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Abstract

We extend analysis of Ref. [1] of the closed orbit instability driven by the resistive
wall impedance for the case of strong focusing lattice. A numerical estimate for
the Low Energy Ring of PEP-II shows that the threshold current is three times
higher than the nominal one.
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1 Introduction

It was pointed out in a recent paper [1] that multi-turn accumulation of the transverse
resistive wall wake field may lead to a coherent instability of a closed orbit. In contrast to
the conventional transverse instabilities, this one is not coupled to the betatron oscillations
and is not affected by chromaticity effects or Landau damping.

Assuming that the transverse impedance per unit length is given by Z⊥(s,Ω), an equation
for the closed orbit trajectory y(s) and its drift eigen-frequencies Ω was found in Ref. [1]:

y(s) =
iNr0

2γT sin(πν)

∮
ds′Z⊥(s′,Ω)

×
√

β(s)β(s′) cos[πν − ψ(s, s′)](y(s′)− y0(s
′)) . (1)

Here N is the total number of particles in the ring with the classical radius r0, γ is the
relativistic factor, T is the revolution period, ν is the tune, and β(s) is the beta-function.
The phase advance ψ(s, s′) between two points in the ring, s and s′, is determined so that
0 < ψ(s, s′) < 2πν. The closed orbit coordinate y(s) at azimuth s is measured here relatively
its position at zero current, and y0(s) is an offset of the chamber axis relatively this zero
point.

Eq. (1) is valid for arbitrary long-range wake. For the resistive wall impedance of a finite
thickness vacuum chamber Z⊥(Ω) can be found explicitly [2, 3]

Z⊥(Ω) = −i
Z0

πb2

{
1/(κb), for |δ| � d,
g/(1− iΩ/λ), for |δ| � d.

(2)

Here κ = (1 − i)/δ with δ = c/
√
2πσΩ as the skin depth, b and d are the chamber radius

and thickness, Z0 = 4π/c = 377 Ohm. The numerical factor g and the wake decay rate λ
depend on the external surrounding outside of the chamber at r > b+ d. In case of vacuum,
g = 1/2 and λ = c2/(2πσbd); for a vacuum chamber immersed into magnetic material with
µ � 1, g = 1 and λ = c2/(4πσbd).

In the smooth approximation, solutions of Eq. (1) can be found in terms of Fourier
components yn =

∫
y(s) exp(ins/R) and their eigen-frequencies Ωn ≡ iΓn, where R = Π/(2π)

is the average radius of the storage ring. As it is discussed below, the resistive impedance
has to be taken in the limit of large skin depth, |δ| � d. In this case, the eigen-frequency
turns out to be equal to

Γn = −λ

(
1− N

Ns(n)

)
, (3)

where Ns(n) is the threshold number of particles for the azimuthal harmonic n,

Ns(n) =
2π2b2γν(ν − n)

gr0Π
. (4)

The most unstable is the mode which number is equal to the tune integer part, n = [ν];
modes with n > [ν] are always stable. Note that at the threshold Ω vanishes and the skin
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depth tends to infinity; thus, the thick-skin impedance approximation has to be used in a
vicinity of the threshold.

The applicability condition for existence of this modes is the requirement that the skin
depth calculated for the frequency Ωn should be much larger than the wall thickness of the
vacuum chamber. Using Eq. (3), it is easy to see that d/|δ| 	 √|1−N/Ns|d/b and the
condition d/|δ| � 1 is satisfied when N � Nsb/d. It turns out that the last condition is
always satisfied in practice.

2 Strong Focusing Lattice

The smooth approximation may not be accurate enough for real lattices with significant
variation of the lattice functions along the orbit. At the same time, variation of the vacuum
chamber characteristics in the ring can often be neglected in first approximation. In other
words, the resistive impedance can be taken as a constant along the ring. This leads to the
following integral equation for the closed orbit motion:

(
1 +

Γ

λ

)
y(s) =

Nr0Z0g

2πb2γT sin(πν)

∮
ds′

√
β(s)β(s′) cos[πν − ψ(s, s′)]y(s′) . (5)

The kernel of this integral equation is real and symmetric, hence all its eigenvalues 1 + Γ/λ
are real. This means that all the eigen-frequencies Γ are real, ImΓ = 0.

