
Work supported by Department of Energy contract DE–AC03–76SF00515.

Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309

June 2004
SLAC-PUB-9224

Revised

On Unitary Evolution of a Massless
Scalar Field in a Schwarzschild

Background: Hawking Radiation and
the Information Paradox

Kirill Melnikov and Marvin Weinstein



SLAC-PUB-9224

On The Evolution of a Massless Scalar Field In A Schwarzschild

Background: A New Look At Hawking Radiation and the

Information Paradox

Kirill Melnikov and Marvin Weinstein

Stanford Linear Accelerator Center

Stanford University, Stanford, CA 94309

E-mail: melnikov@slac.stanford.edu,

niv@slac.stanford.edu

1



Abstract

We exhibit an explicit foliation of Schwarzschild space-time by spacelike hypersurfaces which

extend from Schwarzschild r = 0 to r = ∞. This allows us to compute the values of a massless

scalar field for all space-time points which lie in the future of the surface on which we initially

quantize the theory. This is to be contrasted with approaches which start at past null infinity and

propagate to future null infinity. One of its virtues is that this method allows us to discuss both

asymptotic Hawking radiation and what is happening at finite distances from the black hole.

In order to explain the techniques we use we begin by discussing variants of the flat-space moving

mirror[9] problem. Then we discuss the canonical quantization of the massless scalar field theory

and the geometric optics approximation which we use to solve the Heisenberg equations of motion

in the black hole background. Using the example of an infalling mirror, an analogue of the moving

mirror problem, we show that, although our spacelike slices extend to r = 0, we can avoid discussing

an initial state which extends through the horizon. Furthermore, we show that in the same way

we avoid having to deal with the singularity at r = 0 when we first quantize the system. This

discussion naturally leads to a suggestion of how to handle the question of what is happening when

the mirror hits the singularity. In the last section of the paper we discuss a discretization of the

computation which behaves in the manner we suggest and yet exhibits Hawking radiation[5]. This

formulation of the problem allows us to discuss all the issues in an explicitly unitary setting. The

resulting picture raises some interesting questions about the information paradox.

PACS numbers: 04.70-s,04.70.Dy,11.10.Ef
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I. INTRODUCTION

Hawking’s 1974 paper [1] triggered great interest in both the existence of the radiation

which bears his name and speculations as to what his result implied for the validity of

quantum field theory in a black hole background. Subsequent calculations[4–6] showed

that the phenomenon was robust and supported the view that the radiation appeared to be

completely thermal. Combining these results with speculations as to what happens when the

black hole evaporates led Hawking and others to argue that the behavior of this system must

be inconsistent with the unitary time evolution of the underlying field theory, since it starts

out in a pure state and evolves into a thermal ensemble at a temperature T = 1/(8πGM).

A related issue, the so-called information paradox , arose after Bekenstein [7] argued that

a black hole of mass M has an entropy proportional to its area. Here, the main question is

“What happens to information which has already crossed the horizon when the black hole

evaporates?”.

These questions led to suggestions that something goes wrong with quantum field theory,

even for a large semi-classical black holes, and that a careful study of questions related to

these aspects of black hole physics would point the way to the theory which must replace

it. Intrigued by this idea and convinced that at least some of these issues would be easier

to analyze if we could canonically quantize the field theory in the background of a large

Schwarzschild black hole, we decided to do just that. Our aim was to find a way of dis-

cussing the physics seen by an observer, at a finite distance from the black hole, who makes

observations over large, but finite, time intervals. A novel feature of our approach is that we

discuss what is measured by such an observer, assuming that the initial state of the quantum

field is specified on a spacelike hypersurface, extending from r = 0 to r = ∞, located a finite

time in his past. This is different from most approaches which discuss physics at past and

future null-infinity. This paper is a comprehensive treatment of work sketchily presented

in[8].

II. OVERVIEW

To exhibit the equivalence of our method to other approaches we first apply it to variants

of the moving mirror problem[9]. We then proceed to discuss the massless scalar field theory
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in the presence of a Schwarzschild black hole. The comparison is helpful for several reasons.

First, it emphasizes the similarity in the physics underlying both the moving mirror and

Schwarzschild black hole. Second, a simple variant of the initial Schwarzschild problem

shows how to set up a well defined initial quantum state for the field in the presence of a

horizon, despite the fact that our quantization surface extends from r = 0 to r = ∞. Third,

the same variant allows us to quantize the field theory without having to deal with the

singularity at r = 0. (The existence of this singularity will become an issue at a later time

and, loosely, after that time, a growing portion of the the space-like singularity at r = 0 has

to be included when defining the Hamiltonian.) We then exploit a different variant of this

problem to raise a question concerning the usual interpretation of black hole entropy.

Since in our method we compute what an observer sees by solving the Heisenberg equa-

tions of motion (or field-equations) in terms of fields defined on the initial surface of quanti-

zation, the issue of whether the automorphism of the fields is generated by a time dependent

unitary operator can be finessed for much of what we say. For this reason we aren’t forced

to address the issues raised by Torre and Varadarajan[2, 3]. Nevertheless, by choosing to

formulate everything in Hamiltonian terms and discussing what is happening near r = 0

we are clearly interested in pursuing this issue. While we do not have a formal proof that

formulating the continuum problem in Lemaitre coordinates, as we do, leads to unitary

evolution of the system, we believe that we can argue that all of the same results can be

obtained for a system for which unitary evolution is obvious. To show this we conclude

with a study of a discretized version of the problem in Lemaitre coordinates which leads

to Hawking radiation[5], but for which the issue of inequivalent representations of the com-

mutation relations for the scalar field theory doesn’t arise. In this way of doing things the

background metric becomes a set of time dependent coefficients for a system of coupled

harmonic oscillators. We use this discrete version of the theory to study the behavior of

the system near the singularity. Explicit diagonalization of a finite volume version of this

system shows that the Hamiltonian is definitely time-dependent and suggests an interesting

quantum effect which mixes states which live near r = 0 with those which extend outside

the horizon.
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III. OUTLINE

The next section begins with a discussion of the coordinate systems we use to carry out the

quantization (Painlevé and Lemaitre coordinates) and then cavalierly defines a quantization

procedure on an initial spacelike surface which goes from Schwarzschild r = 0 to r = ∞.

Because we wish to focus on setting up the formalism for solving the Heisenberg equations

of motion, we initially finesse the fact that our quantization surface intersects the singularity

at r = 0. We return to this important point in a later section.

With the general formalism behind us we turn to a discussion of the moving mirror. We

do this both to establish our methods in a simpler setting and to remind the reader that

a manifestly non-singular quantum mechanics problem with a time-dependent Hamiltonian

and unitary time evolution can produce, what appears to some observers, purely thermal

outgoing radiation. Although our discussion will cover well worn ground, the technique

we use to derive this result differs somewhat from the approach presented in Ref. [9]. In

particular, we will focus on a simple configuration space solution of the field equations,

relating all measurements back to the initial surface on which we quantized the theory (i.e.,

at time λ = 0). This allows us to get a better handle on the physical assumptions being

made when we discuss the initial state. As we implied earlier the discussion in SectionVII

parallels the discussion of the same field theory in a black hole background.

After setting up the moving mirror problem we discuss what an Unruh thermometer

would measure at late times, showing that the process of adiabatically turning on and then

turning off such a device leads to a measurement of a non-vanishing temperature. Proceeding

in the same vein we give a detailed derivation of the energy flux passing through a fixed

position in space and show that it appears to be thermal. Again, we do this to emphasize the

fact that a perfectly unitary quantum system can exhibit some apparently peculiar behavior

if the Hamiltonian is time dependent. Moreover, this computation is technically similar

to the computation one has to do for the black hole case. The most important result, for

both cases, is that although the energy density of the outgoing radiation is divergent and

therefore ill defined, the flux computation is free of divergences and unique.

These arguments are followed by Section X, where we attempt to match our approach to

the Bogoliubov transformation technique, often used to discuss this physics. Here we show

that, while one can establish such a connection, matching the Bogoliubov approach onto a
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Hamiltonian formalism that explicitly works between finite times is somewhat unnatural.

Finally, we conclude our excursion into theories in flat space with a variant of the moving

mirror problem where there is both a moving and a fixed mirror. This problem is interesting

because it exhibits a peculiar feature of the late time problem; namely, that at late times,

the fields over most of space depend only upon degrees of freedom which, on the original

surface of quantization, are localized within an exponentially small region surrounding a

single point. This strange behavior is really just a reflection of the causal structure of the

problem. It is a feature of the Schwarzschild problem as well and will play a role in our

discussion of Bekenstein entropy.

With our foray into non-gravitational physics behind us, we turn our attention to the

case of the Schwarzschild black hole. A brief statement of what we mean by the geometric

optics approximation to the field equations is followed by a recapitulation of the Unruh

thermometer and energy flux computations for the black hole. Once we have shown that

our approach reproduces the well known results, we turn to things which can be better

discussed in this framework.

The first benefit which follows from discussing the black hole problem between surfaces

separated by finite times is that we can discuss a variant of the problem of Hawking radiation

which provides a rationale for picking a particular vacuum state. For this purpose we consider

the problem of an infalling mirror, i.e., a version of the black hole problem in which, up to a

Lemâıtre time λ0 the black hole is surrounded by a reflecting sphere of large, fixed radius R0.

Then, at time λ0, we let this mirror collapse into the black hole along a Lemâıtre timeline.

(By a reflecting sphere we mean that we assume that the field always vanishes on and inside

the spherical surface.) As we stated earlier, a virtue of this formulation of the problem is

that by quantizing the theory in this way we totally avoid discussing the singularity at r = 0

until the time that the collapsing mirror arrives at that point. Moreover, at least if R0 is

chosen large enough, the field is in a region of vanishingly small gravitational effects and

so we can argue that it is sensible to assume it starts out in the free-field groundstate. We

then show how, in a manner very reminiscent of calculations done for a self-assembling black

hole, the Hawking radiation forms as the mirror approaches and crosses the horizon.

Another problem which becomes more tractable because we work between finite times

is the so-called back reaction problem. The back reaction problem is equivalent to the

observation that the eternal Schwarzschild background is not consistent with the addition

6



of the scalar field theory, since the energy momentum tensor we compute for the scalar field

has a uniquely defined non-vanishing flux term and the Einstein tensor for the Schwarzschild

solution vanishes. Since we can discuss this issue for large black holes and finite times, during

which the mass of the hole does not change much, we argue it is possible to ask and solve

the question of what a truly self-consistent problem would look like. We emphasize that this

is possible because we avoid the issue of what happens at infinite times in the future when

the evaporation process becomes rapid and runs to completion.

To discuss the question of black hole entropy we study a variant of the black hole problem

in which we place a large reflecting surface around the black hole, but now we assume that

the field theory exists only inside this surface. We then show that to an outside observer a

body constructed in this way appears to be a thermal system with the familiar Bekenstein

entropy, however when we look inside we see that it is not an equilibrium system. We discuss

the meaning of this observation.

Finally, we turn to the so-called information paradox. We argue that the fact that the

geometric optics solution is exact for the two-dimensional black hole tells us that we really

have to take into account the spacelike line, r = 0, stretching from the quantization surface

λ0 to the surface on which we do measurements. To do this in a consistent way for two and

four dimensions we introduce a lattice in Lemâıtre coordinate η and demonstrate that the

spectrum of the time-dependent Hamiltonian is constantly changing; this proves that the

time dependence of the problem is not a coordinate artifact. We conclude with a discussion

of the strange mixing of long distance states with those apparently localized near r = 0

which occurs in this computation.

