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Abstract

Beginning with the Green function for a rod beam in a round beam pipe we derive the space

charge induced average energy change and rms spread for relativistic beams that are slowly con-

verging or diverging in round beam pipes, a result that tends to be much larger than the 1=2

dependence for parallel beams. Our results allow for beams with longitudinal-transverse corre-

lation, and for slow variations in beam pipe radius. We calculate, in addition, the space charge

component of energy change and spread in a chicane compressor. This component indicates source

regions of coherent synchrotron radiation (CSR) energy change in systems with compression. We

�nd that this component, at the end of example compressors, approximates the total induced

voltage obtained by more detailed CSR calculations. Our results depend on beam pipe radius (al-

though only weakly) whereas CSR calculations do not normally include this parameter, suggesting

that results of such calculations, for systems with beam pipes, are not complete.

�Work supported by the Department of Energy, contract DE-AC03-76SF00515
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I. INTRODUCTION

The Sub-Picosecond Photon Source (SPPS) is a new modi�cation of the Stanford Linear

Accelerator that promises to generate high peak current, femtosecond electron bunches that

will then pass through an undulator to produce synchrotron light[1]. At the heart of the

project is a magnetic chicane that compresses an rf gun generated bunch by more than a

factor of 20. To achieve the performance goals of the SPPS it is important that coherent

synchrotron radiation (CSR) generated in the chicane not increase the beam energy spread

and through it the emittance of the beam by a signi�cant amount. This requirement places

a tight tolerance (� 5� 10�5) on the increase in energy spread allowed in the chicane.

CSR in compressors is recently a very active research topic (see, e.g. Ref. [2] and references

contained therein). One component of CSR, which we here call the \space charge �elds,"

generates an energy change in the beam equal to the negative of the potential di�erence

between an initial and �nal state of the beam; it is the component termed the \compression

work" by Dohlus when applied to compressors[3]. (Note that another part of the �elds, also

called space charge, that depends on 1=2, with  the Lorentz energy factor, and that is small

for relativistic beams will not be considered here.) In this report we will focus on the space

charge component, though, in general, one needs to consider all components to understand

the longitudinal �elds, for example, in a chicane. In the case of a converging beam in a drift

tube, where the angles are small, this component will approximate the total longitudinal

e�ect. In the case of a beam in a chicane this component is only a part, though|as we shall

see|an important part, of the total e�ect.

Chicane compressors are beam lines with four bends separated by drifts. In the drift

region between the 3rd and 4th bends the beam converges in the horizontal plane, with

a large di�erence between the initial and �nal beam size values. At the same time the

longitudinal beam distribution is unchanging, with the bunch length near its minimum,

compressed value. We expect the potential change in this region to be a signi�cant part of

the total change within the chicane. Consequently we take as �rst model of the chicane a

relativistic converging beam in a beam pipe. Such a problem was studied by Raubenheimer

and Zimmermann[4]. These authors noticed that in a converging (or diverging) relativistic

beam the longitudinal space charge force no longer is proportional to 1=2, and can therefore

be a much larger e�ect than for the case of a parallel moving beam. They derive the space
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charge forces for bi-Gaussian beams beginning with the Bassetti-Erskine potentials and

calculate the work done by these forces. Our approach here is di�erent, beginning with the

Green function for the potential of a rod beam, oriented parallel to the axis in a circular

beam tube, and we study several more aspects of the problem.

In this report we �rst study the longitudinal space charge e�ect of converging/diverging

relativistic beams in a circular beam pipe, and apply the results to the drift region before

the last bend in the SPPS chicane. We then calculate the space charge part of the induced

energy spread over the entire SPPS chicane beam line.

A. Motivation

As a well-known example where space charge dominates the solution of a problem, con-

sider a cylindrically symmetric step from a beam pipe of radius a to one of radius b, with

a gentle tapered transition between the two. There are no bends or other sources of radi-

ation upstream. Now consider a relativistic Gaussian bunch with length �z that traverses

unchanged past this step. Yokoya[5] has shown that if aa0=�z � 1, where a0 is the slope

of the tapers, the longitudinal impedance for this problem is purely imaginary with no

net energy radiated, and the problem looks very much like a statics problem|even when

�z=a � 1|in that the local e�ect depends approximately on the local properties of the

beam and the boundary. In such a problem we expect the energy change of beam particles

as they pass the step to be given by minus the potential energy change between the current

and initial positions. That is, the energy change is given by (discussed in more detail later):

�2eN�z ln(b=a), with eN the bunch charge and �z the longitudinal line density.

We demonstrate this through numerical calculation with the time domain, wake�eld

calculating module of MAFIA[6] in Fig. 1. It is diÆcult for us to numerically model shallow

tapers so we choose taper angle 45Æ, a = 1 cm, b = 1:5 cm, and �z = 2 cm (nevertheless,

the phenomenon for this model is the same). In the �gure we show the transition shape (a)

and the wake experienced by the center of the beam as function of longitudinal position

s (b). The numerically obtained energy change of the particle is �0:145 V/pC, which agrees

well with the above space charge formula result, �0:146 V/pC. For the entire bunch, the

average and rms energy change of the beam are also well approximated by the space charge

component.
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FIG. 1: Development of the wake�eld at the center of a Gaussian bunch, with �z = 2 cm, as

it traverses on-axis through a model transition. Shown are the transition geometry (a) and the

numerically calculated wake (b).

