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Abstract

The presence of a light b̃ squark (mb̃ ∼ 4 GeV) and gluino (mg̃ ∼ 15 GeV) might ex-
plain the observed excess in b-quark production at the Tevatron. Though provoca-
tive, this model is not excluded by present data. The light supersymmetric parti-

cles can induce large flavor-changing effects in radiative decays of B mesons. We
analyse the decays B → Xsγ and B → Xsg in this scenario and derive restrictive

bounds on the flavor-changing quark-squark-gluino couplings.
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1 Motivation

The measured b-quark production cross section at hadron colliders exceeds next-to-
leading order (NLO) QCD predictions by more than a factor of two. While it is con-
ceivable that this discrepancy is due to higher-order corrections, the disagreement is
surprising since NLO calculations have been reliable for other processes in this energy
range. Berger et al. have analysed b-quark production in the context of the Minimal
Supersymmetric Standard Model and find that the excess in the cross section could
be attributed to gluino pair-production followed by gluino decay into pairs of b quarks
and b̃ squarks, if both the gluino and the b̃ squark are sufficiently light [1]. In order
to reproduce the transverse-momentum distribution of the b quarks, the masses of the
gluino and light b̃-squark mass eigenstate should be in the range mg̃ = 12–16 GeV and
mb̃ = 2–5.5 GeV. The masses of all other supersymmetric (SUSY) particles are assumed
to be large, of order several hundred GeV, so as to have evaded detection at LEP2.

Berger et al. have further observed that a light b̃ squark could have escaped direct
detection. For example, the additional contribution to the e+e− → hadrons cross section
at large energy would only be about 2% and hence difficult to disentangle. The pair-
production of light scalars would alter the angular distribution of hadronic jets in e+e−

collisions, but the present data are not sufficiently precise to rule out the existence of this
effect [1]. On the other hand, there are important Z-pole constraints on the parameters
of this model. Most importantly, production of the light b̃ squark at the Z pole has
to be suppressed, which implies a stringent constraint on the mixing angle θ relating
the sbottom mass and weak eigenstates [2]. More recently, several authors have studied
loop effects of the light SUSY particles on electroweak precision measurements [3, 4, 5].
Potentially large contributions may exist, in particular, to the quantity Rb. However, a
conflict with existing data can be avoided by having some of the superpartner masses
near current experimental bounds, or by allowing for a new CP-violating phase in the
SUSY sector [5].

The null result of a CLEO search for the semileptonic decays B̃ → D(∗)lπ and
B̃ → D(∗)lχ̃0 of sbottom hadrons implies that the branching ratios for the decays b̃→ c l
induced by R-parity violating couplings, or b̃ → c lχ0 with an ultra-light neutralino χ0,
must be highly suppressed [6]. However, a light b̃ squark would be allowed to decay
promptly via hadronic R-parity violating couplings in the modes b̃ → c̄q̄ or b̃ → ūq̄
(with q = u, s). Alternatively, it could be long-lived, forming b̃-hadrons. An interesting
consequence of hadronic R-parity violating decays would be the abundant production
of light baryons. This could significantly alter the thrust-axis angular distribution for
continuum events containing baryons at the B factories.

A striking manifestation of the light b̃-squark scenario would be the production of like-
sign charged B mesons at hadron colliders, because the Majorana nature of the gluino
allows for the production of bbb̃∗b̃∗ and b̄b̄b̃b̃ final states [1]. Another potential signature
at hadron colliders is an enhanced yield of tt̄bb̄ events [7]. It has also been pointed out
that sbottom pairs would be copiously produced in Υ(nS)→ b̃b̃∗ and χbJ → b̃b̃∗ decays
[8, 9]. Precise measurements of bottomonium decays could lead to new constraints on
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the squark and gluino masses.
The presence of light SUSY particles alters the running of αs, and it is often argued

that this would exclude the existence of light gluinos. This argument is incorrect. First,
a gluino with mass mg̃ ∼ 15 GeV would have a relatively small effect on the evolution
of αs. Taking, for instance, αs(mb) = 0.21 (a value in agreement with all low-energy
determinations of the QCD coupling) and including the contribution of the gluino octet
to the β function above the scale µg̃ = mg̃ yields αs(mZ) = 0.126, which is about
three standard deviations higher than the canonical value αs(mZ) = 0.118 ± 0.003.
However, considering that at leading order only virtual gluino pairs contribute to the β
function, a more realistic treatment would include the gluino contribution above a scale
µg̃ = 2mg̃ ∼ 30 GeV, in which case αs(mZ) = 0.121, in good agreement with the standard
value. Secondly, it is important to realize that even a value of αs(mZ) significantly above
0.118 would not rule out the model, the reason being that the characteristic scale µ
inherent in all determinations of αs(µ) is typically much smaller than the total energy.
This is true, in particular, for the determinations based on event-shape variables. In
practice, the measurements fix αs(µ) somewhere between a fraction of the Z mass down
to several GeV, where the gluino contribution to the β function is negligible. Using these
determinations to quote values of αs(mZ) (as is routinely done) assumes implicitly that
the coupling runs as predicted in the SM. Finally, a careful analysis of the running of αs
in the presence of light SUSY particles would have to include, for each observable, the
modifications in the theoretical formulae due to virtual and real emissions of the new
particles. These corrections could be significant, and could partially compensate effects
arising from the modification of the β function.

