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Abstract 

A scheme is proposed to exchange the transverse and longitudinal 
emittances of an electron bunch. A general analysis is presented and a 
specific beamline is used as an example where the emittance exchange is 
achieved by placing a transverse deflecting mode radio-frequency cavity in 
a magnetic chicane. In addition to reducing the transverse emittance, the 
bunch length is also simultaneously compressed. The scheme has the 
potential to introduce an added flexibility to the control of electron beams 
and to provide some contingency for the achievement of emittance and 
peak-current goals in free-electron lasers. 
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1 Introduction 

The main challenge of the Linac Coherent Light Source [1] and other free-electron lasers (FEL) 

that are currently planned or under design, remains the achievement of a bright electron beam in 

the transverse plane. Although the FEL also constrains the longitudinal emittance, it appears to be 

more easily obtainable than that of the transverse plane. In fact, the predictions are that the 

incoherent momentum spread originating from the photo-injector is too small to effectively damp 

the micro-bunching instability induced by coherent synchrotron radiation (CSR) [2,3,4]. A 

motivation therefore exists to reduce the transverse emittance and increase the longitudinal, since 

this may lead to SASE (self-amplified spontaneous emission) lasing in a shorter undulator length 

and simultaneously less CSR micro-bunching in the compressor. 

We show that, under certain conditions, a transfer of emittance from the transverse to the 

longitudinal plane (or the reverse) is possible and not impractical. Our implementation uses a radio-

frequency cavity in a dispersive region of a four dipole-magnet chicane. The cavity operates in the 

dipole mode, having a longitudinal electric field with gradient such that its strength varies linearly 

with transverse distance from the axis. A time dependent magnetic deflecting field is also present. 

A complete emittance analysis is presented and a specific example is studied. 

2 The Dipole-Mode Cavity 

Occasionally, an application arises of an RF cavity operating in a dipole mode, where the 

longitudinal electric field varies linearly with transverse distance from the axis. The earliest 

mention of such cavities, to the authors’ knowledge, appeared in Ref. [5]. The hope of using such 

cavities to change the damping of the three modes of oscillation of particles in an electron circular 

accelerator was dashed by Robinson’s famous paper [6] that shows that the partition numbers 

cannot be changed with an RF field. A discussion of the physical mechanism of this general 

principle as it applies to a dipole mode cavity was presented in Ref. [7]. Cylindrical cavities 

operating in the TM210 mode (thus with a quadratic dependence of the longitudinal electric field on 

the distance from the axis) to couple the longitudinal and transverse motion to enhance laser 

cooling of ions in a storage ring [8], or to establish a correlation between betatron amplitude and 

momentum deviation to condition an FEL electron beam [9], have also been proposed. For the 

system under consideration we use a rectangular cavity having a longitudinal electric field which 

varies linearly with transverse distance, x, from the axis, as shown in Fig. 1. 

In the neighborhood of the axis (x << a) we have an accelerating field for an electron crossing 

the cavity at time t, 

 ( )0 cos , 0z x y
x

E E t E E
a

ω≈ = = , (1) 

where z is the longitudinal axis of the reference trajectory, x the horizontal axis, y the vertical, ω the 

frequency of the cavity oscillations, and a is a constant characteristic of the cavity dimensions. The 
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peak field is E0 = V0/l, where V0 is the peak RF voltage and l the cavity length. The vertical motion 

is neglected in this analysis, since, to first order, no force of the cavity acts in the vertical plane. 

The associated magnetic field is obtained from Maxwell’s equation: 

 ( )0, sin , 0y x z
E

B t B B
t a

ω
ω

∂∇× = − ≈ = =
∂
B

E . (2) 

 

Figure 1. Electric field (top-left) in a dipole-mode cavity at synchronous time (t = 0), and 
the magnetic field (top-right) one-quarter oscillation later. Longitudinal electric 
and vertical magnetic fields around t = 0 (bottom). 