However, even at the other, highly radiative extreme for such a problem (aa0=�z � 1)

the space charge component is important. It has been shown by Heifets and Kheifets that in

this case the space charge component of the �elds exactly equals the radiation component[7].

However, unlike in the earlier case, here the beam will need to go far beyond the transition

before the �elds catch up to it and the total result is obtained.

Now consider a similar problem: a relativistic (transversely round) parallel beam, moving

parallel to the axis in a round beam tube, is focused by a thin lens; after some distance it

passes through a defocusing lens that transforms it back to a parallel beam, but this time,

one with a smaller radius. One expects again that if the beam angle (after the �rst lens) is

small, then the kinetic energy change from beginning to end is given by the negative of the

change in potential energy; in addition, we expect the e�ect to be approximately static, in

that the local e�ect depends on the local properties of the beam.

To obtain a �rst estimate of the size of the e�ect, consider now the simpler problem

of two relativistic rod beams (no transverse extent) in free space, both with longitudinal

distributions �z, that are co-moving but at a slight angle � toward each other. From Gauss's

law we �nd that the gradient in energy change of a particle of one of the rods is given by

�2eN�z�=d, where d is the distance to the other rod. Note that the size of the e�ect, instead
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of being on the order of 1=2, is now on the order of �, which can be much larger. Using the

Green function for the scalar potential of a rod moving parallel to the axis in a cylindrical

pipe (presented in a following section) we obtain the same result for the two-rod problem.

This example motivates us to solve the problem of relativistic converging/diverging beams,

but now with transverse extent, and including also the e�ect of the beam pipe walls.

B. SPPS Model Problem

As concrete example we consider �rst the energy change in the beam as it traverses the

drift space between the last two bends in the SPPS chicane. It is in this region of the chicane

that the beam converges strongly in x and that the bunch length is the smallest, and so

we expect the space charge induced forces to be most signi�cant here. Note that in this

region the longitudinal distribution does not change. We ignore, for the moment, upstream

e�ects. Later in the report we will consider also the energy spread change due to space

charge throughout the compression process.

Between the last two bends of the chicane the beam tube length is 2.8 m, and the length

of the following (fourth) bend is 1.8 m. For our model we will imagine the bend to be a thin

lens, and let the beam tube length L = 3:7 m. The beam pipe radius is �xed at a = 7:62 cm.

We take the longitudinal charge distribution to be Gaussian, with a (constant) rms length

�z = 60 microns. In our model the vertical beam size remains �xed at �y = 100 microns;

the horizontal beam size begins at �x0 = 5:5 mm and ends at �x = 350 microns. In the real

beam line there is an initial x-z correlation in the distribution, which we will ignore at �rst.

Other parameters are shown in Table 1.

If the beam energy spread increases by �Æ in the drift, then when it enters the bend the

emittance will grow by (assuming the growth is small)

��x
�x

� �2Æ�
2
b�x

2�x
; (1)

with �x the horizontal emittance, �b the bend angle, and �x the beta function. If we take

�x = 2:8 nm, �b = 5:5 deg, �x = 8 m, then an energy spread increase of �Æ = 4�10�5 results

in an emittance growth ��x=�x = 2%, which we take as our tolerance.
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TABLE I: Parameters for our SPPS Model Problem.

Bunch Population N 2.1 1010

Bunch Length �z 60 �m

Beam Energy E 9 GeV

Vertical Beam Size �y 100 �m

Horizontal Beam Size (Initial) �x0 5.5 mm

Horizontal Slice Size (Initial) (�x0)sl 4.0 mm

Horizontal Beam Size (Final) �x 350 �m

Beam Tube Length L 3.7 m

Beam Tube Radius a 7.62 cm

II. ROUND BEAM

Let us consider a relativistic bunch of positrons moving in a beam tube of radius a from

position s0 to s. We are interested in beams that are converging or diverging in transverse

dimension, but we assume that the angles are very small. The beam tube represents a

continual electrical connection; its radius a may vary slowly with longitudinal position s.

We begin by assuming that the longitudinal distribution of the beam �z(z) is arbitrary

but frozen in time; however, we require that the bunch length �z > a=. The transverse

distribution is assumed to be bi-Gaussian in horizontal and vertical positions x and y, with

respective rms beam sizes �x, �y, and centroids �x, �y. In principle, there can be correlation

between z and (x,y) and the method is still valid. For simplicity we will assume no x-y

correlation.

