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Stacking faults in boron-implanted silicon give rise to streaks or rods of 

scattered x-ray intensity normal to the stacking fault plane. We have used the 

difmse scattering rods to follow the growth of faults as a function of time 

when boron-implanted silicon is annealed in the range 925’ - 1025’C. From 

the growth kinetics we obtain an activation energy for interstitial migration 

in silicon: EI = 1.98+0.06eV. The measurements of intensity and size versus 

time suggest that faults do not shrink and disappear but rather are annihilated 

by a dislocation reaction mechanism. 
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In a previous grazing-incidence diffuse x-ray scattering study’ of 

implanted and annealed silicon, we have shown that stacking faults 

generated by boron implantation and annealing at high temperature give rise 

to streaks or rods of intensity normal to the plane of the fault. It is evident 

that the integrated intensity in a streak is proportional to the stacking fault 

density or total stacking fault area. The width of the streak is inversely 

proportional to the characteristic size of the stacking faults. In this work, we 

have used the diffuse scattering from stacking faults to follow their growth 

kinetics upon annealing at high temperatures. From our study we obtain an 

activation energy for the growth process, allowing us to determine the 

mechanisms of stacking fault growth. The main advantages of the x-ray 

diffuse scattering method are that no special sample preparation is necessary, 

and that an x-ray beam a few mm in size effectively provides an average 

measurement of stacking fault density and size. These parameters could also 

be obtained by cross-section transmission electron microscopy2 (TEM), but 

such measurements suffer from the usual sample statistics problem in 

electron microscopy unless a truly large sample distribution is investigated. 

For our case, plan-view TEM experiments were inconclusive, revealing a 

tangle of dislocations which obscured the stacking fault loops. 
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Floating-zone (001) silicon wafers were implanted with a boron dose of 

5El5 cmm2 at 32 keV. lcm square samples were then processed by rapid 

thermal annealing (RTA) for various times in the temperature range 925 - 

1025’C. To investigate the defects introduced after annealing,diffLse 

scattering measurements were carried out using synchrotron x-ray 

diffraction in grazing incidence geometry. Since the implanted layer extends 

only about 2OOOA from the crystal surface, the grazing incidence geometry 

was necessary in order to minimize background x-ray scattering from bulk 

silicon. The diffracting planes were normal to the (001) crystal surface. 

Radial and angular scans were taken in the vicinity of the (220) surface 

Bragg peak using a position-sensitive detector (PSD). A narrow slit in front 

of the PSD was used to restrict the resolution element in the qradiai - qtiansverse 

plane to a value that is small compared to the width of the stacking fault 

streaks. Maps of scattering in the qradial - q, plane at three values of 

annealing time at 975’C are shown in Figure 1. The intensity map shows the 

scattering around the (220) Bragg peak. The streaks of scattered intensity are 
-- 

accurately perpendicular’ to (111) and (1 1 1) crystal planes. It is known from 

TEM studies2 that these faults are extrinsic in nature, each consisting of a 

circular loop of an extra plane of atoms surrounded by a Frank-type partial 

dislocation loop with l/3 ( 1 1 1 } Burgers vector. 
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To measure the integrated intensity in these streaks we have 

performed transverse scans in the (1 i0) direction around fixed points (2.07, 

2.07, 0) and (2.1, 2.1, 0). Typical transverse scans for various annealing 

times at 975’C are shown in Figure 2. Note that the intensity scale for the 

last plot at 110 set is magnified by a factor of 30 compared to the other two. 

The area under these curves gives the integrated intensity, which is a 

measure of the concentration of interstitial atoms in the faults. For 

convenience we shall refer to this as the stacking fault density. The full 

width at half maximum (FWHM) is inversely related to the average size of 

the stacking faults. At 10 set, the curve is clearly wider than that at longer 

heat treatment times. 