The small relative energy change, δ (≡ ∆γ /γ << 1), of an electron traversing the cavity at a 

distance x from the axis is 

 ( )0 cos
eV x

t
E a

δ ω≈ , (3) 

where E is the nominal electron energy. We phase the cavity such that the center of the bunch (the 

reference particle) passes through the cavity at time t = 0, when the electric field gradient is at its 

maximum and the magnetic field passes through zero. We consider a bunch length that is much 

smaller than the RF wavelength (i.e., |ω t| << 1). Thus, to first order, 

 0 0,
eV eVx

kx k
E a aE

δ ≈ = ≡ . (4) 

The horizontal deflection angle due to the vertical magnetic field of the cavity is 

 0eV ct
x kct kz

E a
′∆ ≈ = ≈ , (5) 

and z is the longitudinal distance from the center of this ultra-relativistic bunch. 
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3 Emittance Exchange 

We now analyze the emittance exchange concept and return to the cavity implementation later. 

The following is a general 4-dimensional linear beam transport analysis [10] in the x-z plane (or x-y 

plane). The initial uncoupled 4×4 beam covariance matrix, �0, can be written as [11] 

 

0 0

0 0

0 0

0 0

0

0 0

0 0

0 0

0 0

x x x x

x x x x x

zz z z z

z z z z

ε β ε α
ε α ε γ

ε β ε α
ε α ε γ

− 
 
−   

= =   −   
 − 

�

0
, (6) 

where αx,z, βx,z, and γx,z (≡ {1+αx,z
2}/βx,z) are the beam envelope functions, and εx0

 and εz0
 are the 

initial uncoupled beam emittances in the horizontal and longitudinal planes. The rms beam sizes 

(horizontal and longitudinal) are related to the respective rms emittances by the relations 

 
0 0

,  x x x z z zσ ε β σ ε β= = . (7) 

The bunch ‘chirp’, or linear energy slope along the bunch length, is related to the longitudinal 

parameters by 

  
2

z

zz

zδ α
βσ

= − , (8) 

with the total rms relative energy spread, σδ, given by 

 
0

2 22(1 )
u cz z zδ δ δσ ε α β σ σ= + = + . (9) 

Here σδu
 and σδc

 are the time-uncorrelated and time-correlated relative energy spread components, 

respectively, which add in quadrature. The normalized longitudinal emittance is 

 2 2 2
z z zδγε γ σ σ δ= − , (10) 

with γ (= E/mc2) the beam energy in units of electron rest mass. In the simple case, with no time-

correlated energy spread (i.e., 〈zδ 〉 = 0), the longitudinal emittance is 

 ( ) 2
0 E

z z z z
mc

δ
σγε α γσ σ σ= = = , (11) 

where σE is the absolute rms energy spread. Now propagate the beam through a 4×4 beamline 

transfer matrix, R, starting from an initial beam �0, with RT as the transpose of the matrix R. 

 0
T= � �  (12) 

Since R is symplectic and therefore det(R) ≡ |R| = 1, the 4-D emittance (= εx0
εz0

) of �0 is 

unchanged by R. The 4×4 matrix R is constructed from four 2×2 blocks, A, B, C, and D [12], as 
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=  
 

A B
R

C D
, (13) 

with 

 11 12 11 12

21 22 21 22

, , .
a a b b

etc
a a b b

   
= =   
   

A B , (14) 

and it follows from (12) that the new beam, after beamline R, is 

 
T T T T

x z x z

T T T T
x z x z

 + +
=   + + 

A � � � � � �

C � � � � � �
, (15) 

with �x and �z the 2×2 block matrices of the x and z planes as shown in (6). The squares of the 

projected rms x and z emittances are the determinants of the 2×2 on-diagonal blocks. 

 

2

2

T T
x x z

T T
z x z

ε

ε

= +

= +

A � �

C � � �
 (16) 

We recall that the determinant of the sum of 2×2 matrices can be expressed using the trace (tr) as 

 { }atr+ = + +X Y X Y X Y , (17) 

where Xa is the adjoint of X (used here to avoid inverting A, B, C, or D which may be singular). 

  1 20 1
, 0, or , with ,

1 0
a a T− −  
= ≠ = ≡ = − − 

1X X X X X J X J J J I . (18) 

Applying the above matrix property, (16) becomes 

 
( ){ }
( ){ }

0 0

0 0

2 22 2 2

2 22 2 2

,

,

aT T
x x z x z

aT T
z x z x z

tr

tr

ε ε ε

ε ε ε

= + +

= + +

A B A � � �

C D C � � �

 (19) 

where |A|, |B|, |C|, and |D|, are the determinants of the 2×2 blocks of the net transfer matrix R. 