Our basic assumptions are that radiation �elds can be ignored, so that the energy change

in the beam is given by a change in potentials, and that the angles are small, so that the

local potential can be approximated by that of the translationally invariant problem. Let us

begin with the case where the beam remains round and centered on the axis at all times, i.e.

let �x = �y � � and �x = �y = 0 throughout. We assume that for any particle r=� remains

�xed; i.e. any focusing �eld is linear and centered on the beam tube axis. For a test particle

within the beam the electric �eld is dominantly in the radial direction and approximately
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given, by Gauss's Law, as (in cgs units):

Er(r) � 2eN�z
r

�
1� e�r

2=2�2
�

; (2)

with eN the bunch charge and r =
p
x2 + y2. The electric potential, with respect to the

beam tube potential, is given by

�(r) =
Z a

r
Er(r

0) dr0

� 2eN�z

Z a=�

r=�

�
1� e�r

02=2
�
dr0

r0
: (3)

The energy change of a test particle in moving from position s0 to position s is given by

�U = ��(r; �; a)
���s
s0
� ��� : (4)

The energy change of a test particle can also be obtained from a path integral representing

the work done by the �eld on the test particle:

�U =
Z s

s0

~E � ~ds : (5)

(Since the force on the particle is obtained from a potential, any integration path between

the end points will do.) For the round case, we can write

�U =
Z s

s0

 
Er
dr

ds
+ Ez

!
ds ; (6)

with dr=ds a (small) constant and Ez = �@�=@s the longitudinal electric �eld, given by (for

�=a small)

Ez = �2eN�z
 
1

a

da

ds
� e�r

2=2�2

�

d�

ds

!
; (7)

(plus the familiar term that depends on 1=2). Note that, even when da=ds = 0, two terms

of the same order need to be considered in the work integral. Of the two methods of �nding

�U , we feel that the earlier one is preferable, since it only involves knowledge of the potential

at s0 and s, and does not require an integration over s.

We see from the above equations that for the round case:

� For �=a small, at large r (1� r=� < a=�), � = 2eN�z ln(a=r).

� If r=� = r0=�0 the energy change of the test particle is independent of r. If e�a
2=2�2 is

small compared to 1, and a is unchanged, then �U can be approximated as

�U = �2eN�z ln
�
�0
�

�
; (8)

where �0 is the initial beam size.
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� If r=� = r0=�0 and a=� = a0=�0, then there is no space charge energy change. For

example, if the walls follow the change in beam size, there is no energy change.

To �nd the total bunch energy change and the second moment of energy change we sum

�� and (��)2 over all particles. Note that, in general, for the average relative energy change

hÆi we don't need to know the correspondence between the positions of individual particles

at s0 and at s, but for the rms change Ærms we do. (For a round beam, however, since �U

is independent of r, this is not necessary.) For a round beam, with a Gaussian longitudinal

distribution (assuming no z-r correlation and �=a small) we obtain

hÆi = � reNp
� � �z

ln
�
�0
�

�
; (9)

where re = 2:82� 10�15 m, and � is the average beam energy; and Ærms = 0:39jhÆij.

III. ELLIPTICAL BEAM

The beam is usually not round but, rather, elliptical in cross-section. The solution for

elliptical beams is not so simple as for round beams. In general, we need to solve the

Poisson equation numerically, with the boundary condition that at the beam pipe radius

the potential is �xed. However, for the case of a round beam pipe we can easily �nd the

Green function|the potential for a line charge|and then integrate over all the charges in

the bi-Gaussian transverse distribution.

The Green function at position (x,y) within a round beam pipe of radius a, due to a line

charge with charge distribution eN�z parallel to the pipe axis and transverse o�set (xd,yd),

can be shown to be

�G(x; y; xd; yd) = �eN�z ln

0
BB@ a2[(x� xd)

2 + (y � yd)
2]

(x2d + y2d)
�
(x� a2xd

x2
d
+y2

d

)2 + (y � a2yd
x2
d
+y2

d

)2
�
1
CCA : (10)

Written in this form, the connection with the method of images is clear: the image of a line

charge with density eN�z at (xd,yd) is a line charge with density �eN�z at ( a2xd
x2
d
+y2

d

, a2yd
x2
d
+y2

d

); the

extra factor of a2

x2
d
+y2

d

in the logarithm of Eq. 10 represents an additional constant potential

contribution[8]. For a bi-Gaussian beam slice with rms extents �x, �y, and centroids �x, �y,

the potential becomes

�(x; y) =
1

2��x�y

Z
1

�1

dxd

Z
1

�1

dyd �G(x; y; xd; yd) e
�(xd��x)2=2�2x�(yd��y)2=2�2y : (11)
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We assume here that the bi-Gaussian beam distribution is (almost) entirely contained within

the beam pipe. When �x = �y � �, Eq. 11 reduces to Eq. 3, our earlier result for a round

beam.

Let us assume the beam size is small compared to a and that the beam's distance from

the wall >� �x;y. Then from Eq. 11 we �nd that:

� the potential of the slice, averaged over the transverse dimensions, is given by

h�it � eN�z

"
C� 2 ln

�
�x + �y

a

�
+ 2 ln

 
a2 � �x2 � �y2

a2

!#
; (12)

with C = 0:5772, Euler's constant.

� The potential at the center of the slice becomes

�(�x; �y) � eN�z

"
C+ ln 2� 2 ln

�
�x + �y

a

�
+ 2 ln

 
a2 � �x2 � �y2

a2

!#
: (13)

Since the potential at beam center does not equal the average potential, there must

be a spread in potential; the rms in spread is on the order of eN�z ln 2.