Plots of the integrated intensity vs. time of annealing at various 

temperatures are shown in Figure 3(a). Typically the integrated intensity 

rises initially, reaches a maximum and falls at longer times to zero. Plots of 

the stacking fault diameter as a function of time at various temperatures 

obtained from FWHM measurements are shown in Figure 3(b). Like the 

integrated intensity, the faults initially grow in diameter and reach a 

maximum value of about 900 - 1000 A. However, in contrast to the 

integrated intensity, the size does not decrease but remains around the 

maximum value while the intensity decreases. 
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We use the results shown in Fig. 3(b) to analyze the loop growth 

kinetics as a function of time and temperature. From this analysis we can 

determine such poorly-known parameters as the activation energy for 

interstitial migration, the activation barrier for the incorporation of an 

interstitial in the lattice on a stacking fault, and the volume density of 

stacking faults. Various treatments for the growth of stacking faults have 

been proposed. Here we use the treatment of Huang and Dutton3 which has 

been implemented in TSUPREM44. This approach is convenient since all of 

the information on the interstitials and vacancies introduced by the 

implantation process, and their subsequent annealing kinetics both into the 

bulk and to the surface, are incorporated into TSUPREM4. The rate of 

growth of the stacking faults is given by the following relation3: 

where r is the stacking fault radius, No is the ( 1 1 1 } planar atomic density of 

silicon atoms (1.57El 6/cm2), r, is the radius of a torus surrounding the 

Frank partial dislocation of the stacking fault, ra is the interatomic silicon 

lattice spacing, EB is the activation barrier for loop growth, Do is the pre- 

exponential factor for interstial motion, and Di is the activation energy for 

interstitial motion. The interstitial concentration at the surface of the torus, I, 
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is determined for each time interval by solving the interstitial continuity 

The continuity equation contains a term involving the 

loop density p (see Huang and Dutton3 for details). I*Loop is the equilibrium 

interstitial concentration within the torus and is derived by taking into 

account the elastic energy associated with the dislocation loop. It is given 

bY 

I* = I *I exP 
IQ Clbfi - LOOP bkT 1 [ exp 4mkT(l -v ) ’ 

(2) 

Where y is the stacking fault energy (= 70 mJ/m2 for silicon), LR is the atomic 

volume for silicon, b is the Burgers vector for the Frank partial dislocation 

l/3(1 1 1), lo is the shear modulus, r is the dislocation loop radius, and v is 

Poisson’s ratio. 

In the computation procedure for integrating Eq. (l), we determined 

the optimum parameter for barrier height for an interstitial in the crystal to 

hop to a site on the stacking fault: En = 0.26 eV. Keeping this barrier height 

constant for all temperatures, we were able to fit the experimental data for 

the radius versus time at various temperatures within tight limits of the two 

other variables in the calculation, the loop density, p = 7.8 (f 5) El3 cma3, 

and the activation energy for interstitial motion, Er = 1.98 f .06 eV. The loop 

density is consistent with loop densities estimated from cross section TEM 
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observations. In Fig. 3(b) the fits are shown as lines; the points show 

experimental data. Typical error bars for the 975” C data are also shown. For 

the highest temperature (1025”C), the growth phase of the loops was too fast 

to be experimentally accessible and we have arbitrarily fitted the growth 

kinetics to the radius measured at the shortest time. Even in this extreme 

case the calculation parameters are consistent with the other three 

temperatures. 

To put these relatively high temperature observations into context 

with defect structures observed at lower temperatures, we note that when 

implanted silicon is annealed in the temperature range 650” - 850°C the 

initial extended defects formed are mainly rod-like5 along <l lO> with a 

(3 1 l} habit plane. The (3 111 defects have been identified as an extra plane 

of self-interstitial atoms, with aspect ratios of length to width typically about 

10. Upon annealing, the larger defects grow at the expense of the smaller 

ones. Their kinetics have been ascribed to an Ostwald ripening process. The 

net concentration of interstitials in the defects never increases, but always 

decreases with time of anneal. The interstial atoms released during annealing 

contribute to transient enhanced difmsion (TED) during the annealing 

process. Increases in the diffusion coefficient a thousand fold over the bulk 

silicon value have been reported! However, the large (3 111 defects 
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themselves are unstable; they appear to be a precursor5 to more-stable Frank- 

type dislocation loops. 