Using an alternate form for the initial uncoupled beam, �x and �z, 

 
0

0

01
, ,

1

01
, ,

1

xT
x x x x x

xx

zT
z z z z z

zz

β
ε

αβ
β

ε
αβ

 
= ≡  − 

 
= ≡  − 

� � �

� � �

 (20) 

and the property of the trace: tr{XYZ} =  tr{YZX} =  tr{ZXY}, we obtain, from (19) 
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{ }
{ }

0 0 0 0

0 0 0 0

2 22 2 2

2 22 2 2

,

,

T
x x z x z

T
z x z x z

tr

tr

ε ε ε ε ε

ε ε ε ε ε

= + +

= + +

A B UU

C D VV
 (21) 

where 

 
1

1

,

.

a
x z

a
x z

−

−

≡

≡

U Q A BQ

V Q C DQ
 (22) 

We now use the symplectic condition with S [13] as the 4×4 form of J, 

 T T  
= = =  

 

J 0
R SR RSR S

0 J
, (23) 

which gives a relation between the submatrices 

 
1,

1,

T T T T

T T T T

+ = + =

+ = + =

A JA C JC AJA BJB

B JB D JD CJC DJD
 (24) 

and find the following relations between the sub-matrix determinants 

 1, ,+ = = =A C A D B C . (25) 

The U and V matrices of (22) are shown to be related by using 

 ( )1 1 1a T
x z x z
− − −= =V Q C DQ Q J C J DQ , (26) 

and from the off-diagonal 2×2 block of (23), CTJD = −AT JB, so that 

 ( )1 1 1 1 1( )T T a
x z x z x z
− − − − −= = − = − = −V Q J C JD Q Q J A JB Q Q A BQ U , (27) 

and therefore 

 { } { }T Ttr tr=UU VV , (28) 

which is simply the sum of the squares of the normalized coupling block of the transfer matrix, and 

is positive. 

 { } 2 2 2 2 2
11 12 21 22 0Ttr U U U U λ= + + + ≡ ≥UU  (29) 

The emittances at the exit of the beamline are now related to the emittances at the start of the 

beamline (subscript “0”) by 
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( )

( )
0 0 0 0

0 0 0 0

222 2 2 2

2 22 2 2 2

1 ,

1 .

x x z x z

z x z x z

ε ε ε ε ε λ

ε ε ε ε ε λ

= + − +

= − + +

A A

A A
 (30) 

From (30), if εx0
 = εz0

, then εx = εz.  That is, equal initial uncoupled emittances will always remain 

equal through a symplectic map. Additionally, if λ2 is insignificant, which it can be, then setting 

|A| = 0 will produce a complete x- to z-plane emittance exchange. Note that λ2 ≠ 0 unless all Aij = 0, 

or the trivial case of no coupling at all, where all Bij = Cij = 0. 

4 An Emittance Exchanger Beamline 

We then apply this derivation to the chicane and dipole-mode cavity system shown in Fig. 2. A 

magnetic chicane sets up a dispersive region at its center, where the cavity is located. The chicane, 

of full length L, is made of four bending magnets and no quadrupole magnets. 

R1 R2

Rk

L  

Figure 2. Schematic diagram of the chicane and transverse cavity. 

From (4) and (5), the transfer matrix of the ‘thin-lens’ cavity is 

 

1 0 0 0

0 1 0

0 0 1 0

0 0 1

k

k

k

 
 
 =
 
 
  

R , (31) 

which is similar to a thin-lens skew quadrupole transfer matrix, but in x, x′, z, δ space, rather than x, 

x′, y, y′ space. (The effects of a thick-lens are discussed in section 6.) The transfer matrix across the 

entire chicane is 

 2 1k=R R R R , (32) 

where R1 and R2 are the transfer matrices of the first and second section of the chicane, 

respectively (see Fig. 2), and ξ is the momentum compaction (ξ ≡ R56) of the full chicane (ξ > 0 for 

chosen coordinates with bunch head at z > 0). 
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 1 2