IV. PRELIMINARIES

Before going further it is useful to review why a Hamiltonian formulation of the problem

of a massless scalar field in the presence of a black hole background appears problematic.

Let us begin by considering the problem of a massless scalar field with Lagrange density

L =
√−g [gµν ∂µφ(x) ∂νφ(x)] (1)
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in the background of a Schwarzschild black hole of mass M . In the usual Schwarzschild

coordinates the metric gµν takes the familiar form

ds2 = −(1− 2M

r
) dt2 + (1− 2M

r
)−1 dr2 + r2dΩ2, (2)

where we have set Newton’s constant, G, to one.

As is well known, the apparent metric singularity at r = 2M is a coordinate artifact

and, as such, does not pose a problem. The true issue for canonical quantization is that

we need to define a family of spacelike slices which foliate the spacetime in order to define

initial data and form the Hamiltonian. Inspection of Eq.(2) shows that surfaces of constant

Schwarzschild time change from spacelike to timelike at the horizon (r = 2M) and so they do

not fulfill our requirements. As we show in the next Section, changing to Painlevé coordinates

both eliminates the coordinate singularity at r = 2M and allows us to analytically define

a satisfactory family of spacelike slices. Since, however, the form of the metric in Painlevé

coordinates is not well suited to simple canonical quantization, we need to introduce yet

another transformation, to Lemâıtre coordinates, to facilitate the quantization procedure.

The Hamiltonian constructed in this way explicitly depends upon Lemâıtre time, which is a

specific manifestation of the general theorem that “the Schwarzschild metric does not admit

a global timelike Killing vector field”. Fortunately, having an explicitly time dependent

Hamiltonian is no barrier to unitary time evolution; in fact, this is always the case for the

interaction representation. The crucial requirement is not that the Hamiltonian is time

independent, but rather that there exists a one-parameter family of unitary operators U(λ)

which satisfy the equation
dU(λ)

dλ
= −iH(λ) U(λ). (3)

The lesson we learn from the fact that the Hamiltonian explicitly depends upon time is

that we shouldn’t be looking for static quantities such as the vacuum state of the theory

but rather for steady state phenomena such as the Hawking radiation. In a sense, once we

have observed that the Hamiltonian is time dependent there is no longer a puzzle as to why

Hawking radiation can exist. What remains is to fill in the details and show how explicit

calculations in this canonical framework lead to Hawking’s results. We do this in the next

few sections. Once the equivalence of our discussion to previous approaches is established

we turn to a discussion of what our approach has to say about the question of black hole

entropy and the information paradox.
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V. COORDINATE SYSTEMS

Although we are ultimately interested in the surfaces defined by constant Painlevé time, it

is convenient to begin by introducing Kruskal coordinates. First, because these coordinates

make it particularly easy to draw null-geodesics (they are simply lines parallel to either the

X or Y axes shown in Fig.1); second, because they allow us to easily compare surfaces of

fixed Schwarzschild time to surfaces of fixed Painlevé time.

It is convenient to introduce dimensionless versions of r and t by rescaling r → 2Mr

and t → 2Mt. Using these variables we introduce the Kruskal coordinates X and Y by the

equations:

XY = (r − 1) er,
X

|Y | = etS . (4)

In these coordinates the Schwarzschild metric takes the form

ds2 =
32 e|−r|dX dY

r
+ r2dΩ2. (5)

Eq.(4) tells us that fixed Schwarzschild r is a hyperbola in the X,Y -plane, as shown in Fig.1,

and that a surface of fixed Schwarzschild time corresponds to a straight line X = |Y | etS

(such lines are not shown in Fig.1).

Painlevé coordinates are derived from Schwarzschild coordinates by making an r-

dependent shift in Schwarzschild time; i.e.,

t = λ− 2
√

r − ln

(∣∣∣∣∣

√
r − 1√
r + 1

∣∣∣∣∣

)
. (6)

This equation makes it easy to compute surfaces of fixed Painlevé time. These surfaces are

the almost horizontal curves shown in Fig.1 and they clearly foliate the spacetime. Note that

while Schwarzschild t and Painlevé λ differ by a function of r, two events having the same r

are separated by equal intervals of Schwarzschild or Painlevé time. In Painlevé coordinates

the Schwarzschild metric takes the form

ds2 = −
(
1− 1

r

)
dλ2 +

2 dλ dr√
r

+ dr2 + r2dΩ2. (7)

Although Painlevé coordinates are useful for defining a family of spacelike surfaces they

are not well suited for canonical quantization because of the cross term dλ dr in the metric

and the fact that lines of constant r (we assume the angular variables θ and φ are held fixed)
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l=0

Y

X

r=2M

r = 2.0

r = 1.6

r = 1.2

r = 0

FIG. 1: Only two of usual four X-Y Kruskal quadrants are plotted and the figure is rotated by

45◦ to emphasize we are studying the region from r = 0 to r = ∞. Vertical and horizontal lines

are null-geodesics. The nearly, but not quite, horizontal curves are globally spacelike surfaces of

constant Painlevé time. The hyperbolas are surfaces of constant Schwarzschild r. Lines of constant

Schwarzschild time would be straight lines originating at X = Y = 0.

are not everywhere timelike. A better coordinate system can be obtained by considering a

set of curves (λ, r(λ)) whose tangent vectors, (1, dr(λ)/dλ), are orthogonal to the surfaces of

constant Painlevé time. Substituting this requirement into Eq.(7) for the metric in Painlevé

coordinates we arrive at an equation which, upon integration, gives:

r(λ, rsch) =
(
r
3/2
sch −

3

2
λ

)2/3

, (8)

where rsch is the value of Schwarzschild r at which each curve passes through the surface

defined by λ = 0.

We could use this coordinate system but to avoid dealing with factors of r3/2 it is conve-

nient to make one more change of variables. This leads to Lemâıtre coordinates, which are

related to Painlevé λ and r by

r(λ, rsch) =
(
r
3/2
sch −

3

2
λ

)2/3

=
(

3

2
(η − λ)

)2/3

. (9)

In Lemâıtre coordinates the metric takes the form

ds2 = −dλ2 +
1

r(λ, η)
dη2 + r(λ, η)2dΩ2. (10)
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2/3

2/3
−λ)1(η

−λ)2
(η

Y

X

FIG. 2: This is the same plot of surfaces of constant Painlevé time overlaid with curves showing

r(λ, η) for two different initial values of η. Note that all such lines finally intersect the spacelike

curve r = 0

It is manifestly free of coordinate singularities at r = 1, has no cross terms in dλ and dr and

allows a completely straightforward canonical quantization procedure. Fig.2 shows lines of

constant η overlayed on the surfaces of constant Painlevé time.

VI. CANONICAL QUANTIZATION

The Lagrangian for a massless scalar field theory has the general form given in Eq.(1).

Since the metric in Schwarzschild, Painlevé and Lemâıtre coordinates is rotationally in-

variant we can study the scalar field theory for each angular momentum mode separately.

Furthermore, we are free to expand the field φ(λ, η, θ, φ) in spherical harmonics in θ and φ

and restrict attention to the L = 0 mode, since this exhibits all of the interesting behavior.

The Lemâıtre coordinate form of the L = 0 scalar field Lagrangian is

L =
√−g

1

2

[
(∂λφ0 (λ, η))2 − r (∂ηφ0 (λ, η))2

]
(11)

where the determinant
√−g is

√−g = r3/2 =
3

2
(η − λ). (12)
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Following the usual rules for canonically quantizing such a theory we see that the mo-

mentum conjugate to the field is

π0(λ, η) =
3 (η − λ)

2
∂λφ0(λ, η), (13)

and the canonical Hamiltonian is

H(λ) =
1

2

∫ ∞

λ
dη

(
2 π0(λ, η)2

3(η − λ)
+

3

2
r (η − λ)(∂ηφ0(λ, η))2

)
. (14)

The commutation relations for φ0 and π0 are

[π0(λ, η), φ0(λ, η′)] = −i δ(η − η′). (15)

As we already pointed out, there is a one parameter family of unitary operators, U(λ),

which satisfy the equation
d

dλ
U(λ) = −iH(λ) U(λ), (16)

whose solution is the path ordered exponential

U(λ) = P
(
e−i

∫ λ

0
dτH(τ)

)
. (17)

Given these operators we define fields at later times as

φ0(λ, η) = U(λ) φ0(η) U †(λ), π0(λ, η) = U(λ) π0(η) U †(λ). (18)

It follows from the canonical commutation relations that these operators satisfy Heisenberg

equations of motion of the form

∂λ [(η − λ)∂λφ0]− ∂η [(η − λ) r ∂ηφ0] = 0. (19)

Clearly we have two options open to us. The first is to diagonalize the Hamiltonian

H(0) and then explicitly construct U(λ). This is at best cumbersome. The second, more

tractable option for a system with a time-dependent Hamiltonian, is to solve the Heisenberg

equations of motion and compute all physical quantities by evaluating expectation values of

the interesting time dependent operators in a fixed initial state. We will adopt the second

approach and use the vacuum state of the Hamiltonian H(0) as our initial state. It will

be apparent from the computations which follow that except for transient effects, it would

make no difference if we chose as our initial state any state whose energy differed from the

H(0) vacuum state energy by any finite amount.
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There is an important subtlety associated with the computation of the time-dependent

Hamiltonian at η = λ or r(λ, η) = 0. It is that, as a consequence of the equations of

motion, one cannot consistently impose the condition φ = 0 along the entire spacelike curve

r(λ, η) = 0. This problem is not associated with the fact that r(λ, η) = 0 is the location of

the singularity. It remains even if we excise the singularity from the problem by surrounding

it by a small sphere of radius ε and attempt to set φ = 0 on that spacelike surface. The issue

is that, even if we ignore what is happening in the past and require that φ vanishes on this

surface for λ ≤ λ0, when we propagate the canonical fields defined on the surface λ = λ0

into the future, the solution of the field equations implies that φ will be non-vanishing for

all r(λ1, η) = ε where λ1 > λ0. Our eventual resolution of this problem will be to define the

Hamiltonian for λ1 > λ0 by including the integral of the Heisenberg fields over the portion

of the spacelike surface r(λ, η) = ε which joins the spacelike slices defined by setting λ = λ0

and λ = λ1 along with the integral of the fields over the spacelike surface defined by fixing

λ = λ1 and letting 0 ≤ r(λ, η) ≤ ∞. Clearly, it will be easier to discuss this issue after

we discuss the geometric optics solution of the Heisenberg equations and the derivation of

Hawking radiation. For this reason we defer further discussion of this issue to Section XV,

where we discuss the case of an infalling, reflecting mirror. Till then we will finesse the

problem and assume that it makes sense to impose the condition φ = 0 for the surface λ = 0

and make no further assumptions about what happens in the future of this surface.

Finally, before discussing the solution of the Heisenberg equations of motion let us point

out that it is simple to find all of the eigenstates of H(0) because it is just a free field

Hamiltonian in disguise. To see this we only need to change variables, back to Schwarzschild

r, using η = (2/3)r3/2 and then rescale the fields by

π0(r) =
√

r π1(r), φ0(r) =
φ1(r)

r
. (20)

This converts Eq.(14) to

H(0) =
1

2

∫ ∞

0
dr

(
π1(r)

2 + r2(∂r
φ1

r
)2

)
, (21)

which is the Hamiltonian of the L = 0 mode of a free massless field in flat space. One

constructs the eigenstates of this Hamiltonian in the usual way by expanding the fields in

terms of annihilation and creation operators:

φ1(r) =
∫ ∞

0

dω√
π ω

sin(ωr)
(
a†ω + aω

)
, π1(r) = i

∫ ∞

0
dω

√
ω

π
sin(ωr)

(
a†ω − aω

)
. (22)
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and defining the vacuum state |0〉 to be the state that is annihilated by all of the aω’s.

