3)$ events. The cross-contamination is estimated to be $3.7 \pm 2.4(2.7 \pm 1.9)$ events. The probability of the background to fluctuate to the observed number of events, taking into account both Poisson fluctuations and uncertainties in the background estimates, is $9.5 \times 10^{-4}\left(5.0 \times 10^{-4}\right)$. For a Gaussian distribution this would correspond to $3.3 \sigma(3.5 \sigma)$. Given the estimated reconstruction efficiencies we measure $\mathcal{B}\left(B^{0} \rightarrow D_{s}^{+} \pi^{-}\right)=(3.2 \pm$ $0.9) \times 10^{-5}\left(\mathcal{B}\left(B^{0} \rightarrow D_{s}^{-} K^{+}\right)=(3.2 \pm 1.0) \times 10^{-5}\right)$, where the quoted error is statistical only. We also set the 90% C.L. limits $\mathcal{B}\left(B^{0} \rightarrow D_{s}^{*+} \pi^{-}\right)<4.1 \times 10^{-5}$ and $\mathcal{B}\left(B^{0} \rightarrow D_{s}^{*-} K^{+}\right)<2.5 \times 10^{-5}$. All results are preliminary.

The systematic errors are dominated by the 25% relative uncertainty in $\mathcal{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)$. The uncertainties on the knowledge of the background come from uncertainties in the ξ parameter, for the combinatorial background, and from the limited number of events in the $M_{D_{s}}^{\text {cand }}$ sidebands for the cross-contamination. They amount to $14 \%, 16 \%, 7 \%$ and 36% of the measured branching fractions in the $B^{0} \rightarrow D_{s}^{+} \pi^{-}, B^{0} \rightarrow D_{s}^{-} K^{+}, B^{0} \rightarrow D_{s}^{*+} \pi^{-}$and $B^{0} \rightarrow D_{s}^{*-} K^{+}$modes respectively. The rest of the systematic errors, which include the uncertainty on tracking, K_{S}^{0} and charged kaons identification efficiencies range between 11% and 14% depending on the mode.

In conclusion, we report a 3.3σ signal for the $b \rightarrow u$ transition $B^{0} \rightarrow D_{s}^{+} \pi^{-}$and a 3.5σ signal for the $B^{0} \rightarrow D_{s}^{-} K^{+}$decay, and we determine the preliminary results

$$
\begin{aligned}
\mathcal{B}\left(B^{0} \rightarrow D_{s}^{+} \pi^{-}\right) & =(3.2 \pm 0.9 \text { (stat.) }) \pm 1.0 \text { (syst.) }) \times 10^{-5} \\
\mathcal{B}\left(B^{0} \rightarrow D_{s}^{-} K^{+}\right) & =(3.2 \pm 1.0 \text { (stat.) } \pm 1.0 \text { (syst.) }) \times 10^{-5} .
\end{aligned}
$$

Since the dominant uncertainty comes from the knowledge of the D_{s}^{+}branching fractions we also compute $\mathcal{B}\left(B^{0} \rightarrow D_{s}^{+} \pi^{-}\right) \times \mathcal{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)=(1.13 \pm 0.33 \pm 0.21) \times 10^{-6}$ and $\mathcal{B}\left(B^{0} \rightarrow D_{s}^{-} K^{+}\right) \times \mathcal{B}\left(D_{s}^{+} \rightarrow\right.$ $\left.\phi \pi^{+}\right)=(1.16 \pm 0.36 \pm 0.24) \times 10^{-6}$. The search for $B^{0} \rightarrow D_{s}^{*+} \pi^{-}$and $B^{0} \rightarrow D_{s}^{*-} K^{+}$yields the preliminary 90% C.L. upper limits

$$
\begin{array}{r}
\mathcal{B}\left(B^{0} \rightarrow D_{s}^{*+} \pi^{-}\right)<4.1 \times 10^{-5} \\
\mathcal{B}\left(B^{0} \rightarrow D_{s}^{*-} K^{+}\right)<2.5 \times 10^{-5}
\end{array}
$$

We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), Institute of High Energy Physics (China), the Commissariat à l'Energie Atomique and Institut National de Physique Nucléaire et de Physique des Particules (France), the Bundesministerium für Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Research Council of Norway, the Ministry of Science and Technology of the Russian Federation, and the Particle Physics and Astronomy Research Council (United Kingdom). Individuals have received support from the A. P. Sloan Foundation, the Research Corporation, and the Alexander von Humboldt Foundation.

References

[1] N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963); M. Kobayashi and T. Maskawa, Prog. Th. Phys. 496521973.
[2] C. Jarlskog, in CP Violation, C. Jarlskog ed., World Scientific, Singapore (1988).
[3] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 87, 091801 (2001); Belle Collaboration, K. Abe et al., Phys. Rev. Lett. 87, 091802 (2001).
[4] Charge conjugation is implied throughout this letter, unless explicitely stated.
[5] I. Dunietz, Phys. Lett. B 427, 179 (1998).
[6] C.S. Kim, Y. Kwon, J. Lee, and W. Namgung, Phys. Rev. D 63, 094506 (2001).
[7] B. Block, M. Gronau, and J.L. Rosner, Phys. Rev. Lett. 78, 3999 (1997).
[8] PEP-II Conceptual Design Report, SLAC-0418 (1993).
[9] BABAR Collaboration, B. Aubert et al., Nucl. Instr. and Methods A479, 117 (2002).
[10] Geant4 Collaboration, "Geant4 - a simulation toolkit", CERN-IT-2002-003, submitted to Nucl. Instr. and Methods.
[11] G.C. Fox and S. Wolfram, Phys. Rev. Lett. 41, 1581 (1978).
[12] Particle Data Group, K. Hagiwara et al., Phys. Rev. 60, 010001 (2002).
[13] Y. Zheng, Int. J. Mod. Phys. A 16S1A 464 (2001); CLEO Collaboration, J. P. Alexander et al., Phys. Lett. B 319, 365 (1993).
[14] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 87, 151802 (2001).
[15] ARGUS Collaboration, H. Albrecht et al., Z. Phys. C 48543 (1990).

[^0]: ${ }^{1}$ Also with Università di Perugia, I-06100 Perugia, Italy

[^1]: ${ }^{2}$ Also with Università di Roma La Sapienza, Roma, Italy

[^2]: ${ }^{3}$ Also with University of California at San Diego, La Jolla, CA 92093, USA