If we are to take the possibility of a light b̃ squark and light gluinos seriously, then the
theoretical study of their impact must be extended to the phenomenology of weak decays
of the b quark. New sources of flavor violation arise from s-b̃-g̃ and d-b̃-g̃ couplings. The
overall scale of SUSY flavor-changing interactions originating from gluino exchange is set
by the factor g2

s/m
2
g̃, which is much larger than the corresponding factor GF ∼ g2

W /m
2
W

for weak decays in the Standard Model (SM). Consequently, the new flavor-changing
couplings must be much smaller than the CKM mixing angles in order for this model to
be phenomenologically viable. The most stringent bounds arise from the radiative decay
B → Xsγ, which we discuss in the present work. (Contributions of light b̃ squarks to
kaon decays, K-K̄ mixing, and D-D̄ mixing are strongly suppressed.) The presence of
such tight bounds implies stringent constraints on model building.

If the light b̃ squark is sufficiently light to be pair-produced in b decays, new uncon-
ventional decay channels would be opened up, which could affect the phenomenology of
B mesons and beauty baryons. Examples of potentially interesting consequences include
modifications of beauty lifetime ratios, an enhancement of the semileptonic branching
ratio of B mesons via production of charmless final states containing b̃ squarks, an en-
hancement of ∆Γ(B) and of the semileptonic CP asymmetry ASL, and wrong-sign kaon
production via b → s̄b̃b̃ transitions allowed by the Majorana nature of the gluino. The
phenomenology of such effects will be discussed elsewhere. If the light b̃ squark is too
heavy to be pair-produced, it would still give rise to potentially large virtual effects in
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B decays. Their study is the main purpose of this Letter.

2 The low-energy effective ∆B = 1 Hamiltonian

We denote by d̃i with i = 1, .., 6 the down-squark mass eigenstates, and by q̃L and q̃R
with q = d, s, b the interaction eigenstates (the superpartners of the left-handed and
right-handed down quarks). They are related by a unitary transformation q̃L = ΓL†qi d̃i
and q̃R = ΓR†qi d̃i. We identify d̃3 with the light sbottom mass eigenstate and define a
sbottom-sector mixing angle θ through ΓRb3 = cos θ and ΓLb3 = sin θ. The fact that the
light b̃ squarks are not produced in Z decays implies

sin θ ≈ ±
√

2

3
sin θW ≈ ±

√
2

3

(
1− m2

W

m2
Z

)
. (1)

The phenomenologically favored range for the Zd̃3d̃3 coupling is | sin θ| = 0.3–0.45 [2],
meaning that the light sbottom is predominantly the superpartner of the right-handed
bottom quark. In our numerical analysis we will assume a vanishing tree-level coupling
to the Z and thus use sin θ = ±0.395.

The flavor-changing couplings involving the light b̃ and g̃ fields can be parameterized
by dimensionless quantities

εABqb = ΓA†q3 ΓBb3 , (with εALqb = εARqb tan θ) (2)

where A,B = L,R, and q = s or d for b → s or b → d transitions, respectively. In
general the parameters εABqb are complex, which can lead to new CP-violating effects.

These parameters are invariant under a phase redefinition of the light b̃-squark state,
and they transform in the same way as the products V ∗iqVib (with i = u, c, t) of CKM
matrix elements under a phase redefinition of the down-type quark fields. It follows that
ratios of the type εABqb /ε

CD
qb and εABqb /(V

∗
iqVib) are invariant under phase redefinitions, and

thus can carry an observable, CP-violating phase.
Flavor-changing hadronic processes in the model with a light gluino and a very light

b̃ squark are most transparently described by means of an effective “weak” Hamiltonian.
If we neglect effects that are suppressed by inverse powers of the heavy SUSY scale, the
relevant energy scales are the electroweak scale, at which the usual SM flavor-changing
operators are generated by integrating out the top quark and the W and Z bosons, and
the scalemg̃, at which new flavor-changing operators are generated by integrating out the
gluinos. We start by discussing the construction of the effective theory below the gluino
scale, focusing on the new interactions proportional to εABqb induced by gluino exchange, as
illustrated in Figure 1. SUSY modifications of the renormalization-group (RG) evolution
of the standard weak-interaction operators will be discussed later. The remaining light
degrees of freedom in the low-energy theory are the quarks u, d, s, c, b, the photon and
gluons, and the light b̃ squark. Operators in the effective Hamiltonian can be organized in
an expansion in inverse powers of the gluino mass. For mg̃ ≈ 15 GeV � mb, it is a good
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Figure 1: Examples of b→ s transitions induced by gluino exchange. The diagrams
on the right show the corresponding contributions in the effective theory where the
gluinos are integrated out.