1 / 2 0 1 / 2 0

0 1 0 0 0 1 0 0
,

0 1 / 2 0 1 / 2

0 0 0 1 0 0 0 1

L Lη η

η ξ η ξ

−   
   
   = =
   −
   
      

R R  (33) 

The matrix of the full chicane and cavity system is 

 

2

2

1 / 2
4

0 1 / 2

/ 2 1
4

/ 2 0 1

L
k L kL k

k k k

L
k k k

k kL k

ξη η

η ξ
ξξ η η ξ

η

  − −    
 +

=  
  − −    

+  

R , (34) 

 2 2 2 21 ,k kη η= = − = =A D B C  (35) 

The expression for λ2 has four terms and is quite long and awkward, even for this system. 

 1 1a
x z
− −=U Q A BQ  (36) 

 { }2 4 termsTtrλ = ⇒UU  

A simpler form of λ2 is easily written by assuming ηk = 1 (i.e., |A| = 0). 

 
( )( )

0 0

2 2 2 2 2
2

2

4 1 1 4x z x

x zx zk
δ

α α σ σ ηλ
ε εβ β

′
+ +

= =  (37) 

Thus the emittances at the end of the chicane can be exchanged up to a cross term which is related 

to the rms divergence, σx′, and energy spread, σδ, of the initial beam, or 

 

( )( )

( )( )

0

0 0 0

0

0

0 0 0

0

2 2
2 2 2 2

2

2 2
2 2 2 2

2

4 1 1
1 4 ,

4 1 1
1 4 .

x z x
x z z x z

zx z

x z z
z x x x x

xx z

k

k

δ

δ

α α ε
ε ε ε σ σ η ε

εβ β

α α ε
ε ε ε σ σ η ε

εβ β

′

′

+ +  
= + = + >   

+ +  
= + = + >   

 (38) 

It should be recalled that the parameters, βx,z, αx,z, εx0,z0
, σx′, and σδ, all describe the beam at 

entrance to the chicane.  As demonstrated in the example below, the cross-term coefficient, λ2, can 

be made insignificantly small for reasonable beam parameters allowing almost complete emittance 

exchange. 
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5 Numerical Example 

For an example, we take for the four-dipole chicane shown in Fig. 2 with an X-band RF 

deflecting cavity (ω /2π ≈ 11.4 GHz. a ≈ 1.3 cm) at its center. The beamline and beam parameters 

at the start of the chicane are listed in Table 1.  Here we use εx0
 > εz0

, which is a required condition 

for the reduction of the transverse emittance, and one which may not be trivially realized. With 

these parameters used in (38), we have 

 0 0

0 0

5 m 1 m,1 0.014

1 m 5 m,1 0.003

x x z

z z x

γε µ γε γε µ

γε µ γε γε µ

= → = ≈+

= → = ≈+
 (39) 

and have completely exchanged the emittance levels. These results are verified with the computer 

tracking code TURTLE [14] up to 2nd-order. The tracking output is shown in Fig. 3. 

Table 1.  Beam and system parameters as an example for emittance exchange. 

Parameter symbol value unit 

Initial horizontal normalized emittance γεx0 5 µm 

Initial longitudinal normalized emittance γεz0 1 µm 

Initial horizontal beta-function βx 2.6 m 

Initial longitudinal beta-function βz 2.9 m 

Initial horizontal alpha-function αx 0  

Initial longitudinal alpha-function αz 0  

Initial rms bunch length σz 100 µm 

Initial rms relative energy spread σδ 3.4 10−5 

Electron energy E 150 MeV 

Momentum compaction of chicane (R56) ξ 17.7 mm 

Full length of chicane L 2.6 m 

Bend angle of each chicane dipole |θ| 5.2 deg 

Horizontal dispersion in center of chicane η 100 mm 

Transverse cavity strength parameter k 10 m−1 

Peak RF voltage on crest phase V0 20 MV 

Cavity dimension a 1.3 cm 

Cavity RF frequency ω /2π 11.4 GHz 
 

The system described here, with k = 1/η, leaves the x and z planes insignificantly correlated (i.e., 