The potential itself can be approximated by

�(x; y) � I(x; y) + �(�x; �y)� 2eN�z

"
�x(x� �x) + �y(y � �y)

a2 � �x2 � �y2

#
; (14)

with

I(x; y) = �eN�z
Z
1

0

1� exp
�
� (x��x)2

2�2x+q
� (y��y)2

2�2y+q

�
q
2�2x + q

q
2�2y + q

dq : (15)

The advantage in using Eq. 14, instead of Eq. 11, for �nding � is that only one integral now

needs to be solved; the disadvantage, however, is that we have lost generality in terms of

beam size and location. Note that the last, centroid shift term in Eq. 14 typically is small.

Note that if we set the �rst term in the integral Eq. 15 to zero, I(x; y) becomes the familiar

Bassetti-Erskine (B-E) potential[9],[10]. Note also that the electric �eld ~E(x; y) = �r�(x; y)
is given by the usual Bassetti-Erskine formula plus a new term due to the image charge,

which is approximately given by

2eN�z�r
2 (x�r

2 � a2�x)x̂+ (y�r2 � a2�y)ŷ

(�r2x� a2�x)2 + (y�r2 � a2�y)2
; (16)

with �r2 = �x2 + �y2.
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If we transform the integral for I, it appears to become easier to solve numerically (for

non-round beams). In Eq.15 let[9]

t2 =
2��2 + q

2�̂2 + q
; (17)

where �� (�̂) are the minimum (maximum) of �x and �y; let us also denote the corresponding

coordinates �q (q̂) and average values ��q (�̂q). Eq. 15 then becomes

I(x; y) = �2eN�z
Z 1

��=�̂

1� exp
�
� (1�t2)

2(�̂2���2)

h
(q̂ � �̂q)2 + (�q � ��q)2=t2

i�
1� t2

dt : (18)

Unlike in the round beam case, �U , for an elliptical beam moving from s0 to s in a linear

system, is not independent of transverse position. The work performed on a test particle|

assuming, as in our SPPS model example, only x, �x, and �x change with s|becomes

�U = �
Z s

s0

 
@�

@x

dx

ds
+

@�

@�x

d�x
ds

+
@�

@�x

d�x

ds

!
ds : (19)

This is the approach used in Ref. [4] to obtain the space charge e�ect of converging beams.

How good an approximation to � is Eq. 14 for the SPPS model problem? One way to

study this is to investigate equipotential ellipses in � near the wall. Let us assume the beam

is on axis. We solve:

Z 1

��=�̂

exp
h
� (1�t2)ĉ2

2(�̂2���2)

i
� exp

h
� (1�t2)�c2

2t2(�̂2���2)

i
1� t2

dt = 0 (20)

for �c=ĉ, where ĉ, �c, are the semi-major and semi-minor axes of an equipotential ellipse. In

Fig. 2 we plot the eccentricity e �
q
1� �c2=ĉ2 of the equipotential ellipses as function of

ĉ=�̂, for various values of ��=�̂.

For the SPPS model example the eccentricity of the equipotential curve at the wall

should be largest at the beginning, at s0, where �x (= 5:5 mm) is largest, �y=�x (= 0:02) is

smallest. At this position, at the radius of the beam tube wall (7:6 cm; ĉ=�̂ = 14), we �nd

that e = 0:1, implying that 1� �c=ĉ = 0:5%, which is very small. We therefore conclude that

we can approximate � by Eq. 14 over the entire region of the SPPS model problem.

A. Averaged E�ect

We are typically interested in the �rst and second moments of the energy change experi-

enced by a beam in moving from s0 to s. To obtain these moments we perform integrals of
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FIG. 2: For the approximate potential of Eq. 14: eccentricity e of equipotential ellipses as function

of semi-major axis over large beam size ĉ=�̂, for a beam centered on axis, with various values of

aspect ratios ��=�̂.

�� over the longitudinal and transverse (Gaussian) distributions. For the �rst moment we

can simply subtract the average initial potential from the average �nal potential. For the

second moment, however, we need to know the map for all particles between their initial

and �nal states.

Let us here suppose, as in the SPPS model example, that the longitudinal distribution

is �xed, and that the optics is linear, implying that for all particles (x� �x)=�x, (y � �y)=�y,

remain �xed. Let us also suppose that there are no x-y correlations, and, for the moment,

that there also are no longitudinal-transverse correlations. From Eq. 12 we see that the

average potential change over the beam is simply

h��i � �2eNh�zi
"
ln

 
�x + �y
�x0 + �y0

!
� ln

 
a2 � �x2 � �y2

a2 � �x20 � �y20

!#
; (21)

where subscript 0 indicates initial conditions. (From here on we will use brackets hi to mean

longitudinal average for functions of z, transverse average for functions of (x; y), and average

over both for functions of both.)

The second term in Eq. 21 gives the e�ect, due to the image charges, of the change in

the beam o�set. Note, however, that as long as the beam size changes, the �rst, beam size
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term will tend to dominate over the second, o�set term. The second moment is given by

h��2i =
1

(2�)3=2�z

Z
1

�1

dze�z
2=2�2z

Z
1

�1

dxr

Z
1

�1

dyr e
�x2r=2�y

2
r=2 �

� [�(xr�x + �x; yr�y + �y)� �0(xr�x0 + �x0; yr�y0 + �y0)]
2 : (22)

where � within the integral is given by Eq. 14. Since we assume no x-z correlation the

integral over z can be done immediately, giving a result proportional to e2N2h�2zi. Note

that in Eq. 22 we have made a change of variables from x and y to xr = (x � �x)=�x and

yr = (y � �y)=�y.