approximation to keep the leading terms in this expansion, which have mass dimension
five. These operators comprise the usual electromagnetic and chromomagnetic dipole
operators, and new operators containing two scalar b̃ fields. The effective Hamiltonian
for b→ s transitions is (here and below, mg̃ ≡ mg̃(mg̃) denotes the running gluino mass
at the gluino matching scale)

HSUSY
eff =

4παs(mg̃)

mg̃

∑

i

Ci(µ)
[
εLRsb O

LR
i (µ) + (L↔ R)

]
+O(1/m2

g̃) , (3)

where

OLR
1 = s̄Ltab̃ b̃

∗tabR , OLR
2 = s̄Lb̃ b̃

∗bR ,

OLR
7 = − e

16π2
s̄LσµνF

µνbR , OLR
8 = − gs

16π2
s̄LσµνG

µνbR . (4)

We work with the covariant derivative iDµ = i∂µ + eQdA
µ + gsA

µ
ata, where Qd = −1

3
is

the electric charge of a down-type (s)quark. (To facilitate comparison with the literature,
which usually adopts the opposite sign convention for the couplings, we have included a
factor of −1 in the definition of the dipole operators O7 and O8.) In addition, there are
dimension-five fermion-number violating interactions of the form s̄c(1 ± γ5)b b̃∗b̃∗, which
mediate b→ s̄b̃b̃ transitions. They are irrelevant to our discussion here.

The Wilson coefficients at a scale µ ∼ mg̃ are obtained by matching the effective
theory to the full theory. At leading order we find

C1(mg̃) = 2 , C2(mg̃) = 0 , C7(mg̃) = Qd
N2 − 1

4N
, C8(mg̃) = −N

2 + 1

4N
, (5)

where N = 3 is the number of colors. In order to use the effective Hamiltonian for
calculating B-decay amplitudes, we compute the values of the Wilson coefficients at a
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D1 D2 D3

O1 → O7 O2 → O7 O1 → O8 O2 → O8

D1 − 1
8ε2

+ 3
16ε

Qd (−1
4

+ 1
4N2 ) Qd (N

2
− 1

2N
) 1

4N2
N
2
− 1

2N

D2 − 1
8ε2

+ 3
16ε

Qd (−1
4

+ 1
4N2 ) Qd (N

2
− 1

2N
) 1

4
+ 1

4N2 − 1
2N

D3
1

4ε2
− 1

8ε
Qd (−1

4
+ 1

4N2 ) Qd (N
2
− 1

2N
) 1

8
+ 1

4N2
N
4
− 1

2N

Figure 2: Two-loop diagrams relevant to the mixing of O1,2 into O7,8, and corre-
sponding results, in units of αs/4π, after the subtraction of subdivergences. Mirror-
symmetric graphs with the gluon attached to the s-quark line give identical contri-
butions. Results in the first column of the table have to be multiplied by the color
and charge factors in the remaining columns.

low scale µ ∼ mb by solving the RG equation (d/d ln µ−γT ) ~C(µ) = 0. At leading order,
the anomalous dimension matrix γ receives contributions from the one-loop mixing of the
operators (O1, O2) and (O7, O8) among themselves, and from the two-loop mixing of O1,2

into O7,8. This is analogous to the case of the SM, in which one needs to consider the two-
loop mixing of the current-current operators into the dipole operators at leading order
[10]. In our case, only the three two-loop diagrams shown in Figure 2 give a nonvanishing
contribution. All other graphs vanish after their subdivergences are removed. The
calculation of the UV divergences of these diagrams can be reduced to the evaluation of
massive tadpole integrals [11]. The resulting anomalous dimension matrix in the operator
basis (O1, O2, O7, O8) reads

γ =
αs
4π




−6N + 9
N

−3
2

+ 3
2N2 Qd (1

4
− 1

4N2 ) −1
8
− 1

4N2

−6 −3N + 3
N

Qd (−N
2

+ 1
2N

) −N
4

+ 1
2N

0 0 N − 1
N

0

0 0 Qd (4N − 4
N

) N − 5
N


+O(α2

s) . (6)

The scale dependence of the Wilson coefficients is now readily obtained by solving
the RG equation. Setting N = 3, we find

C1(µ) =
16

9
η−8 +

2

9
η−7/2 , C2(µ) =

8

27

(
η−8 − η−7/2

)
,

C7(µ) = Qd

(
− 4

273
η−8 − 4

145
η−7/2 +

438

65
η2/3 − 1224

203
η4/3

)
,

C8(µ) =

(
1

39
η−8 − 1

60
η−7/2 − 219

260
η2/3

)
. (7)
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Here η = [αs(mg̃)/αs(µ)]1/β0(5,0,1), and

β0(nf , ng, ns) =
11N

3
− 2

3
nf −

2N

3
ng −

1

6
ns (8)

is the first coefficient of the generalized QCD β function in the presence of nf light Dirac
fermions, ng light gluino octets, and ns light complex scalars. Numerical results for the
coefficients Ci(µ) will be given in Table 1 below. The scale dependence of the Wilson
coefficients below the scale mg̃ arises mainly from the mixing of O1 with O2 and O7 with
O8. The mixing of O1 and O2 into the dipole operators turns out to be small numerically.