VII. THE MOVING MIRROR

Consider a free field theory in flat space, together with the boundary condition that the

field vanishes on and to the left of a curve x(t). To discuss the solution of the Heisenberg

field equations for this problem it is helpful to review the simplest way of solving the free

field Heisenberg equations when there are no boundary conditions. Start from the free field

Euler-Lagrange equation

(∂2
t − ∂2

x) φ(t, x) = 0, (23)

and rewrite it as

(∂t − ∂x) (∂t + ∂x) φ(t, x) = 0. (24)

Then observe that the general solution to this equation can be written as:

φ(t, x) = f(x− t) + g(x + t). (25)

The functions f and g are determined by the values of φ(t, x) and its time derivative at

t = 0:

∂xf(x) =
1

2
(∂xφ0(x)− π0(x)), ∂xg(x) =

1

2
(∂xφ0(x) + π0(x)), (26)

where φ0 and π0 are initial conditions at t = 0 surface. It is a simple matter to integrate

these equations to determine f(x) and g(x).

Next consider, as shown in Fig.3, the case of a field theory with moving boundary x(t) =

−t + A (1− e−2 κt), where we have chosen to plot the curve for A = 1 and κ = 1/2. Clearly

this system has a time-dependent Hamiltonian and, nevertheless, possesses a unitary time

development operator. If, as shown, we assume that before t = 0 the mirror is at rest and

has been that way for an infinite amount of time, then it is reasonable to assume that the

initial state of the problem at t = 0 is the vacuum state for the free field theory defined by

the condition φ0(0) = 0.

In this case the Euler-Lagrange equations remain unchanged, however the solution needs

to be modified to maintain the boundary condition which says that φ(t, x(t)) = 0. This is

14



x

t

-tx(t) = -t + (1 - e    )

FIG. 3: A plot of the moving mirror and three null geodesics which represent contributions to

g0(x− t). These curves are selected to show that null lines which hit the mirror at later times come

from points which start out closer and closer to the point x = 1.

easily done by adding a reflected wave g0(x− t) to the general solution , so that it becomes:

φ(t, x) = θ(x− t) f(x− t) + g(t + x) + θ(t− x) g0(x− t). (27)

As in the case with no boundary conditions we determine f(x) and g(x) from the initial

data on the t = 0 surface:

g(x) =
1

2

∫ x

0
dζ

(
dφ(ζ)

dζ
+ π(ζ)

)
, (28)

f(x) =
1

2

∫ x

0
dζ

(
dφ(ζ)

dζ
− π(ζ)

)
.

Given this, we find from the requirement that the total field φ(t, x) vanishes on the curve

x(t) that g0 is given by

g0(x− t) = −g(x0(t, x)), (29)

where, as indicated in Fig.3, x0(t, x) is the point on the t = 0 surface from which the reflected

wave came. The function x0(t, x) is determined by observing that the light ray which comes

to the point (t, x) left the mirror at some point (t1, x(t1)) and that the incident wave which

arrived at this point came from x0(t, x). These statements are equivalent to the equations

x− t = x(t1)− t1, x(t1) + t1 = x0(t, x), x(t1) = −t1 + A(1− e−2κt1). (30)

From Eq.(30) we immediately obtain

x0(t, x) = A(1− e−2κt1) (31)
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or, equivalently,

−2t1 =
1

κ
log

(
A− x0(t, x)

A

)
. (32)

Combining this with Eq.(30) we derive

x− t = −2t1 + A(1− e−2κt1) = −2t1 + x0(t, x),

x− t = x0(t, x) +
1

κ
log

(
A− x0(t, x)

A

)
, (33)

which, for t− x À A, has the approximate solution,

x0(t, x) ' A(1− e−κ(t−x)). (34)

This completes our solution of the Heisenberg equations of motion for the free field in

the presence of a moving mirror. In the sections to follow we will see that because the

point x0(t, x) becomes arbitrarily close to the point A for t À x, a thermometer placed

at a distance from the mirror will measure a temperature κ/2π and a detector will see an

outgoing energy flux κ2/48π.

VIII. UNRUH THERMOMETER

We begin with a precise definition of what we mean by a thermometer. In what follows

we will take a thermometer to be a simple quantum system, with multiple energy levels,

locally interacting with the field φ(t, x). Two terms should be added to the massless scalar

field Lagrangian in order to specify the interaction of the thermometer with the field. The

first is a term which defines the eigenstates of the non-interacting thermometer and the

second, is an interaction term of the form

Vint(t) = ε e−(t−t0)2/2σQφ(x, t). (35)

Here ε is the small parameter in which we will perturb, t0 and σ define the range in t for

which the interaction is turned on and x specifies the spatial location of the thermometer.

The operator Q is assumed to be an operator which causes transitions among the energy

eigenstates of the thermometer.

A number of assumptions have to be made in order to get reasonable results. First, in

order for the thermometer to know the mirror is moving, it is necessary to assume that

t0 À x. Second, we must impose an adiabatic condition,
√

σ À 1/E, where E is the typical
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excitation energy of the thermometer, so that we do not excite the thermometer just by

turning it on or off. Finally, we must impose the condition E ∼ κ, so that the acceleration

of the mirror is capable of exciting the higher states of the thermometer.

Given these assumptions, second order perturbation theory in ε tells us that the proba-

bility of the thermometer being excited to a state with energy E is

P(E,E0) = ε2|〈E|Q|E0〉|2
∫

dt dt′e−i(E−E0)(t−t′)−[(t−t0)2+(t′−t0)2]/2σ〈φ(t, x)φ(t′, x)〉, (36)

where 〈O〉 stays for the vacuum expectation value of the operator O.

We must now evaluate 〈φ(t, x) φ(t′, x)〉 using Eqs.(27-29), which tell us how to rewrite

φ(t, x) and φ(t′, x) in terms of φ(x) and π(x) on the surface t = 0. Once we have done this

we can rewrite these t = 0 operators in terms of annihilation and creation operators and

evaluate the resulting expression. We obtain

P(E,E0) =
ε2
√

π

2

|〈E|Q|E0〉|2
E − E0

×
[

1

e2π (E−E0)/κ − 1

]
. (37)

This result shows that the thermometer reacts as if it is in interaction with a heat bath at

a temperature κ/2π. From this point on we will assume, without loss of generality, that

E0 = 0 in order to simplify the equations.

Let us now discuss the details of the calculation. To obtain Eq.(36) we must first compute

the quantity

G(t, t′) = 〈φ(t, x) φ(t′, x)〉, (38)

when both t and t′ are much greater than x. When these inequalities are satisfied we see

from Eq.(27) that φ(t, x) is given by

φ(t, x) = g(t + x)− g(x0(t, x)). (39)

It follows from Eq.(28) that

φ(t, x) =
1

2

∫ t+x

x0(t,x)
dζ

(
dφ(ζ)

dζ
+ π(ζ)

)
. (40)

Using the expansion of the operators φ(ζ) and π(ζ) defined in Eq.(22) we obtain

dφ(ζ)

dζ
+ π(ζ) =

∫ ∞

0
dω

√
ω

π

(
eiωζ a†ω + e−iωζ aω

)
(41)

from which it follows that

φ(t, x) =
i

2

∫ ∞

0
dω

1√
πω

[(
eiωx0(t,x) − eiω(t+x)

)
a†ω −

(
e−iωx0(t,x) − e−iω(t+x)

)
aω

]
. (42)
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It is straightforward to evaluate the expectation value

〈φ(t, x)φ(t′, x)〉 = − 1

4π

∞∫

0

dω

ω

(
eiω(x0(t′x)−x0(t,x)) + eiω(t′−t) − eiω(x0(t′,x)−t−x) − eiω(t′+x−x0(t,x))

)

(43)

Computing these integrals we arrive at the result

〈φ(t, x)φ(t′, x)〉 =
−1

4π
[ln(x0(t

′, x)− x0(t, x) + iη) + ln(t′ − t + iη)

− ln(x0(t
′, x)− t− x + iη)− ln(t′ + x− x0(t, x) + iη)] , (44)

where an infinitesimal positive quantity η has been introduced. Substituting this into

Eq.(36), we see that the last two terms in Eq.(44) are damped by a factor of e−σE2
, which is

negligible thanks to the adiabatic assumption. The reason this happens is that both t and

t′ are restricted to be near t0 which is assumed to be large enough so that x0(t0, x) ' A.

Therefore, either t or t′ integration can be done, yielding the suppression factor. This leaves

only the integration of the first two terms. Since the first term takes the most work let us

begin with it.

The integral we must evaluate to obtain the first term’s contribution to the transition

probability is

−1

4π

∫ ∞

−∞
dtdt′ e−iE(t−t′)e−(t−t0)2/2σe−(t′−t0)2/2σ ln(x0(t

′, x)− x0(t, x) + iη). (45)

In order to simplify the Gaussian terms it will be convenient to let t → t+ t0 and t′ → t′+ t0

and then, replacing x0 by Eq.(31) we obtain

−1

4π

∫ ∞

−∞
dtdt′ e−iE(t−t′)e−t2/2σe−t′2/2σ

(
ln(A)− κ(t0 − x) + ln(e−κt − e−κt′)

)
. (46)

As in the previous discussion, we see that the ln(A) term and the term −κ(t0− x) are both

suppressed by e−σE2
. Having removed all of the t0 dependence it is convenient to define

u = t′ − t and v = t′ + t and rewrite what is left as

−1

8π

∫ ∞

−∞
dvdu eiEue−u2/4σe−v2/4σ

(−κ

2
(v + u) + ln(eκu − 1)

)
. (47)

Once again all the terms linear in v and u vanish or give a contribution of order e−σE2
, so

the only integral we have to compute reads:

−1

4π

√
πσ

∫ ∞

−∞
du eiEue−u2/4σ ln(eκu − 1). (48)
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In order to handle this term we rewrite the integral in Eq.(48) as a sum of integrals over

positive u, to obtain

−1

4π

√
πσ

∫ ∞

0
du e−u2/4σ

[
eiEu

(
κu + ln(1− e−κu)

)
+ e−iEu ln(1− e−κu) + iπ

]
. (49)

At this juncture we see that if we rewrite the integral in terms of the variable ξ = κu and

expand the logarithmic terms in a series in e−ξ, we obtain

−1

4π

√
πσ

κ

∞∫

0

du e−ξ2/4σκ2

[
eiEξ/κξ −

∞∑

n=1

e(iE/κ−n)ξ

n
−

∞∑

n=1

e−(iE/κ+n)ξ

n

]
. (50)

The condition σκ2 À 1 allows us to replace the term e−ξ2/4σκ2
by unity, which then allows

us to carry out all of the integrations and obtain

√
πσ

4πκ




κ2

E2
+

∞∑

n=1

2

n2 +
(

E
κ

)2


−

√
πσ

4E
. (51)

The sum can be explicitly done using the identity

∞∑

n=1

1

n2 +
(

E
κ

)2 =
πκ

2E

[
2

e2πE/κ − 1
+ 1− κ

πE

]
, (52)

which makes the total undamped contribution of this term to the transition matrix element
√

πσ

2E

[
1

e2πE/κ − 1

]
. (53)

Finally it only remains to show that the contribution of the second term in Eq.(44) vanishes.