In general our calculations allow for the beam to both shift its centroid and change its

shape transversely as it moves longitudinally from s0 to s. Let us here consider the two

e�ects separately. Consider the examples: (1) a beam that undergoes simple translation

transversely, and (2) a beam that remains on-axis but changes its shape transversely (as for

the SPPS model example). For both examples the average potential change h��i is given
by Eq. 21. As for the rms deviation, for example (1), the deviation within one slice of the

beam is given by

(��)sl;rms =
2eN�z
a2

h
(�x� �x0)

2�2x + (�y � �y0)
2�2y

i1=2
: (23)

This quantity is normally very small; it is second order in parameters o�set over a and beam

size over a. Consequently, the rms deviation over the beam will tend to be dominated by

the longitudinal variation in potential, giving

(��)rms �
q
h�2zi � h�zi2
h�zi jh��ij : (24)

Note that if the longitudinal distribution is Gaussian, then h�zi = (2
p
��z)

�1 and h�2zi =
(2
p
3��2z)

�1, which implies that (��)rms � 0:39jh��ij. Finally note that, since h��i itself
depends on beam o�set over a to second order, as long as there is non-negligible beam

size/orientation change between positions s0 and s, the e�ect of beam o�set can usually be

ignored.

For example (2) the beam remains always on axis but changes its shape. For this situation,

we see, from Eq. 14, that for any test particle in the beam the change in potential can be

written in the form

�� = eN�z

"
f(xr; yr; �0; �)� 2 ln

 
�x + �y
�x0 + �y0

!#
; (25)
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where xr = (x� �x)=�x, yr = (y � �y)=�y, and � = ��=�̂; f(xr; yr; �0; �) is a function only of

the quantities indicated plus beam orientation (see below). Note that Eq. 25 implies that if

both transverse beam sizes change by the same factor, then the variation in �� within one

slice becomes zero. The average of f over the Gaussians in (xr; yr), hfi = 0. It follows that

(��)rms = eN

"
hf 2ih�2zi+ 4

h
h�2zi � h�zi2

i
ln2

 
�x + �y
�x0 + �y0

!#1=2
: (26)

The �rst term in the large brackets gives the contribution of the transverse variation in ��,

the second term that of the longitudinal variation.

The results for frms (=
q
hf 2i) separate into two categories: (i) when the initial and �nal

beam orientations are the same, and (ii) when they are di�erent. This is evident since for

the case when � remains unchanged, in case (i) hf 2i equals 0 (nothing has changed), whereas
in case (ii) it does not. The result is

frms =

8>><
>>:
j ln[(1 + �)=(1 + �0)]� 1

4
ln[(1 + �2)=(1 + �2

0)] j : (case i)

� ln [(1 + �)(1 + �0)=4] +
1
4
ln [(1 + �2)(1 + �2

0)=4] : (case ii) :
(27)

In Fig. 3 we plot frms as function of �0, for various values of �. The solid lines give results

for the case when the initial and �nal beam ellipses are oriented in the same way, the dashed

lines give results for when they are not. Note that frms is always � 1:04, with the limit

reached for a pencil beam that changes its orientation (�0 = � � 0). In the case the �rst

term in the large brackets of Eq. 26 is small compared to the second term, we can again

approximate (��)rms by Eq. 24.

B. Longitudinal-Transverse Correlation

At the end of the 3rd bend in the SPPS chicane (the initial condition for our model

problem) there is signi�cant x-z correlation in the beam. In the equivalent position in the

second chicane of the LCLS project the beam is extremely correlated, and this fact must be

taken into account for obtaining the space charge e�ect.

To include x-z correlations in our calculations we again assume that the potential of every

slice (at �xed z) is independent of other slices. However, in calculations the slice beam size

(�x)sl =
q
�2x�

2
z � �2xz=�z now takes over the function that the total beam size �x has in the

case of no correlations, and, in addition, the slices are o�set in x by an amount �x = z�xz=�
2
z

13



FIG. 3: The rms of the auxiliary function f , as function of �0, for various values of �. The solid

lines give results for the case when initial and �nal ellipse are oriented in the same way, the dashes

give results for when they are not.

(see the sketch Fig. 4). If, as usual, the beam size is small compared to a, and the beam is

not near the wall, we expect, from the results of the previous section, that we can ignore

the centroid shifts without a�ecting the average and rms energy change signi�cantly. We

demonstrate in this section that this is true for the SPPS model parameters.

z

x

(σx)sl,x

σx

σz

FIG. 4: Sketch of beam with x-z correlation, showing the slice parameters (�x)sl, �x, and the beam

parameters �x, �z.
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In general, to calculate h��2i for a beam with x-z correlation we numerically solve Eq. 22,

but substituting the slice o�sets �x(z), �x0(z), in the arguments for �, �0, in the integrand. In

the most general calculation we use � as given in Eq. 11. Then we have �ve integrals to do.