The presence of light SUSY particles also affects the RG evolution of the SM con-
tributions to the effective weak Hamiltonian below the electroweak scale. We will now
discuss these effects for the operators of relevance to radiative B decays.

3 The radiative decay B → Xsγ

The inclusive radiative decay B → Xsγ is one of the most sensitive probes of physics
beyond the SM. Indeed, we will see that this decay provides very stringent bounds on the
flavor-changing couplings εLRsb and εRLsb . The SM prediction for the B → Xsγ decay rate
is known at NLO [12, 13, 14, 15] and, within errors, agrees with the data. The change
of this prediction due to the light SUSY particles present in our model is fourfold:

1. The main effects are the genuine SUSY flavor-changing interactions due to quark-
squark-gluino couplings. For µ < mg̃, these interactions are described by the
effective Hamiltonian constructed in the previous section.

2. Even in the absence of flavor-changing couplings in the SUSY sector (i.e., for
vanishing εABqb ), the SM operator basis gets enlarged by dimension-six penguin

operators with field content s̄b b̃∗i
←→
D µb̃ and s̄b ¯̃gg̃. These new operators have small

Wilson coefficients and yield a negligible contribution to the B → Xsγ decay rate.
In our analysis, we will neglect these as well as all four-quark penguin operators.

3. The presence of a light gluino octet (and, to lesser extent, of a light b̃ scalar) mod-
ifies the running of the strong coupling constant. We use the two-loop expression
for αs(µ), modified to account for the effects of the light SUSY particles.

4. There is a SUSY contribution to the b-quark wave-function renormalization, which
adds to the anomalous dimensions of the SM operators. Also, the masses of the b
quark and the gluino mix under renormalization, thus altering the scale dependence
of mb(µ). This is a novel effect due to the decoupling of the heavy b̃H squark at
the SUSY scale.

The last two effects change the evolution of the Wilson coefficients of the SM operators
between the electroweak scale and the scale µ ∼ mg̃, where the gluino degrees of freedom
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are integrated out. (Beyond leading order, the anomalous dimensions of the SM operators
are also changed due to internal loops involving SUSY particles.)

The effective weak Hamiltonian governing B → Xsγ decays in the SM is

Hweak
eff = −4GF√

2
V ∗tsVtb

∑

i

Ci(µb)Qi(µb) . (9)

The operators relevant to our calculation are

Q1 = s̄iLγµc
j
L c̄

j
Lγ

µbiL , Q2 = s̄LγµcL c̄Lγ
µbL , Q7γ = mbO

LR
7 , Q8g = mbO

LR
8 . (10)

To an excellent approximation, the contributions of other operators can be neglected.
To obtain the values of the corresponding Wilson coefficients Ci(µb) in our model, we
first evolve them from the electroweak scale µ = mW down to a scale µg̃ ∼ mg̃, and in a
second step from µg̃ to a scale µb ∼ mb.

Above the gluino scale, there are SUSY contributions to the wave-function renormal-
ization constants of left- and right-handed b-quark fields from gluino-squark loops. At
one-loop order, we obtain the gauge-independent results

δZ2(bL) = −CFαs
4πε

sin2 θ , δZ2(bR) = −CFαs
4πε

cos2 θ . (11)

Next, by calculating the self-energies of b quarks and gluinos we find that their masses
mix under renormalization. The corresponding anomalous dimension matrix in the basis
(mb,mg̃), defined such that dmi/d ln µ = −(γm)ij mj, reads

γm =
αs
4π

(
5N
2
− 5

2N

(
N − 1

N

)
sin 2θ

sin 2θ 6N − 1
2

)
+O(α2

s) . (12)

Note that the off-diagonal entries are sensitive to the sign of the mixing angle θ. The
RG evolution of the operators Qi in (9) is complicated by the effects of mass mixing. To
compute the resulting modifications of the Wilson coefficients we work in the extended
operator basis (Q1, Q2,mbO

LR
7 ,mbO

LR
8 ,mg̃O

LR
7 ,mg̃O

LR
8 ). Using (11), (12), and the well-

known anomalous dimensions of the SM operators [10], we obtain for the anomalous

dimension matrix γQ = αs
4π
γ

(0)
Q +O(α2

s), where (setting N = 3 and Qd = −1
3
)

γ
(0)
Q =




4
3

sin2 θ − 2 6 0 3 0 0

6 4
3

sin2 θ − 2 416
81

70
27

0 0

0 0 32
3
− 4

3
sin2 θ 0 8

3
sin 2θ 0

0 0 −32
9

28
3
− 4

3
sin2 θ 0 8

3
sin 2θ

0 0 sin 2θ 0 43
2
− 4

3
sin2 θ 0

0 0 0 sin 2θ −32
9

121
6
− 4

3
sin2 θ




.