This is easily done by rewriting ξ = Eu, using the fact that σE2 À 1 and rewriting

everything as a sum of integrals over the range u = 0 . . .∞.

IX. THE ENERGY FLUX

Having seen that a thermometer at a fixed location will, at large times in the future,

measure a temperature T = κ/2π, we would like to delve further into this phenomenon.

One way to do this is to compute the net flux of energy passing through the point x, to see

if the thermometer is heating up due to a flux emanating from the location of the mirror.

This means we need to compute Ttx, the energy-momentum tensor for the massless field.

In Minkowski space the energy-momentum tensor for the massless scalar field is defined

to be

Tµν =
1

2
{∂µφ(t, x), ∂νφ(t, x)} , (54)
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where {A, B} denotes the anti-commutator. In general, the expectation value of any com-

ponent of Tµν is divergent since we have to evaluate the product of two quantum fields at the

same spacetime point. Thus we need a regularization procedure which can identify possible

infinities. In what follows we adopt a point splitting method to regularize the stress-energy

tensor and define:

Ttx =
1

2
{π(t + δ, x), ∂xφ(t− δ, x)} . (55)

It is understood that the limit δ → 0 should be taken at the end of the calculation. It turns

out that in this limit the energy density Ttt diverges as 1/δ2 but the flux, T tx, is finite and

unique:

T tx =
κ2

48π
. (56)

To derive Eq.(56), one takes appropriate derivatives in Eq.(42) and evaluates the expec-

tation value of the commutator defined in Eq.(55) The result is:

Ttx =
1

4π

[
− 1

δ2
+

x
′
0(ξ) x

′
0(ξ + δ)

(x0(ξ)− x0(ξ + δ))2
+

x
′
0(ξ)

(t + δ + x− x0(ξ))2
− x

′
0(ξ + δ)

(t + x− x0(ξ + δ))2

]
,(57)

where x
′
0(ξ) = dx0(ξ)/dξ and ξ = t − x. Each of the first two terms in Eq.(57) diverges if

δ → 0 whereas the last two terms take finite limits and cancel one another. Substituting

the explicit form of x0(t, x) from Eq.(34) into the second term of Eq.(57) and expanding it

in powers of δ we find that it becomes

1

δ2
− κ2

12
+O(δ). (58)

From this we see that in the limit δ → 0 all singular terms in δ cancel, yielding the result

T tx =
κ2

48π
. (59)

There are several features of this calculation which are generic and are therefore worth

further discussion.

The first point which merits discussion is the finiteness of our result for the flux. The

general reason for that is the theorem discussed in Ref. [9] where divergent terms which can

appear in Tµν for a general background gravitational field are explicitly given. Evaluation

of these terms for the case of flat Minkowski space with a moving boundary as well as the

Schwarzschild black hole shows that no divergent terms can arise in the computation of

the flux and therefore it must come out finite. The preceding discussion shows, by explicit

calculation, how this works for the case of the moving mirror.
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Next, we wish to observe that Eq.(57) shows that only those terms which are singular in

the δ → 0 limit contribute to the result for the flux. A peculiar feature of those terms is

that for them the points (t + δ, x) and (t, x) can be traced back to the same point on the

initial surface. Terms which are finite in the limit δ → 0 always cancel exactly. One way of

describing this state of affairs is that the first term in Eq.(57) represents flux coming from

the right and the second term represents flux coming from the left (i.e., the mirror). In

the case of Minkowski space with no mirror, these two contributions would cancel exactly,

however in the case of the moving mirror the flux reflected from the mirror is subjected to a

time dependent red shift. It is this time dependent red shift which produces a non-cancelling

finite addition to the flux. As we will see in a later Section, a similar decomposition of the

terms contributing to the energy momentum tensor is possible for the case of a black hole.

In the Schwarzschild case the flux coming from the right behaves much like the Minkowski

space contribution, but the flux coming from the left emanates from the vicinity of the

horizon. This flux also sees a time dependent red shift due to the fact that flux which

arrives at a slightly later time originates from a point which is slightly closer to the horizon.

Just as in the moving mirror case, this time dependent red shift is the cause of the finite,

non-cancelling contribution to the outgoing flux which we identify as Hawking radiation.

Finally, we should point out that the same approach can be used to describe what happens

if the mirror moves along an arbitrary trajectory x(t) which asymptotes to the light cone,

since all that changes in the calculation is the way in which one deals with the function

x0(t, x).

X. THE BOGOLIUBOV TRANSFORMATION

Bogoliubov transformations are a common tool used to deal with field theory in curved

space time, in particular in cases of the moving mirror and the Schwarzschild black hole. In

this Section we show how to understand these ideas within the Hamiltonian formalism.

The usual context within which one discusses Bogoliubov transformations is a situation

in which there is a time t1 before which the Hamiltonian is time independent and free,

and a time t2 after which it is time independent and free. In this case the Bogoliubov

transformation is straightforward to both define and compute. All one has to do is Fourier

expand the fields φ(t1, x) and π(t1, x) in terms of annihilation and creation operators aω(t1)
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x

t

t = 0

t = t’

FIG. 4: The coordinate system used to discuss the Bogoliubov transformation. Note that before

time t = 0 and in the shaded wedge formed by the lines t = t′ and the 45◦ line we use ordinary

rectangular Cartesian coordinates, but in the remaining region we use lines which are translations

of the mirror trajectory. For fixed x the field φ(τ, x) for all (τ, x) in the shaded wedge can be

computed in terms of its values on the line t = t′ using free-field equations of motion.

and a†ω(t1), as in Eq.(41) and do the same for the fields φ(t2, x) and π(t2, x). Then, if we

have explicit formulas relating the fields φ(t2, x) and π(t2, x) to the fields at time t1 we

get an explicit relation between a†ω(t1) and aω(t1) and their counterparts at time t2. This

relationship is the desired Bogoliubov transformation. Applying these ideas to the case of

the moving mirror would be quite simple except for the fact that, although before time

t1 = 0 the theory is indeed time independent and free, there is no time t2 for which the

same conditions apply. There is, however, a sense in which we can treat the system as being

almost time independent. We can then use the corresponding Bogoliubov transformation to

compute such things as the thermometer response and outgoing energy flux.

To understand why this works consider the coordinate system shown in Fig.4 and focus

on the point (t′, x′). Causality requires that for times t such that x + t′ > t > t′ (i.e., for

all points (t, x) lying within the shaded triangular wedge) the field operators φ(t′, x′) and

π(t′, x′) evolve according to the infinite volume free field equations. Thus, to compute what

a thermometer moving along the timeline (t, x′) would see, we can expand the initial t = 0

state in terms of the annihilation and creation operators of the instantaneous Hamiltonian

H(t′) and then use infinite volume free field equations to evaluate the relevant correlation
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functions. This approach should lead to our earlier results if, as we will show in a moment,

we work at large enough x. It has (obvious) limitations, however, if we want to study this

problem at some fixed finite distance from the origin over a finite interval in time.

From Fig.4 we see that the farther out x′ is along the x-axis the longer the time interval

for which infinite volume free field propagation makes sense; nevertheless, we see that for any

finite x′ the approximation eventually breaks down. This means that Fourier transforming

in the time variable in order to identify the annihilation and creation operators is only an

approximation to what is going on. One always has the option of putting the initial surface

in the infinite past and working at x′ = ∞, which would make the approximation exact; but

if one is interested in a detailed picture of how the system develops in time, working at past

and future infinity is a severe limitation. Having said that, let us show how the Bogoliubov

transformation should be understood in the Hamiltonian framework.

To carry out the Bogoliubov transformation we begin by considering the instantaneous

Hamiltonian of the system at time t = t′, when the mirror is at the position x(t′):

H(t′) =
1

2

∫ ∞

t′
dx

(
π(t′, x)2 + ∂xφ(t′, x)2

)
. (60)

This is just the Hamiltonian of a free massless field theory defined on the interval x(t′) ≤
x ≤ ∞ and it is diagonalized by expanding the field and its conjugate momentum in terms

of annihilation and creation operators bk and b†k, defined by the formulas

φ(t′, x) =
∫ ∞

0

dk√
kπ

sin(k(x− x(t′)))
(
b†k + bk

)
, (61)

π(t′, x) = −i
∫ ∞

0
dk

√
k

π
sin(k(x− x(t′)))

(
b†k − bk

)
. (62)

It will be convenient in what follows to make the coefficients of b†k and bk simple expo-

nentials by taking the linear combinations

π(t′, x) +
∂φ(t′, x)

∂x
=

∫ ∞

0
dk

√
k

π

(
b†k e−ik(x−x(t′)) + bk eik(x−x(t′))

)
, (63)

−π(t′, x) +
∂φ(t′, x)

∂x
=

∫ ∞

0
dk

√
k

π

(
b†k eik(x−x(t′)) + bk e−ik(x−x(t′))

)
. (64)

The next step in computing the Bogoliubov transformation is to rewrite φ(t′, x) and

π(t′, x) in terms of the t = 0 fields. Following our earlier discussion we see that φ(t, x) is a

sum of two terms:

φ(t′, x) = Θ(t′ − x) φI(t
′, x) + Θ(x− t′) φII(t

′, x). (65)
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and, using Eq.(42), we obtain the following expressions for

πI(t
′, x) +

∂φI

∂x
(t′, x) =

∫
dk

√
k

π

[
a†k eik(x+t′) + ak e−ik(x+t′)

]
, (66)

and

πI(t
′, x)− ∂φI

∂x
(t′, x) =

∂x0(t
′, x)

∂x

∫
dk

√
k

π

[
a†ke

ikx0(t′x) + ak e−ikx0(t′x)
]
. (67)

If we consider the last of these two equations and ignore the part of φI(t
′, x) which does

not come from the mirror, and if we assume that t′ is large so that x(t′) is large and negative,

then to a good approximation we can extract the coefficient of b†k by simply taking the Fourier

transform
√

k

π
b†k = −

∫ dx

2π
e−ik(x−x(t′))

[
πI(t

′, x)− ∂φI

∂x
(t′, x)

]

= −
∫ dω

2π

√
ω

π

∫
dx e−ik(x−x(t′))∂x0(t

′, x)

∂x

(
a†ωeiωx0(t′,x) + aωe−iωx0(t′,x)

)
. (68)

Changing variables from x to x0(t
′, x), rewriting Eq.(33) in the limit of large t′ as

x = t′ +
1

κ
ln(

A− x0

A
) + x0 (69)

and letting x0 = A(1− ξ) the expression for b†k becomes

√
k

π
b†k = −A

∫ dω

2π

√
ω

π

∫ 1

0
dξ e−ik(t′−x(t′))ξ−ik/κ

(
a†ωeiA(ω−k)(1−ξ) + aωe−iA(ω+k)(1−ξ)

)
.(70)

Since the dominant contributions to this integral come from small ξ we can extend the

ξ-integration to infinity and evaluate the result in terms of Gamma functions to obtain:

√
k

π
b†k = − A

2π

∫
dω

√
ω

π
eik(t′−x(t′)) Γ

(
1− i

k

κ

)

×
[
a†ω eiA(ω−k)

( −i

A(ω − k)

)(1−i k
κ
)

+ aωe−iA(ω+k)

(
i

A(ω + k)

)(1−i k
κ
)

 . (71)

Given this approximate Bogoliubov transformation one usually computes the expectation

values of the number operators 〈0| b†k bk|0〉, where 〈0| stands for the state the system started

in at time t = 0, which we have chosen to be the state annihilated by the operators aω.