〈xz〉 ≈ 0,  〈xδ 〉 ≈ 0, 〈x′z〉 ≈ 0, 〈x′δ 〉 ≈ 0). Note that the bunch length is also compressed by a factor of 

five at chicane exit (σz = 100 µm → 19 µm), which is a very desirable feature for an FEL requiring 

a high peak current. The final bunch length, σzf
, and energy spread, σδf

,  for k = 1/η, and 

αx = αz = 0 are 
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0

22
2 2 2 2

2

1 1

4 4f

x
z x

x

L
k

k
δ

ξ β ξσ ε ξ σ
β

  = + − +     
, (40) 

 
0

2
2 2 24

4f x x
x

L
kδ δσ ε β σ

β
 

= + + 
  

. (41) 

The energy spread has also increased to 0.24%, a level that is sensitive to the choice of η (= 1/k) 

and also βx at chicane entrance. In addition, the final βx and αx functions are greatly magnified by 

the transverse deflecting field (in this case: βx = 2.6 m → 520 m, αx = 0 → −400). 

 

Figure 3. Initial (top) and final (bottom) phase space tracking plots. The horizontal and 
longitudinal emittances are completely exchanged, as predicted by (38). 

In this example the initial energy-time correlation, αz, was set to zero. In fact a reasonable 

tolerance on this condition is acceptable. If the initial energy spread is ~3-times larger due to a 

linear time-correlation (αz ≈ 2.6), the final horizontal emittance is increased by ~10% in this case, 

as given by (38). A non-linear initial energy-time correlation, such as induced by space-charge 

forces or longitudinal wakefields prior to the chicane, will generate a non-linear position-angle 
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correlation in transverse phase space after the chicane. The longitudinal and transverse emittances, 

εx0
 and εz0

, should therefore be considered as projected emittances, which may be increased by non-

linear correlations with their conjugate variables. This presents a practical limitation for the 

exchange process, where the initial beam may need to be cleaned of aberrations prior to emittance 

exchange. 

Finally, the exchanger beamline has some strange properties, which may be surprising on first 

observation. For example, betatron centroid oscillations initiated prior to the chicane will nearly 

disappear after the chicane (when scaled to local beam size), instead generating energy and timing 

shifts to the electron bunch (〈x0〉 = 1⋅σx  →  〈z〉 ≈ 1⋅σz). On the other hand, bunch arrival time 

variations upstream of the chicane will not change the bunch arrival time after the chicane, instead 

generating betatron oscillations in the horizontal plane. This may be an advantage over standard 

compressors since it effectively absorbs electron gun-timing variations and keeps them from 

becoming final bunch length and final energy jitter. This behavior is evident in (34) with ηk = 1. 

6 Thick-Lens and Second-Order Effects 

Second-order optical aberrations can become significant, due mostly to the second-order 

dispersion from cavity to end of chicane, if the final energy spread becomes too large. This can be 

controlled by decreasing the initial beta function, βx, or increasing the chicane dispersion, η (which 

reduces the cavity voltage). The relative emittance increase above the linear calculation of (38), 

which is due to second-order dispersion, is approximately given by 

 02

0

2

2
1 2

xx z x

x z

εε σ β
ε εη

 
≈ +    

, (42) 

where σz and βx are the initial beam parameters at chicane entrance. In the above case, second-

order aberrations are insignificant, but a choice of η = 50 mm (rather than 100 mm) and βx = 10 m 

(rather than 2.6 m) causes a factor of three final horizontal emittance increase above the linear 

expectations of (38), and a final rms energy spread of 0.8% (rather than 0.2%). This has been 

verified using TURTLE tracking. The values for βx and η should be chosen carefully with (42) as a 

guide. 

The emittance exchanger beamline described above uses a thin-lens model of a transverse 

deflecting RF cavity to demonstrate the concept.  Of course, the cavity will have some length, 

especially to produce many mega-volts. A modification of (31), (34), (37), and (38) is necessary to 

include this. The matrix of the thick-lens transverse cavity is 

 

2

1 2 0

0 1 0

0 0 1 0

2 6 1

k

l kl

k

k kl k l

 
 
 =  
 
  

R , (43) 
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where l is the cavity length.  Using this in (32), and continuing with the case ηk = 1, produces a 

modified R with A and B blocks which are then used in (36) to calculate λ2. 