However, since �, �0, are smooth functions, well approximated by low order polynomials,

we can perform the three outer integrals (over z, xr, yr) eÆciently using Hermite numerical

quadrature.

Let us now consider the SPPS model example: we have initially �x0 = 5:6 mm, �y0 =

100 �m, and �nally �x = 350 �m, �y = 100 �m; other beam parameters can be found in

Table 1. Initially there is x-z correlation with (�x0)sl = 0:73�x0, in the �nal state there is no

correlation. To show the sensitivity to initial x-z correlation we plot, in Fig. 5, the relative

rms energy change Ærms as function of (�x0)sl (keeping �x0 �xed) as obtained by the general

numerical calculation. At the upper end of the curve (�x0)sl = �x0, there is no correlation;

at the lower, maximum correlation end, (�x0)sl equals the �nal beam size (�x), and the slice

beam size does not change. Also shown on the �gure, by the dashes, is �0:39hÆi.

FIG. 5: For the SPPS model parameters: sensitivity to correlation component in initial beam size.

Given are Ærms (solid) and �0:39hÆi (dashes) as functions of (�x0)sl=�x0 keeping �x0 �xed.

The interaction decreases as (�x0)sl decreases, because the change in (slice) beam size from

initial to �nal state is reduced; the centroid o�set of the slices has little e�ect. We see this,

for example, at (�x0)sl = �x (= 0:064�x0; no beam size change and maximum correlation)

Ærms � 6 � 10�8, which is very small. We repeated the calculation, but now setting the
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slice o�sets to zero, and using the simpler Eqs. 21, 26, 27. We obtained essentially the same

curves as before. For the SPPS model, (�x0)sl = 0:73�x0, and thus hÆi = �7:1 � 10�5 and

Ærms = 2:8 � 10�5, which is within, but close to, our tolerance, 4 � 10�5. Note that the

transverse component of rms relative energy is only 3:5� 10�6.

In Fig. 6 we plot the development of Ærms for our SPPS example problem (the solid

curve) and �0:39hÆi (the dashes). The two curves are very close, indicating that that the

(weighted) transverse variation in energy change in the bunch is always small compared to

the longitudinal variation. Finally, we plot in Fig. 7 a contour plot showing the change in

Æ, between the beginning and end of the SPPS drift, over the central slice of the beam.

Shown is the energy change over a �5� rectangle in the x, y plane. There is a di�erence of

Æ = 4:5� 10�5 between the maximum and minimum values in the plot (remember that for

the round beam case �� was independent of transverse position).

FIG. 6: The development of the rms energy spread for the SPPS model problem (solid line) and

the quantity �0:39hÆi (dashes).

C. Reducing the E�ect

Suppose we would like to reduce the induced energy spread. How could we do it? For the

round beam case we saw that in a linear optics region (in such a way that r=� is constant),

if a is allowed to vary adiabatically such that �=a is the same at s0 as at s, then the induced

energy spread is zero. The same can be shown to be true for the elliptical beam in a
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FIG. 7: Contour plot of energy change, over the central slice of the beam, between the beginning

and end of the SPPS model problem. Results are shown over a �5� rectangle in x and y. The

peaks (orange) are at Æ = �6:5� 10�5, the oor (violet) is at Æ = �11:� 10�5.

cylindrical beam tube, as long as a, �x, �y, �x, and �y (though the last two are not usually

important) all change under identical scaling. For the elliptical beam case, we see from

Eq. 12 that having a di�erent beam tube radius at s than at s0 (= a0), the longitudinal

space charge e�ect at the test particle is modi�ed (neglecting the usually small, centroid

o�set term) by the quantity

�U = �2eN�z ln
�
a

a0

�
: (28)

(This equation is also valid for the round beam case). For the elliptical beam, by only

adjusting a, we can again reduce the space charge e�ect, though this time we cannot reduce

it to zero. We �nd that for the SPPS model problem the induced energy spread is reduced

by a factor of 2 if at the end a is reduced (from 7.62 cm) to 2.5 cm; it is reduced to its

minimum, Ærms = 4:� 10�6 if at the end a = 0:8 cm.

IV. BUNCH COMPRESSION

Up to now we have limited ourselves to the case of converging/diverging beams in drift

regions, where the longitudinal bunch distribution remains �xed. Let us extend our space

charge calculations to allow compression. There will be a radiation contribution to the

beam's energy change while in a compressor, though our calculation will not include it.
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We still assume that the beam pipe is round, with the same radius a, and that the pipe

represents a continuous electrical connection.

The change in average potential is again simple to calculate. We see from Eq. 12 that (if

a does not change) it is given by

h��i = eN

(
h�zi

�
C� 2 ln

�
�x + �y

a

��

� h�z0i
�
C� 2 ln

�
�x0 + �y0

a

��)
: (29)

Note that a change in bunch length has a bigger e�ect than a change in transverse beam

size.