In contrast to the annealing behavior in the intermediate 650” - 850°C 

range of temperatures, rod-like (3 111 defects are not observed when 

implanted silicon is annealed in the temperature range 900” - 1070°C. If rod 

-like defects do form, they nucleate and dissolve at rates too fast to be 

accessible to RTA times. For this relatively high implant dose, the primary 

defects observed in this range of annealing temperatures are Frank-type 

interstitial stacking faults with Burgers vector l/3(1 1 l), and tangles of 

dislocations. However, in contrast to dissolution kinetics alone observed for 

(31 l} defects, we observe initially a growth of both the stacking fault 

density and size as a function of time at high temperature. In our case the 

stacking fault growth is limited by both reaction rate and diffusion. The 

reaction barrier we determined, En = 0.26 eV, is smaller than that assumed 

in previous work7. In that work, the activation energy obtained from the 

shrinkage of stacking faults introduced by oxidation (OSF) was observed to 

be 0.4 eV larger than that for self-diffusion; the difference was assumed to 

be the barrier height. In later experiments’ the activation energy for OSF 

shrinkage was found to be 4.8 eV, equal to the activation energy for self- 

diffusion in silicon’ . We believe that that the value for the barrier found in 

8 



this work, as well as the work of Huang and Dutton, is more realistic. The 

activation energy for interstitial motion, Ei = 1.98 f .06 eV, implies that the 

formation energy for interstitials is Er = 4.75 - 1.98 = 2.77 eV, assuming 

that self-diffusion occurs primarily by the interstitial mechanism. This value 

Ei x1.98 eV is a little higher than that inferred from a detailed study of zinc 

metal diffusion” in silicon, Ei = 1.77 f 0.12 eV. However the values are not 

statistically different. 

Another marked difference in the behavior of stacking faults from the 

(3 11) defect kinetics is that they do not shrink in size when they disappear. 

In fact, the size of the faults remains the same while the stacking fault 

density decreases and ultimately vanishes. The only way this could occur is 

through a dislocation reaction mechanism such as: 

1/3<111> + 1/6<1 l-2> + 1/2x110> . 

Here, a 1/6<1 l-2> Shockley partial nucleates on a Frank partial dislocation, 

sweeps through the fault and leaves a perfect dislocation loop with Burgers 

vector 1/2<110>. In this reaction, the energy of the dislocations involved 

remains the same, but there is a resultant reduction in energy since the 

stacking fault energy is removed. Evidence for the transformation of Frank 

partials to perfect dislocation loops has been reported in many systems 

including Si. 



While the enhancement in boron diffusion upon annealing at these 

higher temperatures is orders of magnitude less than at the lower 

temperature range, it can still be appreciable. For our case at 975”C, the 

enhancement is about a factor of 15 from SIMS measurements, rather than 

the thousand-fold increase at lower temperatures. We suggest that this can 

be attributed to the fact that interstitials tied up in the stacking faults and 

subsequently in the prismatic loops are not available for the enhancement of 

boron diffusivity at higher temperatures. 

Portions of this research were carried out at the Stanford Synchrotron 

Radiation Laboratory, a national user facility operated by Stanford 

University on behalf of the U.S. Department of Energy, Office of Basic 

Energy Sciences. We thank John Carruthers (retired) Intel Corporation for 

support and encouragement in this work. 
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FIGURE CAPTIONS 

Figure 1. Diffuse scattering intensity in the q, - q, plane for silicon 

implanted with a boron dose of 5E15 cms2 at 32 keV, and RTA annealed at 

975’ C for the times shown. Note the growth and decay of the rod-like 

streaks. 

Figure 2. Angular scans through the streaks at (2.07, 2.07, 0) showing the 

initial increase and the final decrease of intensity with time of heating at 

975’ C. Note that the scale for the 110 set curve has been magnified by a 

factor of 30. 

Figure 3. (a): Integrated intensity of the streak scattering versus time of 

anneal at the temperatures shown. (b): Stacking fault diameter derived from 

the width of the streak. Note that while the integrated intensity grows, 

reaches a maximum and subsequently decreases at long times of anneal, the 

stacking fault diameter grows and stays at it’s maximum value even as the 

intensity falls to zero. 
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