 
( ) ( ) ( ) ( ){ }22 2 2 2 2 2 4 2 2 2

2
2

1 576 48 4 24 24 4

144

x z z z z

x z

k l k l k l k l k l

k

α ξ α β ξ α ξ β ξ
λ

β β

+ + − + + + + +
=  (44) 

With l = 0 this reduces to (37), but otherwise can be a much more significant limitation in the 

emittance exchange. If this is now minimized with respect to αz, it becomes 

 
( )( )22 2

2
2

4 1 1 24
min

x

x z

k l

k

α ξ
λ

β β

+ +
= , (45) 

at a value of αz (related by (8) to the initial energy-time chirp in the bunch), which is given by 

 
2

2

1

12 1 24min

z
z

k l

k l

βα
ξ

 
=   + 

. (46) 

The expression for λ2 in (45) will reduce to that of (37) with αz = 0 if k2lξ/24 << 1.  For an X-band 

cavity with ~50 MV/m, the level of 20 MV is achieved with l = 0.4 m.  From Table 1, the values of 

k and ξ give k2lξ/24 ≈ 0.03.  Therefore, the emittance exchanger for a thick-lens works almost 

exactly like the thin-lens as long as αz (i.e., the incoming energy chirp) is given by (46) (i.e., 

αz ≈ 9.4 in this case). From (9), this means an initial correlated energy spread of 0.03%. 

Particle tracking is repeated in Fig. 4 with a thick-lens cavity (l = 0.4 m) and αz set according to 

(46). The initial energy chirp is evident in the upper right plot. The emittances are again completely 

exchanged in this more general, and more realistic case. The emittance exchange relations of (38) 

are now modified for the thick-lens case (l ≠ 0), and are given (with ηk = 1) by, 

 

( )( )

( )( )

0

0 0

0

0

0 0

0

22 2

2

22 2

2

4 1 1 24
1 ,

4 1 1 24
1 .

x x
x z z

zx z

x z
z x x

xx z

k l

k

k l

k

α ξ ε
ε ε ε

εβ β

α ξ ε
ε ε ε

εβ β

+ +  
= + >   

+ +  
= + >   

 (47) 

In (47), the initial energy chirp, αz, is not a free parameter and must follow (46). Otherwise (44) 

must be substituted into (30) for the more general case. Note in (30) that if ηk ≠ 1 and k ≠ 0, both 

‘projected’ emittances can simultaneously increase to very large levels, both much larger than the 

largest initial emittance. This is because the beams become highly coupled in this case and the 

single-plane projected emittances do not reflect the intrinsic beam emittances, but are simply the 

quantities measured in those particular planes. The full 4D phase space volume is, of course, 

preserved since always |R| = 1. 
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Figure 4. Initial (top) and final (bottom) phase space tracking plots with thick-lens cavity 
and αz set according to (46). The emittances are still completely exchanged. 

7 Applications 

We have shown that, under appropriate conditions, it is possible to transfer the transverse 

emittance into the longitudinal plane, and the reverse. In a practical design, two systems might be 

used, one chicane-cavity system to reduce the horizontal emittance, and the other might be a 

similar concept, but using skew quadrupoles rather than the chicane-cavity system, to produce 

equal x and y emittances by exchanging some of the larger εy into the smaller εx. Two chicane-

cavity systems, the second rotated by 90°, will not work because the first one increases the z-

emittance above the transverse goal, and therefore inhibits the next y-emittance exchange. 

The advantages of the emittance transfer scheme proposed here are a reduced dependence on the 

photoinjector to meet the transverse emittance goals, thus adding a considerable safety margin to 

the design. The chicane also compresses the bunch by acting on the amplified betatron oscillations 

of the RF-cavity, thereby adding another useful function to the scheme. The compression takes 

place entirely in the last bend. Coherent synchrotron radiation or longitudinal wakefields in the first 

two bends may present a severe limitation if the energy spread is increased significantly. Vacuum 
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chamber shielding or low charge levels may be necessary depending on bend magnet and beam 

parameters. An additional bonus is that the reduction of the transverse emittance is accompanied by 

an increase of the local energy spread, a desirable requisite for the control of the CSR micro-

bunching instability. Finally, the system allows a degree of control over bunch length, energy 

spread, and emittance and may add to the flexibility in manipulating electron beam parameters. 
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