Using Eq.(71 ), one derives

〈0| b†k bk |0〉 =
k

4π2κ

[∫ ωdω

(ω + k)2

]
1

(e2πk/κ − 1)
. (72)

24



Except for the divergent integral in front of the expression, this is what we need to plug into

the formula for the transition probability for the thermometer to obtain its response. The

usual way of arguing away the divergent prefactor is that the number of particles grows with

time and that one should divide by this logarithmically divergent term to get a number of

particles per unit time. If one does this then one can use the results of this approximate

calculation to derive the response of a thermometer which is switched on and off for a finite

period, or the flux of energy through a given point.

To conclude this Section we would like to point out that we do not see any advantage,

either computational or conceptual, in discussing particular choices of the vacuum states

and the associated Bogoliubov transformations for this explicitly time dependent problem.

The time dependent nature of the problem, which explicitly manifests itself in the time

dependence of the Hamiltonian, naturally leads to a long time steady state behavior of

physical system that is practically independent of the initial conditions.

XI. TWO MIRRORS: A CURIOUS PHENOMENON

Let us complete our discussion of flat-space problems by considering a variant of the

moving mirror in order to show that for this problem, at late times, almost all of space-

time will be filled by fields that correspond to degrees of freedom of the massless theory

which were originally concentrated in an exponentially small region of a single point. This

peculiar, but otherwise absolutely trivial property of the massless theory in the presence of

a time dependent Hamiltonian, will be encountered again when we discuss the question of

Hawking-Bekenstein entropy for the case of the black hole. The only modification we will

make of the original moving mirror problem will be to add a stationary mirror at x = L, see

Fig.5.

A glance at Fig.5 shows that adding the second mirror does not complicate the compu-

tation of the field operators at any time in the future, since at most two reflections should

be taken into account. The interesting feature of this solution to the field equations is that

now, for times t > L and points (t, x) lying to the right of the shaded region bounded by

the mirror and the line x = 2L− t, there are no direct contributions to the field operators.

Instead, the value of the fields at such a point is the sum of contributions coming either from

a single reflection from the moving mirror or a reflection from the moving mirror followed
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x

t

-tx(t) = -t + (1 - e    )

L

FIG. 5: A plot of null geodesics which contribute to g0(x− t) at late times in a problem with one

moving mirror and one fixed mirror. Note that eventually the only contributions to fields which

lie outside the shaded region come from geodesics which reflect once from each mirror or geodesics

which reflect only from the moving mirror.

by a reflection from the stationary mirror. Thus, we see that for large t and points (t, x)

lying to the right of the shaded region, the fields φ(t, x) and π(t, x) only depend upon the

fields on the original t = 0 surface which lie within an exponentially small neighborhood of

the point x = A.

XII. THE BLACK HOLE: GEOMETRIC OPTICS APPROXIMATION

Finally, let us turn to a discussion of the Schwarzschild black hole. We pointed out in

Section IV that by introducing Lemâıtre coordinates we can canonically quantize the theory

of a massless scalar field and use the resulting time-dependent Hamiltonian to derive the

corresponding Heisenberg equations of motion, Eq.(19). As in the case of the moving mirror,

the behavior of the system at later times is obtained by solving for the Heisenberg fields

as a function of the fields defined on the initial surface on which we quantized the system.

In the flat space case we argued that the easiest way to solve the Heisenberg equation of

motion is to trace back the two null-rays leaving the point (t, x) (the point at which we wish

to compute the field and its conjugate momentum), to the two points from which they leave

the t = 0 surface and write the answer in terms of the φ and π at those two points. We will

now show how to generalize this approach to the corresponding equations in curved space.

To motivate what we call the geometric optics approximation let us study Eq.(19) in
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Painleve coordinates (λ, r), since these coordinates are non-singular and the dependence of

the solutions on λ and r factorizes. The usual WKB approach to this sort of problem is to

assume a solution of the form φ0 = r−1eiωλfω(r) and substitute this ansatz into the field

equation. In this way one obtains that, for large ω, fω(r) can be written as

ln fω(r) = iωS1,2(r) +O(ω−1), S1,2(r) = ±r − 2
√

r ± ln((
√

r ± 1)2). (73)

We now observe that these solutions are constant along incoming or outgoing null geodesics

where an incoming null-geodesic starting at the point x1 at time λ = 0 is a curve r(λ) such

that

S1(x1) = λ + S1(r(λ)), (74)

and similarly, an outgoing geodesic starting at x2 at λ = 0, is a curve r(λ) such that

S2(x2) = λ + S2(r(λ)), (75)

where S1,2 are as defined in Eq.(73).

To change this observation into an ansatz for the solution to the S-wave field equation,

we simply mimic the general form of the solution for the moving mirror in flat space; i.e. we

say that for general (λ, r)

φ0(λ, r) =
1

r

(
φ̃1(λ + S1(r)) + φ̃2(λ + S2(r))

)
, (76)

and the functions φ̃1,2(S1,2(r)) = f1,2(r) are to be determined from the boundary conditions

φ0(0, r) =
φ1(r)

r
, ∂λ φ(λ, r)|λ=0 =

√
rπ1(r), (77)

where φ1(r) and π1(r) are the rescaled operators we introduced to quantize the theory on

the initial surface λ = 0.

Substituting Eq.(76) into Eq.(77) and following the same procedure as in the flat space

case we obtain

f1,2(x) =
1

2

x∫

0

dξ

[
φ′1(ξ)± π1(ξ)∓ φ1(ξ)

ξ3/2

]
, (78)

where φ′1 = dφ1/dξ and S1,2(x1,2) = λ + S1,2(r). Combined with the fact that field φ1 and

its momentum π1 are expressed through the creation and annihilation operators defined at

λ = 0, the above set of equations allows us to compute any Green’s function of the field φ0

at any later time.
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Let us note that for the four-dimensional theory the geometric optics form of the solution

is not valid as r → 0. This is a point we will return to when we discuss the information

paradox in the last section of this paper.

XIII. BLACK HOLE: THERMOMETER REDUX

As for the moving mirror, we expect the time dependence of the Hamiltonian to reflect it-

self in the existence of steady state phenomena such as outgoing radiation. We will now show

that this is indeed what happens and that this formalism naturally leads to the prediction

that there is an outgoing, time-independent flux of energy which at large distances corre-

sponds to a body at a Hawking temperature TH. To do this we follow the procedure used for

the moving mirror and weakly couple the massless field to a detector [4, 10] (which acts as a

thermometer) located at some fixed Schwarzschild (or Painlevé) radius r. As before, we add

an interaction term to the free field Lagrangian of the form Vint ∼ e−(t−t0)2/(2δ2)φ0(t, r)Q̂,

where Q is an operator which acts in the Hilbert space of detector eigenstates. Second order

perturbation theory in Vint tells us that the probability of exciting the detector to a state of

energy E is related to the Fourier transform of the Green’s function of the massless field [9]:

P(∆E) ∼ |〈E|Q|E0〉|2
∫

dtdt′e−i∆E(t−t′)−[(t−t0)2+(t′−t0)2]/(2δ2)〈φ0(t, r)φ0(t
′, r)〉, (79)

where ∆E = E −E0 and E0 is the ground state energy of the detector. The only difference

is that now the Green’s function in Eq.(79) is to be computed using the evolution equation

for the field φ0(λ, r) which relates it to φ1(r) and π1(r) on the surface λ = 0.

As in the case of the moving mirror it is convenient to define the points x1,2 and y1,2 as

follows:

S1(x1) = λ1 + S1(r1), S2(x2) = λ1 + S2(r1),

S1(y1) = λ2 + S1(r2), S2(y2) = λ2 + S2(r2), (80)

so that x1 and x2 are the points on the λ = 0 surface from which infalling and outgoing

null geodesics must leave to arrive at the point (λ1, r1) and y1 and y2 are the points from

which infalling and outgoing null geodesics must leave the same surface to arrive at the

point (λ2, r2). Since we assume that the thermometer stays fixed at the same Schwarzschild

r we must identify r1 = r2 = r and, also, we must remember that there is a transformation
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between λ and t so that λ1 = λ1(t, r) and λ2 = λ2(t
′, r). At this point we need to evaluate

x1,2 and y1,2 for large values of t0. Given the explicit form of the functions S1,2 it follows

directly that these equations have the approximate solutions:

x1 = t + r, x2 = 1 + 2e−(t−r)/2,

y1 = t′ + r, y2 = 1 + 2e−(t′−r)/2, (81)

where we have assumed that t ∼ t′ ∼ t0. Asymptotically, x2 → y2 → 1 and x1 → y1 → ∞.

In this limit, the Green’s function can be written as

〈φ0(t, r)φ0(t
′, r)〉 ≈ −1

4πr2

(
ln |x1 − y1|+ ln |x2 − y2|+ iπ

2
[κ(x1, y1) + κ(y2, x2)] + c

)
,(82)

where κ(x, y) = θ(x− y)− θ(y − x) and c is some constant.

It is instructive to consider the terms in Eq.(82) separately. The constant does not

contribute to P(E) since, as in the case of the moving mirror, it yields a result proportional

to exp(−∆E2δ2) ¿ 1. The ln |x1 − y1| term and the terms described by the function κ give

simple contributions that can be written as

P1(∆E) ∼ − πδ

∆E
+O((δ∆E)−1). (83)

The important part of the final result comes from the second term in Eq.(82) which describes

the radiation coming from the vicinity of the horizon. Appropriately shifting the integration

variables and restoring factors of 2M we obtain

P2(∆E) ∼ −
∫

dtdt′e−i∆E(t−t′)e−[(t−t0)2+(t′−t0)2]/(2δ2) ln |e−t/(2M) − e−t′/(2M)|. (84)

If we then change the variables to v = (t + t′), u = (t − t′) and neglect all the suppressed

terms we arrive at

P2(∆E) ∼ 2πδ

∆E

[
1

e∆E/TH − 1
+

1

2

]
, (85)

where the Hawking temperature TH = 1/(8πM) has been introduced. Since the total prob-

ability is given by the sum of P1 and P2 we have the final result:

P(∆E)

δ
∼ |〈E|Q|E0〉|2

∆E
× 1

e∆E/TH − 1
. (86)

The interpretation of this formula is straightforward. If, at a large, fixed distance from the

black hole, an observer switches on a detector which interacts with the massless field for
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finite amount of time, then the energy levels of the detector get populated as if the detector

was in equilibrium with a thermal distribution of particles at a temperature TH = 1/8πM .

The only subtlety which we have skipped over in this calculation done for large r, is that

for arbitrary r the interaction term should have a correction for the time dilation at point r,

since the energy levels of the thermometer are defined in its rest frame. The result of adding

this to the calculation is that, putting back factors of M , a thermometer at arbitrary r will

read a temperature

kB T =
1

8πM
√

1− 2M/r
. (87)

XIV. BLACK HOLE: ENERGY FLUX

The Schwarzschild calculation of the energy flux through a sphere of fixed radius is done in

the same way as for the moving mirror: we point-split the fields appearing in the expression

for the energy momentum tensor, regulate the resulting expression and then take the limit

of zero splitting. The result of this computation is that we find that Tλ,η is finite and

non-vanishing and the total flux through a sphere of large radius is given by

Flux =
π

12
TH

2 =
π

12

1

(8πM)2
. (88)

The full expression for Tλ,η contains terms which vanish for large λ and therefore can be

identified as transients; persistent terms which decrease faster than 1/r2 and, finally, per-

sistent terms which fall off as 1/r2 and hence contribute to the flux. While we have carried

out the computation for arbitrary (λ, r), the resulting expressions are too cumbersome to

present here and we limit our discussion to the computation of terms that both approach a

constant for large λ and fall off as 1/r2.