(13)
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Table 1: Results for the Wilson coefficients and the running b-quark mass for
different values of µ. Input parameters are mb(mb) = 4.2 GeV, mt(mW ) = 174 GeV,
mg̃(mg̃) = 15 GeV, and αs(mb) = 0.21. In the upper portion of the table the gluino
is integrated out at µ = mg̃, in the lower portion at µ = 2mg̃. If two signs are
shown, the upper (lower) one refers to positive (negative) mixing angle θ.

Scale mb(µ) [GeV] C1 C2 C7 C8 C2 C7γ C8g

mW 3.17∓ 0.42 — — — — 1 −0.195 −0.097

mg̃ 3.59 2 0 −0.222 −0.833 1.040 −0.255± 0.028 −0.124± 0.014

mb 4.20 2.691 0.066 −0.264 −0.804 1.104 −0.313± 0.023 −0.143± 0.011

mW 3.13∓ 0.25 — — — — 1 −0.195 −0.097

mg̃ 3.59 2.274 0.025 −0.241 −0.821 1.042 −0.255± 0.015 −0.124± 0.008

mb 4.20 3.064 0.104 −0.280 −0.791 1.106 −0.313± 0.013 −0.143± 0.006

The solution of the RG equation in this basis yields coefficients (c1, c2, c3, c4, c5, c6) at
a scale between mW and mg̃. Their initial values at the electroweak scale are given
by (0, 1, C7γ(mW ), C8g(mW ), 0, 0). The relevant β-function coefficient in this range is
β0(5, 1, 1). From these solutions, we obtain the SM Wilson coefficients at the scale
µg̃ ∼ mg̃ by means of the relations C1,2(µg̃) = c1,2(µg̃) and

C7γ(µg̃) = c3(µg̃) +
mg̃(µg̃)

mb(µg̃)
c5(µg̃) , C8g(µg̃) = c4(µg̃) +

mg̃(µg̃)

mb(µg̃)
c6(µg̃) . (14)

The sign of the coefficients c5,6 depends on the sign of the mixing angle θ. At lead-
ing order, the running b-quark mass at the gluino scale is obtained from mb(µg̃) =
mb(mb) [αs(µg̃)/αs(mb)]

4/β0(5,0,1).
Once we have determined the SM contributions to the Wilson coefficients at the

scale µg̃, their evolution down to lower scales is governed by the well-known evolution
equations of the SM. The corresponding 4 × 4 anomalous dimension matrix coincides
with the upper left 4 × 4 corner of the extended matrix in (13) evaluated at θ = 0.
The resulting formulae are more complicated than in the SM, because in our case the
coefficient C1(µg̃) does not vanish at the matching scale (whereas C1(mW ) = 0 for the
standard evolution).

Table 1 shows the results for the Wilson coefficients at different values of the renor-
malization scale. (The coefficient C1 does not enter the B → Xsγ branching ratio and
is omitted here.) The values of C7γ and C8g depend on the sign of the mixing angle θ,
although this effect is numerically small. For comparison, the values obtained at µ = mb

in the SM (using αs(mZ) = 0.118) are C2 ' 1.12, C7γ ' −0.32 and C8g ' −0.15.
They are very close to the values found in the presence of the light SUSY particles. In
addition, there are the extra contributions proportional to the new coefficients Ci. The
second column in the table shows the running b-quark mass at the various scales. Note
that the value of mb above the gluino scale is very sensitive to the sign of θ. The result
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mb(mW ) = 2.75 GeV corresponding to positive θ appears to be favored by the DELPHI
measurement mb(mW ) = (2.67± 0.50) GeV obtained from three-jet production of heavy
quarks at LEP [16]. However, here a similar comment as in our discussion of the run-
ning of αs applies, namely that the DELPHI analysis implicitly assumes that mb runs
as predicted in the SM.