The second moment h��2i is more diÆcult to obtain than before because, for any test

particle, �z at the initial and �nal positions is di�erent, and because the phase advance

between the two positions is not normally an integer multiple of 2�, so|in addition to

x; y; z|one needs to also average over x0; y0; Æ. The most general solution is given by

h��2i =
Z
: : :
Z
dx0 dxd0 dyd0 dzd0  0(x0)�

�
h
~�G(x; y; z; xd; yd; zd)� ~�G(x0; y0; z0; xd0; yd0; zd0)

i2
; (30)

where x0 represents a six dimensional vector (x0; x
0

0; y0; y
0

0; z0; Æ0),  0 is the initial, six dimen-

sion beam distribution, and the Green function ~�G is related to the one introduced in Eq. 10

by ~�G = Æ(z � zd)�G. Note that to solve this equation we need to perform 8 integrals (plus

one integral over a delta function). To solve the integrals of Eq. 30 we need to substitute

x =Mx0, where the symplectic, �rst order transfer matrix M is of the form[11](we assume

our optics is linear)

M =

2
66666666666666664

R11 R12 0 0 0 R16

R21 R22 0 0 0 R26

0 0 R33 R34 0 0

0 0 R43 R44 0 0

R51 R52 0 0 1 R56

0 0 0 0 0 1

3
77777777777777775

: (31)

This matrix assumes bending in x only. Note that if initially the beam is in a dispersion-free

region (such as at the beginning of the SPPS chicane), then R16 = �, R26 = �0, R51 =
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R21� � R11�
0, R52 = �R12�

0 + R22�, and R56 = � R ss0 ds �=��, with � the dispersion function

and �� the bending radius. For the SPPS chicane we take the initial beam distribution to be

 0(x0) = �xx00(x0; x
0

0) �yy00(y0; y
0

0)�z0(z0)�Æ0(Æin + Æ0corrz0) ; (32)

where �'s, �'s, represent, respectively, correlated bi-Gaussian and Gaussian distributions;

where Æin and Æ
0

corrz0 represent the (with z) uncorrelated and correlated component of initial

energy spread.

From our earlier results we know that we can simplify the calculation of h��2i by using

the potential given in Eq. 14 (let us denote it by �BE), where, in addition, we can usually

drop the 3rd, beam-o�set term. We are left with the six dimension integral

h��2i =
Z
: : :
Z
dx0  0(x0)[�BE(x� �x; y; z; (�x)sl; �y; �z)

� �BE(x0 � �x0; y0; z0; (�x0)sl; �y0; �z0)]
2 : (33)

With this method, however, to perform the integrals we need �y, �z, (�x)sl, �x (the �nal slice

rms size and o�set), as functions of the initial beam distribution. They are obtained by

� = M�0M
T , with MT the transpose of M , which converts the initial covariance matrix

of the beam to the �nal covariance matrix; and then by (�x)sl =
q
�2x�

2
z � �2xz=�z and

�x = z�xz=�
2
z .

For eÆcient calculation of Eq. 33 we �rst calculate the beam covariance matrix at position

s. Knowing (�x)sl and �y we calculate the transverse dependence of �BE over a �7� two-

dimensional grid. Then, when needed by the integrals, we use results splined to this grid.

As for the integrals over phase space, if we assume Gaussian distributions in all directions,

these can again be performed eÆciently using Hermite quadrature[12]. If we take 7 terms

for each integral, then we need calculate only 105 terms in all.

A. The SPPS Chicane

For the SPPS chicane we take: initial bunch length �z0 = 1:15 mm, initial uncorrelated

energy spread �Æin = 5:5 � 10�4, correlated energy parameter Æ0corr = 0:0133 mm�1, �nal

R56 = 7:5 cm, which result in �nal bunch length �zf = 41 �m. Our results for the space

charge energy change, from the beginning to any position within the SPPS chicane, are

shown in Fig. 8. Shown are Ærms and hÆi (top frame), and also the development of the beam
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sizes (bottom frame). Note that �y (not shown) varies nearly linearly from an initial 55 �m

to a �nal 110 �m. The bend regions are marked by orange bands. Note that within the

bends of the SPPS chicane the beam pipe is not round, and our space charge results are

not valid. Nevertheless, in the drift regions and up to the edge of the bends they are valid.

We see that everywhere �0:39hÆi is a good approximation of Ærms, again suggesting that the

longitudinal variation in Æ dominates over the transverse variation. In addition, we see that

most of the e�ect occurs within bends 3 and 4. At the end our results are Ærms = 11:5�10�5

and hÆi = �27 � 10�5. We see that our earlier model problem results do not give a good

approximation for space charge induced spread in the 4th bend, since the energy spread

increases signi�cantly already in the 3rd bend. Our estimate for emittance growth due to

the space charge component, using the rms energy spread at the center of the last bend

(10� 10�5), yields � 13%, which is much larger than our tolerance.