Let σ = λ2 − λ1 and define the flux as:

〈Tλη〉 = lim
σ→0

1

2
〈0|

{
∂φ0(λ1, η)

∂λ
,
∂φ0(λ2, η)

∂η

}
|0〉. (89)

The formula for the total energy passing through a large sphere, in Lemâıtre coordinates, is

given by

J = lim
η→∞

∫
dφdθ

√−ggλλgηη 〈Tλη〉
4π

= − lim
η→∞

r5/2

(2M)1/2
〈Tλη〉, (90)

where a normalization factor of (4π)−1 is introduced since φ0 denotes the S-wave component

of the massless field. Given this expression, it is straightforward to compute this flux using
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the explicit expression for the time evolution of the field φ0, Eq.(76), and then take the limit

λ2 → λ1.

Since in the geometric optics approximation the field and its conjugate momentum are

given in purely geometrical terms (i.e., in terms of the point at which the field is to be

evaluated, the null geodesics arriving at that point and the two points on the initial surface

of quantization from which they left), we are free to carry out the computation in any

coordinate system. Since the calculation of the flux for large values of λ and η is simplest in

Painleve coordinates we will transform to these coordinates in the discussion which follows.

However, because we define the point-split energy momentum tensor by holding η fixed and

separating the fields in the time variable λ we have to take into account that the variables

r1 and r2 corresponding to (λ1, η) and (λ2, η) are related by

r2 = r1 −
√

2Mσ

r1/2
− 2Mσ2

4r2
1

− 1

6

(2M)3/2σ3

r
7/2
1

+O(σ4). (91)

Taking the derivatives in Eq.(89) and considering the limit r1,2 →∞, we obtain the following

expression for the flux

J = −1

2
lim
σ→0

[〈{f ′1(x1), f
′
1(y1)}〉W1(r2, r1, x1, y1) + 〈{f ′2(x2), f

′
2(y2)}〉W2(r2, r1, x2, y2)] ,

(92)

where the functions f1,2 are defined in Eq.(78), and

Wi(r2, r1, x, y) =
S ′i(r2)

S ′i(x)S ′i(y)

(
1− S ′i(r1)√

r1

)
. (93)

Once again (cf. Eq.(80)) we define x1,2, y1,2 to be the points on the λ = 0 surface from

which the null-geodesics which wind up at the point (λ, η) originate. Given these equations

it is easy to derive the relation between y1,2 and x1,2 as a power series expansion in σ. It

follows from the specific form of the functions S1,2 that, in the limit of large λ and large η,

the limiting values for these points are x1 →∞, x2/2M → 1.

To compute the expectation value of the anticommutator 〈{f ′1(x1), f
′
1(y1)}〉 we start from

Eq.(78) and derive

〈{f ′1(x1), f
′
1(y1)}〉 =

1

4
[〈{π1(x1), π1(y1)}〉+ 〈{φ′1(x1), φ

′
1(y1)}〉+ ...] ,

where the dots represent terms which do not contribute to the flux in the r1 →∞ limit and

the anticommutators are computed using Eq.(22). In this way we find

〈{φ′1(x1), φ
′
1(y1)}〉 =

−2

π

(y2
1 + x2

1)

(x2
1 − y2

1)
2
, 〈{π1(x1), π1(y1)}〉 = − 4x1y1

π(x2
1 − y2

1)
2
, (94)
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so that the final result for the anticommutator reads

〈{f ′1(x1), f
′
1(y1)}〉 = − 1

2π

1

(x1 − y1)2
+ ... (95)

Performing a similar calculation for the second term in Eq.(92) and substituting expansions

of y1,2 and r2 in terms of x1,2 and r1, we find for the energy flux

J =
1

192π(2M)2
=

π

12
T 2

H, (96)

where once again we have introduced the Hawking temperature TH = 1/(8πM).

Eq.(96) shows that the energy flux at large distances is finite. We have already noted

that this result is in accord with a general theorem that deals with the structure of the

possible divergences in the stress-energy tensor computed in a gravitational background [9].

It turns out that one can derive an explicit formula for all of the possible divergences which

can occur as coefficients of specific functions of the metric and renormalize them by adding

explicit counterterms to the Einstein Lagrangian. Adding these terms to the Lagrangian

and computing the resulting modifications of the energy momentum tensor, one finds that

there are no terms which can contribute to the off-diagonal element of the energy momentum

tensor in both the flat space and the Schwarzschild metric in Lemâıtre coordinates. Thus,

since there are no possible counterterms which can remove divergences in the flux, the result

must come out finite as it indeed does. Unfortunately, for finite values of r our result still

contains logarithmically divergent terms O(ln σ) multiplied by functions of r that decrease

faster than 1/r2 in the limit of large r. We believe this to be due to the fact that we

have restricted attention to the L = 0 component of the field φ and have not considered

higher angular momenta. This observation is supported by the fact that in the case of a

two-dimensional black hole, where higher angular momentum modes are absent, our result

for the flux is finite for all values of r.

To conclude our discussion of the flux let us comment a bit on the back reaction issue. The

problem of back reaction is equivalent to the statement that the computation we are doing

is not, from the point of view of the Einstein equations, self-consistent even at the semi-

classical level since, on the one hand, for a static Schwarzschild metric the Einstein tensor

Gµν vanishes for all r 6= 0 but, on the other hand, we find that the energy-momentum tensor

of the scalar field has, at large times, a finite, uniquely defined, off-diagonal component in

this background.
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Since our approach studies the behavior of the scalar field theory starting from a well

defined quantum state at a finite initial time, we should be able to solve the problem itera-

tively, computing corrections to the Schwarzschild metric due to non-zero expectation value

of the stress-energy tensor at the right hand side of the Einstein equations. Although it is

quite difficult to do this in general, we would like to point out that a simple modification of

the metric:

ds2 = −(1− 2M(t)

r
) dt2 +

1

(1− 2M(t)
r

)
dr2 + r2dΩ2. (97)

produces the Einstein tensor of the form

−2

X(t)r2

dM(t)

dt




0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0




(98)

where X(t) = 1− 2M(t)/r and where we only retained terms which are linear in dM(t)/dt.

Although the approximation for the metric Eq.(97) is too crude to reproduce the vacuum

expectation value of the stress energy tensor of the massless field for arbitrary values of t and

r, for large values of r we can easily match the expression for the Einstein tensor, Eq.(98), to

the vacuum expectation value for the energy flux. We then obtain the well known equation

that describes the evaporation of the black hole:

dM(t)

dt
= − π

12

(
1

8πM

)2

. (99)

In principle, it should be possible to iteratively improve on this approximation and in

this case solve the back reaction problem at the quasi-classical level until relatively late in

evaporation process, thus obtaining a better insight into the black hole dynamics.

XV. AN INFALLING REFLECTING MIRROR

A. The Issues

We have discussed the canonical quantization of a massless scalar field in the background

of an eternal Schwarzschild black hole and have shown that, in the geometric optics ap-

proximation, one can compute all of the usual results such as the Hawking temperature, as
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measured by a thermometer held at fixed Schwarzschild r, and the flux through a sphere

of the same radius. This computation clearly shows that, as expected, the phenomenon of

Hawking radiation does not depend upon the part of the initial state which lies inside the

horizon, nor do they depend upon how we treat the scalar field theory near the singularity

at r = 0. In this section we discuss a variant of the basic problem which does two things:

first, it avoids having to define the initial quantum state of the free massless field theory

inside the horizon, which one could argue is an impossible state to prepare; second, it allows

us to set up the initial quantization of the free field theory without having to deal with any

complications due to the singularity. A bonus is that the existence of the singularity only

becomes relevant at a finite Lemâıtre time after the initial quantization and they geometric

optics approximation (which is exact for the two-dimensional black hole) strongly suggests

a way to deal with this issue.

Another benefit of this variant of the problem is that the issue of what is a natural

choice of the initial state for the field theory on the initial quantization surface has a natural

resolution. Before diving into this question, however, we would like to stress that our

computation shows that for practically any choice of the initial state on the λ = 0 surface

which differs from the vacuum state by a finite amount of energy, the large time behavior

of the system will be exactly the same as described in the previous Sections. Admittedly,

a sufficiently bizarre choice of the initial state can result in no Hawking radiation at late

times.

B. The Problem

From this point on we would like to consider the problem of a Schwarzschild black hole

which is initially (and for an infinite time in the past) surrounded by a perfectly reflecting

mirror of radius R0; i.e., a surface on which we assume that the field φ(t, x) = 0. Moreover,

we assume that the field theory exists only outside of this surface. If the radius of the mirror

is chosen large enough, the effects of gravity on the system are small, and so for all times

in the past there is a natural choice of initial state; namely, the ground state of the field

theory. At Lemâıtre time λ = λ0 we let the mirror start to fall into the Schwarzschild black

hole along a Lemâıtre timeline, r(λ) = (R3/2− 3(λ−λ1)/2)2/3, and ask if, starting from this

well defined initial state, we see Hawking radiation at late times. It is a simple consequence
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r = 1.4

FIG. 6: The curved dark line represents a mirror which initially, for infinite times in the past, sits

at Schwarzschild r = 1.4 and then starts to fall into the horizon along a trajectory r(λ, η). The

horizontal and vertical lines represent an incoming null-geodesic hitting the infalling mirror just

before it crosses the horizon and being reflected outwards. From the picture it is clear that the

closer it is to the horizon when it is reflected, the longer it takes to get out to large Schwarschild r.

of our previous detailed discussion that we do.

To see how this works we note that this problem is just a generalization of the problem

of the moving mirror in flat space, except that now the mirror moves in the background of a

Schwarzschild black hole . Thus, it is solved in essentially the same way. All we need to do

in the geometric optics approximation is compute the direct and reflected contributions to

the solution. Now, of course, instead of straight lines we compute the reflected contributions

by finding the null geodesics which fall in towards the mirror and are then reflected out.

If we quantize on an initial surface λ0 ¿ λ1, then for all times less than λ1 the field in the

region r ≥ R comes from geodesics which propagate in, essentially, flat space. Comparing

this with our previous calculation we see that for this region there is no generation of Hawking

radiation. Recall, in order for the thermometer to measure a Hawking temperature, or for

the energy momentum tensor to show a non-vanishing flux of apparently thermal radiation,

two events which are separated by a small interval in λ must, when traced back to the

initial surface of quantization by null geodesics, come from points which are exponentially
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closer together than when they started out. As we saw in the previous discussion, this only

happens when these null geodesics pass very close to the horizon. This means that the late

time Hawking radiation comes from those rays which are reflected from the mirror as it

passes through an exponentially small region near the horizon (see Fig.6). This argument

tells us that the Hawking radiation seen at large future times is generated from points on

the initial surface of quantization which lie in a small neighborhood of the point r0, which

is defined by the condition that an infalling null geodesic drawn from this point would hit

the mirror just as it passed through the horizon. The point, r0, plays the same role as the

corresponding point x0(t, x) in our discussion of the moving mirror.

Obviously, in order to suppress the Hawking radiation in this setting, one would need to

significantly modify the vacuum expectation values of field operators and their products at

what is essentially an arbitrary point, r0. It is this strange requirement on the initial state

that we consider to be unnatural and from this we conclude that the Hawking radiation is

a robust phenomenon practically independent of the initial state.