We are now ready to present our results for the B → Xsγ decay rate, including both
the SM and the new SUSY flavor-changing contributions. It is convenient to define new
coefficients

CLR
7 (µ) = C7γ(µ)−

√
2παs(mg̃)

GFmg̃

εLRsb
V ∗tsVtb

C7(µ)

mb(µ)
,

CRL
7 (µ) = −

√
2παs(mg̃)

GFmg̃

εRLsb
V ∗tsVtb

C7(µ)

mb(µ)
, (15)

and analogous coefficients CLR
8 and CRL

8 . These expressions exhibit the general fea-
tures of our model as described earlier. The SUSY contributions are enhanced relative
to the SM contributions by a large factor

√
2παs(mg̃)

GFmg̃mb
≈ 103, meaning that the ratio of

flavor-changing couplings, εABsb /(V
∗
tsVtb), must be highly suppressed so as not to spoil the

successful SM prediction for the branching ratio. The resulting leading-order expression
for the B → Xsγ decay rate is

Γ(B → Xsγ) =
G2
FαM

3
bm

2
b(mb)

32π4
|V ∗tsVtb|2

[
|CLR

7 (µb)|2 + |CRL
7 (µb)|2

]
, (16)

where µb ∼ mb is the renormalization scale. Mb is a low-scale subtracted quark mass,
which naturally enters the theoretical description of inclusive B decays once the pole
mass is eliminated so as to avoid bad higher-order perturbative behavior.

It is well known that NLO corrections have a significant impact on the B → Xsγ
decay rate in the SM, which is largely due to NLO corrections to the matrix elements
of the operators Qi in the effective weak Hamiltonian. (NLO corrections to the Wilson
coefficient C7γ have a much smaller effect.) In order to capture the bulk of these correc-
tions, we include the O(αs) contributions to the matrix elements but neglect SUSY NLO
corrections to the coefficients CLR

7 and CRL
7 . We also neglect two-loop contributions to

the matrix elements involving b̃-squark loops. This is justified because of the relatively
large mass of the b̃ squark, and because our two-loop anomalous dimension calculation
has shown that there is very little mixing of the squark operators into the dipole opera-
tors. At NLO our results become sensitive to the precise definition of the mass parameter
Mb, which we identify with the so-called Upsilon mass [17], for which we take the value
m1S
b = 4.72 ± 0.06 GeV [18]. (Up to a small nonperturbative contribution, m1S

b is one
half of the mass of the Υ(1S) resonance.) We also introduce a cutoff Emin

γ = 1
2
(1−δ)m1S

b

on the photon energy in the B-meson rest frame, which is required in the experimental
analysis of radiative B decays. We then obtain

Br(B → Xsγ)
∣∣
Eγ>Emin

γ
= τB

G2
Fα(m1S

b )3m2
b(mb)

32π4
|V ∗tsVtb|2KNLO(δ) , (17)
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Table 2: Results for the coefficients B0 and A1,2 for the SM (first row), and for
the SUSY scenarios with positive (middle portion) and negative (lower portion)
mixing angle θ, for Eγ > 2 GeV. The quoted errors refer to the variations of the
theoretical parameters within the ranges specified in the text. The renormalization
scale is varied between 2.5 and 7.5 GeV. Other input parameters are V ∗tsVtb = −0.04,
αs(mb) = 0.21 for the SUSY scenario, and αs(mb) = 0.225 for the SM.

Default ∆((m1S
b )3m2

b) ∆(mc/mb) ∆µb

BSM
0 3.44 ±0.21 ∓0.11 +0.09

−0.16

B0 2.93 ±0.18 ∓0.09 +0.06
−0.13

10−4 A1 3.60 0 ±0.05 +0.12
−0.02

10−8 A2 3.12 0 ±0.10 +0.28
−0.12

B0 3.68 ±0.23 ∓0.11 +0.04
−0.11

10−4 A1 3.19 0 ±0.04 +0.06
−0.01

10−8 A2 2.48 0 ±0.07 +0.18
−0.08

where KNLO(δ) is obtained from the formulae in [14] by obvious modifications to include
the effects of the new SUSY contributions, and by a change in some of the NLO terms due
to the introduction of the Upsilon mass in (16) [19]. The dependence of the branching
ratio on the SUSY flavor-changing couplings can be made explicit by writing

Br(B → Xsγ)
∣∣
Eγ>Emin

γ
= 10−4 B0(δ)

[
1 +A1(δ) Re(εLRsb ) +A2(δ)

(
|εLRsb |2 + |εRLsb |2

) ]
.

(18)

In Table 2, we give results for the coefficients B0 and A1,2 including the dominant theo-
retical uncertainties. Following [15], we use a running charm-quark mass in the penguin-
loop diagrams rather than the pole mass. This is justified, because the photon-energy
cut imposed in the experimental analysis prevents the intermediate charm-quark prop-
agators from being near their mass shell. Specifically, we work with the mass ratio
mc(µ)/mb(µ), where the running masses are obtained from mc(mc) = (1.25± 0.10) GeV
and mb(mb) = (4.20 ± 0.05) GeV.