FIG. 8: Space charge component of energy spread in the SPPS chicane. Shown are Ærms and hÆi

(top frame), and also the development of the beam sizes (bottom frame). The bend regions are

marked in orange. Note that within the bends, our space charge results, which assume a round

beam pipe, are not valid.
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Let us compare our results with the energy spread obtained from CSR calculations that

include also radiation terms. These CSR calculations, however, assume the beam to be

in free space. If we, equivalently, let a = �z our results become Ærms = 16 � 10�5 and

hÆi = �37� 10�5. The CSR calculation results are Ærms = 16� 10�5 and hÆi = �23� 10�5

(though these parameters are still increasing in amplitude at the end of the calculation, 5 m

beyond the 4th bend)[13]. This suggests that, in a chicane compressor, the space charge

component of energy spread can dominate the total. A signi�cant di�erence, however, is

that for the space charge component most of the growth happens within the last two bends,

while for the total, the energy spread accumulates gradually, with a signi�cant contribution

occurring in the drift regions downstream of these bends. We expect the total CSR energy

loss after all the �elds have caught up to the beam to equal or be greater than the space charge

component (\the compression work")[3]. Note that, due to the catch up requirement, an

estimate for emittance growth (within the last bend) using only the space charge component

of energy spread will tend to be pessimistic.

Finally, in March 2002 a meeting was held in Berlin, CSR-Workshop-2001, to discuss

coherent synchrotron radiation[14]. For the purpose of comparing simulations, benchmark

chicane parameters were generated. In the Appendix we give the space charge component

of energy spread for one of these examples. Our results are comparable for the total CSR

induced energy change, as presented at the workshop (unfortunately Ærms, as presented at

the workshop, is not given in a form that is easy for us to compare).

V. CONCLUSION

Beginning with the Green function for a rod beam oriented parallel to the axis of a round

beam pipe we have derived the space charge induced energy shift and spread for relativistic

beams that are slowly converging or diverging, a result that tends to be larger than the

1=2 dependence for parallel beams. In a simple drift region our results give the change in

(kinetic) energy spread in the beam. We have found that the variation in energy is typically

dominated by the longitudinal variation, so that for Gaussian beams the rms energy spread

Ærms � j0:39hÆij, with hÆi the average energy change. We have found that in calculations

for converging/diverging beams with an x-z correlation the result is essentially the same as

for an on-axis beam with no correlation, but with the horizontal beam size �x replaced by
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the slice beam size (�x)sl. We have found that by varying the beam pipe radius to roughly

follow the beam size variation the space charge e�ect can be reduced.

We have extended the calculation to systems with bends, such as chicane compressors, but

now our results give only part of the total energy spread induced in the beam. Nevertheless,

our results can be used to indicate source regions of CSR induced energy spread. Comparing

with more complete CSR calculation results, it appears that due to bunch compression the

space charge component can dominate the total longitudinal e�ect, after enough time is

given for the radiation �elds to catch up with the beam. Due to the catch-up requirement,

space charge estimates of energy spread and emittance growth in the last bend of a chicane

will tend to be too large. We note, in addition: (i) even in a chicane system Ærms � j0:39hÆij
(for Gaussian beams), which allows us to obtain an estimate of Ærms using a simple formula;

(ii) our results are not valid within non-round beam pipe regions, such as is usually the case

in bends; (iii) our results depend on beam pipe radius a (although only weakly) whereas

CSR calculations do not normally include this parameter, suggesting that results of such

calculations, for systems with beam pipes, are not complete.

From our space charge calculations for the SPPS chicane we estimate that, in the middle

of the last bend, Ærms = 1:0� 10�4, yielding an emittance growth � 13%, though this result

should be taken as an overestimate.
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APPENDIX: BERLIN BENCHMARK CHICANE

In March 2002 there was a meeting in Berlin to discuss coherent synchrotron radiation[14].

For the purpose of comparing simulations, parameters for benchmark chicanes were gener-

ated. Parameters for one such example is given in Table 2. We compute the space charge

component of energy spread for this example. No beam pipe radius is speci�ed, and we

take a = 7:62 cm. The results are shown in Fig. 9. Given are Ærms and hÆi (top frame),

and �z, �x, and (�x)sl (bottom frame). We note that most of the space charge e�ect occurs

in the 3rd bend. We see that again Ærms = �0:39hÆi is a good approximation. This time,

throughout most of the chicane, (�x)sl is very small compared to �x, implying that there is

a large x-z correlation.

The total space charge induced energy change hÆi = �3:5� 10�4, which is comparable to

the total energy change obtained by complete CSR calculations �(4:5{6:0)� 10�4 (though

the amplitude appears to be still increasing at the end of the CSR simulation)[15]. (Unfor-

tunately the induced spread Ærms in Ref. [15] is not given in a form that is easy for us to
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TABLE II: Parameters for a Berlin benchmark chicane.

Bunch Population N 6.25 109

Initial Bunch Length �z0 200 �m

Final Bunch Length �z 20 �m

Beam Energy E 5 GeV

Initial Energy Correlation Æ0corr 36 m�1

Initial Uncorr. Energy Spread �Æin 2 10�6

Compression Parameter R56 �2:5 cm

Emittance �x;y 0.1 nm

compare.) These CSR calculations, however, assume the beam to be in free space. If we,

equivalently, let a = �z our �nal results rise by about 10%.
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FIG. 9: Space charge component of energy spread in the Berlin benchmark chicane. Shown are

Ærms and hÆi (top frame), and also the development of the beam sizes (bottom frame). The bend

regions are marked in orange. Note that within the bends, our space charge results, which assume

a round beam pipe, are not valid.
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