C. Recap

What have we learned from this problem? First, it is clear that in this formulation of

the problem there is no need to construct an initial quantum state which spans the horizon;

nevertheless we see the Hawking radiation. Moreover, we see that starting from the ground

state of the free field theory (i.e., a Bunch-Davies vacuum) is the sensible thing to do. Next

we see that maintaining the condition φ(r) = 0 along the trajectory of the mirror is possible

until the mirror hits the spacelike surface r = 0, at which time we see that for λ < λ0 the

field vanishes, but for λ > λ0 it does not. While one could worry that this is an artifact of

the fact that the geometric optics approximation is not good near r = 0, the same thing is

true for the two-dimensional black hole for which it is exact. What does this mean?

We would suggest that there is a simple answer to this question; namely, that for λ > λ0

it is necessary to include the degrees of freedom φ(λ, 0) and π(λ, 0) when one defines the

time dependent Hamiltonian H(λ). (Remember, on r = 0 the Lemâıtre time variable, λ,

plays the role of a spatial variable.) This, after all, is the result one expects from Fig.6

where, following the Lemâıtre time-lines, we see that the initial quantization surface wraps

onto the surface consisting of the section of r = 0 between λ and λ0 and the spacelike surface
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corresponding to fixed λ for all values of r. Note that there is no issue of probability leaking

into the past of λ0 since the solution to the field equations show that φ and π vanish in this

region.

One way to see if this hypothesis makes sense is to put a boundary at r = ε, for small ε,

adopt our prescription for defining the time dependent Hamiltonian, carry out all relevant

computations and then take the limit ε → 0. To further investigate the issue of unitary

time evolution for this problem, we do exactly this for a discretized version of the scalar

field theory in the last section of this paper. That discussion will show that in this context

the background field simply plays the role of time-dependent coefficients in the free field

Hamiltonian involving a very large, but finite, number of coupled harmonic oscillators. While

the final results of this calculation are surprising and raise interesting questions, the general

idea seems to work as expected in a framework in which the question of unitary evolution is

moot, since there are no inequivalent representations of the canonical commutation relations

for a theory with a finite number of degrees of freedom.

XVI. ENTROPY

The next topic we would like to discuss is the question of the entropy of the black hole.

Clearly if we deal with a Hamiltonian system that starts in a pure state and experiences

completely unitary evolution it has zero entropy (since the entropy of a pure state is zero)

despite the fact that it exhibits all of the phenomena associated with Hawking radiation.

Nevertheless, despite this obvious statement we can slightly modify the problem we have

been discussing and construct an object which, from the point of an outside observer appears

to have an energy M , temperature TH = 1/8πM and an entropy S = AH/4, where AH is

the area of the horizon, AH = 4πM2. Let us see how this is done and then ask what is

happening.

For this purpose consider a black hole surrounded by a perfectly reflecting mirror of a

large radius R. In contrast to the infalling mirror case, however, we now assume that the field

degrees of freedom live inside the spherical mirror; i.e., in the region 0 ≤ r ≤ R. By putting

this mirror around the hole we don’t allow any energy to escape the region surrounded by

the mirror, since Tµν is locally conserved; hence the total energy of the enclosed region

is, for all times, given by the original mass of the black hole M , which can be measured

37



by an outside observer, simply by dropping a test particle and measuring its acceleration.

Next, imagine that the outside observer has a thermometer inserted through a very small

hole in the mirror. Clearly, nothing is changed in the calculation presented previously and

so this thermometer measures a Hawking temperature TH . Thus, we see that we have a

macroscopic object which appears to have an equation of state that says the energy of the

object is inversely proportional to its temperature. If we now try to use thermodynamic

concepts, the usual formula dU = T dS becomes

dM =
1

8πM
dS, (100)

so that by integrating it and by setting the entropy of a zero mass object of this type to

zero, one derives:

S = 4πM2 =
AH

4
. (101)

This is the usual Bekenstein argument. Note however that the entire discussion we have just

given is being applied to a quantum system during the period when it is certainly described

by a pure state. This makes it problematic to assign a non-vanishing entropy to the system

and so we are left asking the question what the entropy of the system constructed in such a

way means and what it tells us about the system.

In contrast to the standard notion of entropy in the equilibrium thermodynamics, the

entropy defined in this way for the system of black hole plus a massless scalar field does not

appear to tell us anything related to familiar thermodynamic concepts since we need only

look inside our reflecting mirror to see that the system, whose properties are being measured,

is never in equilibrium. This lack of equilibrium is not because the black hole is evaporating,

but because the apparently thermal flux arriving at the mirror comes from the horizon, is

reflected and then disappears through the horizon to be stored at r = 0. What we are looking

at is a steady state phenomenon in which an exponentially small region near the horizon

serves as a constant source of new radiation with essentially the same properties as the

reflected radiation. At first these assertions might seem peculiar, but we would remind the

reader that this sort of phenomenon was already seen in the case of the two-mirror problem.

Another feature of the two-mirror problem which is intimately related to this behavior is

that the two null geodesics attaching to the point (λ, r), for large enough λ, either come

directly from an exponentially thin region around the horizon, or are rays which originated

from such a region at an earlier time and then were reflected back to arrive at (λ, r). Hence,
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in the geometric optics approximation, we see that for sufficiently large λ the fields between

the horizon and the mirror are functions of fields which lay within an exponentially small

region around the horizon on the initial surface of quantization. This phenomenon is the

source of both the Hawking radiation and the reason why late time Green’s functions seem

to show no correlations over finite separations in time and space. From this argument we see

that the Bekenstein entropy is somehow related to the curious property seen in the problem

of the moving mirror, that the causal structure of the theory guarantees that after a finite

time the fields between the horizon and reflecting shell are only functions of the degrees of

freedom localized within an exponentially thin shell surrounding the Schwarzschild horizon.

At best, for this problem, the Hawking-Bekenstein entropy is a reflection of this fact.

XVII. THE INFORMATION PARADOX

Given that a Hamiltonian formulation of the problem of a massless scalar field in the

background of a large Schwarzschild black hole exists, there cannot be an information para-

dox until one comes to grips with the question of what happens during the final moments as

the black hole evaporates. While our approach doesn’t allow us to discuss these violent final

moments of the process of black hole evaporation, it does provide insight into the question

of where and how degrees of freedom which ”fall into the black hole” are stored. It also

provides a different picture as to what might happen after evaporation has taken place. It

is this picture of the evolution of the problem from its initial state to late times that we

discuss in this section.

As noted earlier, in the case of a four-dimensional black hole the ”geometric optics”

approximation fails to give an accurate description of what is happening near r = 0 but,

fortunately, this failure of the approximation is not an insuperable obstacle to obtaining a

more complete understanding of the physics. There are two reasons for this. First, if we

restrict attention to the case of a two-dimensional black hole (i.e., the theory obtained if

we restrict the metric to just the upper 2 × 2 matrix gµν , µ, ν = 0, 1), the geometric optics

approximation is in fact exact. Second, there exists a useful discretization of the problem in

Lemâıtre coordinates which allows one to consistently investigate the problem in both two

and four dimensions.

The importance of the fact that the geometric optics approximation is exact for the case of
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the two dimensional black hole is that it tells us what is happening at r = 0. Our treatment

begins by canonically quantizing the massless scalar field theory on a surface of constant

Painlevé time, λ = λ0, and so we are free to require that on this surface the field vanishes

at r = 0. For subsequent times, however, this boundary condition will be true if and only

if it is consistent with the Heisenberg equations of motion and a simple computation shows

that for λ > λ0 the field does not vanish. (If the reader is bothered by our cavalier approach

to the initial quantization we refer him back to our discussion of the infalling mirror which

showed that with a suitable modification of the problem we can separate the issue of choice

of initial state and canonical quantization from what happens at r = 0 at later times.)

From the point of view of our earlier discussion we see that the important point is that

the line (λ, 0) is spacelike. Thus, what the solution to the field equations tells us is that

restricting the integration over η to run from λ ≤ η ≤ ∞, in Eq.(14)isn’t correct; instead,

we should include the spacelike surface r = 0 running from λ0 to λ. This prescription should

have been obvious from the situation shown in Fig.2, where we see that as λ increases the

surface of fixed Painlevé time λ0 gets mapped onto the line r = 0 and the surface of fixed

Painlevé time λ. Given that we know this prescription is required in two dimensions it is

not much of a stretch to assume that the same is true in the four dimensional case.

To handle both the fact that proving the evolution of the system is unitary runs into

the problem of the existence of inequivalent representations of the canonical commutation

relations[2] and the fact that, in four dimensions, the geometric optics approximation is not

valid near r = 0, we need a formulation of the problem which avoids these issues in a way

which which agrees with the geometric optics approximation in two dimensions.

To develop this treatment of the problem we need to deal with two issues. The first issue

has to do with the fact that r = 0 is the location of a true singularity in the metric, where

the curvature diverges and one expects quantum gravity to play a role. Thus a full treatment

of this problem would perforce need to go beyond the semi-classical approximation. A less

profound technical problem is that the Hamiltonian treatment along the line r = 0 needs

to be carefully defined, especially at the points where the line r = 0 and the surface of

constant Painlevé time meet. While we have nothing to say about what the true quantum

completion of the theory of gravity might be, the second problem is easily handled if we

assume a minimum value for rmin = ε, formulate the Hamiltonian problem and then take the

limit ε → 0. For the two-dimensional problem this amounts to quantizing the field theory
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on the surface of Painlevé time λ0 imposing the condition that the field vanishes at r = ε

and then using the geometric optics construction to evaluate the field and its conjugate

momentum along the curve (λ, ε) in the future. Unfortunately, this simple construction is

not sufficient to handle the four dimensional theory.

In order to study both the two and four dimensional problems in a consistent manner,

we propose to discretize the problem by introducing a lattice in η. To do that we replace

the continuous variable η by a discrete variable ηj defined by

ηj = δ (ε + j) (102)

where δ is a lattice spacing which has dimensions of (length)3/2 and ε is a dimensionless

parameter such that rmin = (3δε/2)2/3. With this definition of the lattice we then introduce

dimensionless rescaled fields Φ, Π and the rescaled time variable

Φ(λ, η) = δ2/3φ(λ, η), Π(λ, η) = δ1/3π(λ, η), λ → λ

δ2/3
(103)

and rewrite the time dependent Hamiltonian as:

H(λ) =
1

δ2/3

∞∑

j=1

[
2Π(λ, j)2

3η(λ, j)
+

(
3

2

)5/3

η(λ, j)5/3(φ(λ, j + 1)− φ(λ, j))2

]
, (104)

using an additional assumption that

η(λ, j) = ε θ(λ− ε− j) + (ε + j − λ) θ(ε + j − λ). (105)

This is in accord with our previous remarks which say that once the field reaches the point

η(λ) = δ(ε + j − λ) = δε it stays there.

At this point we should make two observations. First, it is obvious that the number of

degrees of freedom remain the same in this latticized version of the massless field theory and

the entire effect of the metric appears in the time dependence of the coefficients appearing in

the Hamiltonian. The second, is that the lattice we have introduced is somewhat peculiar.

This is because spacing lattice sites equally in the variable η does not correspond to spacing

them equally in Schwarzschild r. In fact, since r(λ) = (3(η − λ)/2)2/3 we see that for

large values of r the spacing between two neighboring lattice points decreases like δ/
√

r.