In the left-hand plot in Figure 3, we confront our theoretical result for the B → Xsγ
branching ratio with the CLEO measurement Br(B → Xsγ) = (3.06±0.41±0.26) ·10−4

obtained for Eγ > 2 GeV [20]. (This result actually corresponds to the sum of B → Xsγ
and B → Xdγ decays. However, the suppression of the exclusive B → ργ decay with
respect to the B → K∗γ mode implies that the dominant contribution to the inclusive
decay must come from b → sγ transitions. In the context of our model, it follows that
the couplings εABdb must obey even tighter constraints than the εABsb .) It follows that the
maximum allowed values of the parameters εABsb are 10−4, as is already obvious from the
magnitude of the coefficients A1,2 in Table 2. However, values larger than 5 · 10−5 would
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Figure 3: Allowed regions (at 95% c.l.) for the SUSY flavor-changing parameters
obtained from the CLEO measurements of the B → Xsγ (left) and B → Xsg (right)
branching ratios, using central values for all theory input parameters. The shaded
regions correspond to the SUSY model with positive mixing angle θ, the dashed
lines refer to negative θ.

require a fine-tuning of the phase of εLRsb and are thus somewhat unnatural. Note that
the ratio shown on the vertical axis in the plot is bound to lie between 1 and −1, and in
the limit εRLsb = 0 corresponds to cos ϑLR, where ϑLR denotes the CP-violating phase of
εLRsb .

The right-hand plot in the figure shows a similar constraint arising from the inclusive
charmless decay B → Xsg. At leading order, the decay rate for this process is obtained
from (16) by the replacements α → 4

3
αs(µb) and CAB

7 → CAB
8 . The allowed region

corresponds to the CLEO upper bound of 8.2% (at 95% c.l.) for the B → Xsg branching
ratio [21]. There are, however, potentially large theoretical uncertainties in this result,
because we neglect NLO corrections to the branching ratio. We therefore refrain from
combining the two plots to reduce the allowed parameter space.

In the SM, the direct CP asymmetry in the inclusive decay B → Xsγ is very small,
below 1% in magnitude [22]. In the SUSY scenario, on the other hand, the phase of the
coupling εLRsb could lead to a large asymmetry. In the approximation where one neglects
the SUSY contributions to the CP-averaged decay rate in (16), which is justified in view
of the good agreement of the SM prediction with the data, the formulae in [22] yield the
prediction ACP ≈ −50% × 104 Im(εLRsb ), where we have neglected the small contribution
from the charm-quark loops and the yet smaller contribution from b̃-squark loops. (We
use the standard phase convention where λt = V ∗ts Vtb is real. In general, the CP asym-
metry depends on Im(εLRsb /λt).) It follows that even within the very restrictive bounds
shown in Figure 3 there can be a potentially large contribution to the CP asymmetry,
which would provide a striking manifestation of physics beyond the SM. In fact, the
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CLEO bounds −27% < ACP < +10% (at 90% c.l.) [23] imply that

−2 · 10−5 < Im(εLRsb ) < 5 · 10−5 , (19)

placing another tight constraint on the flavor-changing coupling εLRsb .

4 Conclusions

New supersymmetric contributions to b-quark production at hadron colliders can ac-
count for the long-standing discrepancy between the measured cross sections and QCD
predictions if there is a light b̃ squark with mass in the range 2–5.5 GeV, accompanied
by a somewhat heavier gluino [1]. In this Letter, we have explored the phenomenology
of rare B decays in such a scenario and have found tight bounds on the flavor-changing
parameters controlling supersymmetric contributions to b → s and b → d FCNC tran-
sitions. The most restrictive constraints arise from virtual effects of light b̃ squarks in
B → Xsγ decays. We have analysed this process by constructing a low-energy effective
Hamiltonian, in which the gluinos are integrated out, while the b̃ squarks remain as
dynamical degrees of freedom. We find that the flavor-changing couplings εRLsb and εLRsb
must be of order few times 10−5 or less. (Even tighter constraints hold for the analogous
b→ d couplings.) This implies that certain off-diagonal entries of the down-squark mass
matrix must be suppressed by a similar factor compared to the generic squark-mass
squared.

Even with such tight constraints on the couplings, this model allows for interesting
and novel New Physics effects in weak decays of B mesons and beauty baryons. As
an example, we have discussed the direct CP asymmetry in B → Xsγ decays, which
could be enhanced with respect to its Standard Model value by an order of magnitude.
Other possible effects include an enhanced B → Xsg decay rate. We have not considered
here the possibility of b̃-squark pair-production, which would be kinematically allowed
for very light squark masses. The new decay modes b → sb̃b̃∗ and b → s̄b̃b̃ would affect
the decay widths of B mesons and Λb baryons differently, and hence might explain the
anomaly of the low Λb lifetime. We will report on this interesting possibility elsewhere.

Acknowledgments: S.B. and M.N. are supported by the National Science Foundation
under Grant PHY-0098631. T.B. is supported by the Department of Energy under Grant
DE-AC03-76SF00515, and A.K. under Grant DE-FG02-84ER40153.

References

[1] E. L. Berger et al., Phys. Rev. Lett. 86, 4231 (2001) [hep-ph/0012001].

[2] M. Carena, S. Heinemeyer, C. E. Wagner and G. Weiglein, Phys. Rev. Lett. 86,
4463 (2001) [hep-ph/0008023].

[3] J. j. Cao, Z. h. Xiong and J. M. Yang, Phys. Rev. Lett. 88, 111802 (2002) [hep-
ph/0111144].

12

http://arXiv.org/abs/hep-ph/0012001
http://arXiv.org/abs/hep-ph/0008023
http://arXiv.org/abs/hep-ph/0111144
http://arXiv.org/abs/hep-ph/0111144


[4] G. C. Cho, preprint hep-ph/0204348.

[5] S. w. Baek, preprint hep-ph/0205013.

[6] V. Savinov et al. [CLEO Collaboration], Phys. Rev. D 63, 051101 (2001) [hep-
ex/0010047].

[7] A. K. Leibovich and D. Rainwater, arXiv:hep-ph/0202174.

[8] E. L. Berger and L. Clavelli, Phys. Lett. B 512 (2001) 115 [hep-ph/0105147].

[9] E. L. Berger and J. Lee, preprint hep-ph/0203092.

[10] M. Ciuchini et al., Phys. Lett. B 316, 127 (1993) [hep-ph/9307364].

[11] K. Chetyrkin, M. Misiak and M. Münz, Nucl. Phys. B 518, 473 (1998) [hep-
ph/9711266].

[12] C. Greub, T. Hurth and D. Wyler, Phys. Rev. D 54, 3350 (1996) [hep-ph/9603404].

[13] K. Chetyrkin, M. Misiak and M. Münz, Phys. Lett. B 400, 206 (1997) [Erratum:
ibid. B 425, 414 (1998)] [hep-ph/9612313].

[14] A. L. Kagan and M. Neubert, Eur. Phys. J. C 7, 5 (1999) [hep-ph/9805303].

[15] P. Gambino and M. Misiak, Nucl. Phys. B 611, 338 (2001) [hep-ph/0104034].

[16] P. Abreu et al. [DELPHI Collaboration], Phys. Lett. B 418, 430 (1998).

[17] A. H. Hoang, Z. Ligeti and A. V. Manohar, Phys. Rev. Lett. 82, 277 (1999) [hep-
ph/9809423].

[18] M. Neubert and T. Becher, arXiv:hep-ph/0105217.

[19] Specifically, the expression for the quantity k77(δ, µb) in eq. (13) of [14] must be
replaced by

k77(δ, µb) = S(δ)

{
1 +

αs(µb)

2π

(
r7 + γ77 ln

mb

µb

)
+

2

3
α2
s(µb) +

λ1 − 9λ2

2(m1S
b )2

}
+
αs(µb)

π
f77(δ) ,

where −λ1 ≈ (0.25 ± 0.15) GeV2 and λ2 ≈ 0.12 GeV2 are hadronic parameters.

[20] S. Chen et al. [CLEO Collaboration], Phys. Rev. Lett. 87, 251807 (2001) [hep-
ex/0108032].

[21] T. E. Coan et al. [CLEO Collaboration], Phys. Rev. Lett. 80, 1150 (1998) [hep-
ex/9710028].

[22] A. L. Kagan and M. Neubert, Phys. Rev. D 58, 094012 (1998) [hep-ph/9803368].

[23] T. E. Coan et al. [CLEO Collaboration], Phys. Rev. Lett. 86, 5661 (2001) [hep-
ex/0010075].

13

http://arXiv.org/abs/hep-ph/0204348
http://arXiv.org/abs/hep-ph/0205013
http://arXiv.org/abs/hep-ex/0010047
http://arXiv.org/abs/hep-ex/0010047
http://arXiv.org/abs/hep-ph/0202174
http://arXiv.org/abs/hep-ph/0105147
http://arXiv.org/abs/hep-ph/0203092
http://arXiv.org/abs/hep-ph/9307364
http://arXiv.org/abs/hep-ph/9711266
http://arXiv.org/abs/hep-ph/9711266
http://arXiv.org/abs/hep-ph/9603404
http://arXiv.org/abs/hep-ph/9612313
http://arXiv.org/abs/hep-ph/9805303
http://arXiv.org/abs/hep-ph/0104034
http://arXiv.org/abs/hep-ph/9809423
http://arXiv.org/abs/hep-ph/9809423
http://arXiv.org/abs/hep-ph/0105217
http://arXiv.org/abs/hep-ex/0108032
http://arXiv.org/abs/hep-ex/0108032
http://arXiv.org/abs/hep-ex/9710028
http://arXiv.org/abs/hep-ex/9710028
http://arXiv.org/abs/hep-ph/9803368
http://arXiv.org/abs/hep-ex/0010075
http://arXiv.org/abs/hep-ex/0010075