Thus, while the lattice provides a good cutoff for the field theory inside the Schwarzschild

radius it is not an effective cutoff for the theory at large r and the discussion we gave for

continuum theory at large t and r continues to be necessary. Since, for now, we are most
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interested in the behavior of the theory near r = 0, this latticized version of the field theory

is what we need in order to discuss the physics in a way which goes beyond the geometric

optics approximation. Because the lattice Hamiltonian we have introduced is explicitly time

dependent, a full discussion of the physics of the theory would require computing the unitary

time development operator U(t), which is beyond the scope of the present paper. Despite

this, we can use this formulation of the theory to gain some better understanding of what is

happening and to discover a peculiar property of a massless scalar field in a Schwarzschild

background.

The first question which we can address using this formalism is whether the apparent time

dependence of the problem is a coordinate artifact, in that we have chosen a coordinate sys-

tem which, although free of singularities, makes the metric time dependent. Fortunately,

we can buttress our claim that the problem is intrinsically time dependent, even without

computing the operator U(t), by observing that the spectra of the instantaneous Hamilto-

nians H(λ) are changing as a function of time. Qualitatively we can see that this is the case

by comparing the spectrum of the Hamiltonian, Eq.(104), for λ = 0, against what it would

be for a relatively large value of λ. When λ = 0 and δ is very small this Hamiltonian will

be a discrete version of the continuum Hamiltonian we discussed earlier and we expect the

spectrum to be that of the zero angular momentum mode of a free massless field theory, i.e.,

proportional to k2. Now, when λ is large, then approximately λ lattice sites lie on the curve

r = ε and the part of the Hamiltonian H(λ) which refers only to these sites has the form

H1 =
λ∑

j=0

2Π(j)2

3ε
+ (

3

2
ε)5/3 (φ(λ, j + 1)− φ(λ, j))2 (106)

which after rescaling Π(j) to absorb the factors of ε, becomes

H
′
1 =

λ∑

j=0

Π
′2

2
+

1

2
4

(
3ε

2

)2/3

(φ
′
(λ, j + 1)− φ

′
(λ, j))2 (107)

Since this has the form of a latticized nearest neighbor interaction we see that for large λ

the spectrum of the kinetic term will be

E(k) = 4
(

3ε

2

)2/3

(1− cos(k)) (108)

where 0 ≤ k ≤ 2π/λ since λ is the number of sites on the lattice. The remaining part of

the Hamiltonian consists of two pieces. The first piece, which we will ignore for now, is a
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FIG. 7: A plot of the eigenvalues of the latticized Hamiltonian for 800 lattice sites with ε = 0.001.

Energies are plotted versus the variable kp = 2πp/800, for p = 0..799.

single term linking the curve r = ε (characterized by the condition that η(λ, j) = ε) and the

points for which η(λ, j) = ε+ j−λ, and the second piece that consists of an infinite number

of terms having essentially exactly the same form as the Hamiltonian for λ = 0 which has

a spectrum which goes like k2. Clearly the growth of a part of the spectrum which behaves

like a free field with a very different speed of light from the rest of the theory represents

a major change in the spectrum and thus constitutes a proof that this set of Hamiltonians

really represent time dependent physics.

In an attempt to achieve a better understanding of how these two different free field

theories are linked together, we diagonalized the Hamiltonian in Eq.(104) for lattices which

initially, in Schwarzschild coordinates, cover the region 0 ≤ r ≤ 20RS, where RS stands for

the Schwarzschild radius. Fig.7 shows a plot of the spectrum for a lattice with 800 lattice

sites, δ = 0.025 and ε = 0.001. The energy is plotted against the variable kp = 2πp
800

where

p is an integer running from 0 to 709 and represents what the lattice momentum would be

for a very large number of lattice points. In this case we expect small corrections due to

the finite size of the matrix corresponding to the kinetic term. We already noted that for a

very large lattice we expect this plot to be proportional to k2. In Fig.8 we plot this result

scaled to have a maximum value of (2π)2 against k2 over almost half the range of k in order

to show that even for a finite lattice the agreement with our expectations is quite good.
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FIG. 8: We have scaled the energy to run from 0 to 2π2/800 vs square of momentum for kp =

2πp/800. The plot is limited to a bit less than half of the total range to show how small the

deviations are from what we would expect in the infinite volume limit.

Next, in order to exhibit the difference between this situation and that for finite λ, we plot

the eigenvalue spectrum of the Hamiltonian for a lattice of 1200 sites, ε = 0.001, δ = 0.016

and λ = 300. This is a situation which corresponds to having about 300 lattice sites on

the curve r = ε and 900 points extending from r = ε + 1 out to a distance of 20 times

the Schwarzschild radius. Fig.9 shows two curves. The first is a plot of the lowest 300

eigenvalues of the kinetic term divided by ε2/3 and plotted against a momentum variable

kp = 2πp/300, where we have scaled the eigenvalues to make them show up on the plot.

The choice of momentum variable is motivated by the fact that, as we have noted, the first

300 terms in the Hamiltonian would have a spectrum almost proportional to (1 − cos(kp))

if we dropped the term linking them to the next 900 terms. The second curve is a plot of

the next 900 eigenvalues of the Hamiltonian versus a momentum kp = 2π/900. This should

be quite similar to the curve shown in Fig.7 and it is. We should emphasize that while for

the case λ = 0 this spectrum starts at zero, in the case λ = 300 it doesn’t; admittedly that

fact is not obvious in this plot.

A cleaner picture of what is happening in the low energy region is shown in Fig.10, where

we have chosen to replot both curves. This time we haven’t rescaled the first 300 eigenvalues

and we have greatly expanded the vertical scale so as to see what is happening near zero
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FIG. 9: The lower curve represents a plot of the first 300 eigenvalues of the Hamiltonian for

λ = 300. These correspond to the number of points which lie on r = ε at this time. This curve is

scaled to make it visible and it is plotted vs momenta kp = 2πp/300. The second curve represents

the remaining eigenvalues, which naively correspond to the fields lying between r = ε and r = 20R.

This is plotted vs the variable kp = 2πp/900.

energy. What one immediately sees is that the branch of the plot which we identified as

belonging to the states localized on r = ε is in fact massless, but the second branch, which

we thought should look like the spectrum of the λ = 0 theory actually starts from a small

gap which lies just above the final value of the first branch. How can this happen? The

answer seems to be that the term which links the two distinct pieces of the Hamiltonian

mixes what would have been degenerate levels and splits them to produce a continuously

rising spectrum. In particular this would suggest that the lowest energy states we thought

of as completely localized at r = ε are in fact linear superpositions of such states and low

energy states of the λ = 0 problem which are not localized at all. Clearly, it will require more

work to convert these results into a better understanding of how and where the information

which enters the horizon is really stored.

Having shown that analysis of the spectrum of the time dependent Hamiltonian proves

that the dynamics is time dependent, we wish to conclude with a few remarks about the

scenario this picture suggests for the last moments of black hole evaporation. Clearly, the

picture strongly implied by our discussion is that during the evaporation process a remnant
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FIG. 10: A plot of the two pieces of the eigenvalue spectrum of the λ = 300 Hamiltonian on an

expanded scale to show that the r = ε and ε < r < 20R mix and produce a gap.

is formed. This remnant represents almost zero-energy degrees of freedom which can be

associated with the region r = ε, since it is only by including these degrees of freedom that

we preserve the unitary evolution of the system. The question therefore is what happens to

these degrees of freedom when the black hole evaporates.

One argument against a remnant would be that as holes evaporate these remnants should

announce their presence in some dramatic fashion. Since our treatment of the problem

encodes the changes in the metric into the changes in the coefficients appearing the field-

theory Hamiltonian we can approach this question by asking what really happens to these

coefficients during the final, rapid evaporation phase. If the coefficients of the Hamiltonian

freeze into the form they had shortly before the point at which the methods used in this paper

break down, then we see that finally the system will be composed of two very weakly coupled

subsystems and the information stored in the remnant will not burst out, but at best dribble

out over very long times. Obviously these remarks are not a proof of anything. At best

they describe an alternative scenario for what might happen. What we wish to emphasize

is that the Hamiltonian formulation of the problem coupled with lattice techniques gives

one a new way of probing these issues. Hopefully a better understanding of whether all the

information comes out will emerge as one studies this problem in greater detail.
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XVIII. SUMMARY

In the preceding sections of this paper we argued that a consistent Hamiltonian formula-

tion of the theory of a massless scalar field in the background of a Schwarzschild black hole

exists, but at the expense of having an explicitly time-dependent Hamiltonian. We then

reviewed the familiar discussion of the moving mirror problem as a way of emphasizing that

a perfectly understood system with a time dependent Hamiltonian can evolve unitarily and

still some observers will think that they are in a thermal bath of quanta. The purpose of this

review was to emphasize that when one is dealing with a non-equilibrium system and one

imposes the ideas of equilibrium thermodynamics one can come to surprising conclusions.

Following the discussion of the moving mirror problem, we returned to the problem of

the Schwarzschild black hole and used essentially the same techniques to show that, with

reasonable assumptions about the initial state, our method leads to the usual result of

Hawking radiation.

There were two reasons for this discussion. First, we wanted to show that our treatment

of the problem reproduces familiar results. Second, we used it to argue that formulating

the theory on a spacelike slice at finite times clearly exhibits the fact that the Hawking

radiation phenomenon emerges under rather general assumptions about the initial state on

the quantization surface. We included a discussion of the case of a massless scalar field and

an infalling reflecting mirror to sharpen this point. Assuming that the mirror is static for

large times in the past, we can reasonably argue that it is proper to consider the system

to be in the ground state of the theory, or in a state which differs from it by a finite

energy. This naturally leads us to the usual late time Hawking radiation. Moreover, we

saw that this Hawking radiation came from a place on the original surface of quantization

which is far from the mirror and corresponds to the place from which null geodesics must

depart so as to be scattered from the mirror within an exponentially small distance of the

horizon. Clearly this is not a special point and its location depends upon when the mirror is

allowed to move. Thus, we see that in order to get rid of the Hawking radiation by suitably

modifying the initial state would amount to making a very strange ad-hoc assumption about

the expectation values of field operators on the initial quantization surface.

Having shown that our discussion leads to the usual picture of what external observers

would measure we turned to the question of black hole entropy. Once again we discussed
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the case of a black hole surrounded by a static mirror, but this time with the field theory

restricted to the inside of the sphere. We then argued that from the point of view of an

outside observer this system would look like a classical body with a temperature equal to

the Hawking temperature and an equation of state which would imply, for an equilibrium

system, an entropy equal to the Hawking-Bekenstein entropy. Next, we looked inside the

system and saw that it was never in equilibrium and that it was in fact always in a pure

state.

Finally, we identified the “information paradox” with the question of what is really hap-

pening at the spacelike singularity r = 0. By discretizing our time-dependent Hamiltonian

and studying the behavior of H(λ) as a function of λ we arrived at a very interesting picture

which implied both that the modes at r = 0 and the modes going out to large Schwarzschild

r mix. This left us with the possibility that the endpoint of the evolution of the hole when

it evaporates is a field theoretic system in which some of the information is stored in a

very weakly coupled (but not decoupled) remnant and some has been squeezed out as it ap-

proached r = 0. Clearly the questions raised in this section of the paper by far outnumber

the results and these issues merit further study.

In conclusion, we would like to reiterate the point made in the introduction to the paper.

Our studies show that the theory of a massless scalar field in a black hole background is

perfectly consistent with unitary time evolution and that somehow the theory resolves any

supposed paradoxes in its own way. This led us to the conclusion that this semi-classical

problem alone does not provide any smoking gun telling us what a correct theory of quantum

gravity must look like.
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