Equation (5) can be simplified if the lattice consists of M identical cells with the phase
advance µc. Let L be the cell length, L = Π/M . In what follows, we will also assume that M
is a large number, M � 1, which is typical for rings with strong focusing. The periodicity
of the lattice allows the use of the Floquet’s theorem — the translation of the eigenfunction
y(s) by the period L results in the multiplication by a phase factor: y(s+L) = exp(iqL)y(s).
Since y(s) is also a periodic function with the period Π, the parameter q must satisfy the
condition q = 2πn/Π, where n is an arbitrary integer. Introducing a new function ξ(s) such
that

y(s) = eiqsξ(s), (6)

we conclude that ξ(s) is a periodic function with the period L, ξ(s) = ξ(s+L). Substituting
Eq. (6) into Eq. (5) yields

(
1 +

Γ

λ

)
ξ(s) =

Nr0Z0cg

4π2b2γL(ν − n)

∫ s

s−L

ds′
√

β(s)β(s′) exp(iχ(s, s′))ξ(s′) , (7)

where χ(s, s′) = ψ(s, s′) − (s − s′)µc/L is a periodic, with the period L, oscillating part of
the phase advance. In the derivation of Eq. (7), we assumed that ν, n � 1 and neglected a
term of order of (ν + n)−1 in comparison with (ν − n)−1.

Rearranging terms in Eq. (7) we can express the growth rate of the instability as follows

Γ = λ

(
N

Nth

− 1

)
, (8)
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where

Nth =
Ns

Λ
, (9)

with Ns as the smooth-approximation threshold given by Eq. (4) and Λ as the largest
eigenvalue of the integral equation

Λξ(s) =
µc

L2

∫ s

s−L

ds′
√

β(s)β(s′) exp(iχ(s, s′))ξ(s′) . (10)

Note that in a smooth approximation when β(s) = const and χ(s, s′) = 0, one finds Λ = 1.
For real lattices the parameter Λ differs from unity and can be calculated by numerical
solution of Eq. (10) on the lattice period L.

There is, however, a different way to find the threshold of the instability, which reduces
the problem to the solution of a differential equation. To formulate this equation we note
that at the threshold, in addition to the design equilibrium orbit in the ring, there exists
another static trajectory, given by the solution of Eq. (5) at Ω = 0. The appearance of the
new orbit is due to the interaction of the beam with the wall and shifting of the betatron
tune to the nearest integer value, ν → ν − {ν}. In the case of a periodic lattice, it means
that the phase advance per unit cell decreases by ∆µ = 2π{ν}/M ; note that since we assume
M � 1, the change of the phase advance is small, ∆µ � 1. Assuming that the interaction
with the wall is due to the electrostatic force only (there is no magnetic material outside of
the vacuum chamber), it is easy to calculate the image charge force Fy acting on an electron
in a round pipe of radius b when the beam offset is equal to y: Fy = 2e2Ny/Πb2. In a more
general case, Fy = 4ge2Ny/Πb2, with the factor g introduced in Section 1. With this force,
the equation of motion for an electron in a magnetic lattice is

d2y

ds2
+ k(s)y = wy , (11)

where

w =
Fy

mc2γ
=

4Nr0g

γΠb2
, (12)

and k(s) is the focusing strength of the lattice. Using the method of Green’s function one
can show that the solution of Eq. (11) with the period equal to the ring circumference Π
also satisfies Eq. (5) at Ω = 0. Conversely, in case of Ω = 0, the solution of Eq. (5) is also
a solution of Eq. (11).

Note that finding a periodic solution of Eq. (11) is an eigenvalue problem — such
solutions exist only for special values of the parameter w.

The coherent tune shift in the cell can be found in the thin-lens approximation for a
FODO lattice from the Twiss presentation of the cell transfer matrix, where the right hand
side of Eq. (11) is considered as a small perturbation. Introducing the drift matrix Md(l)
for a drift of length l and the focusing quad matrix Mq(f) with the focal length f ,

Md(l) =

(
1 l
0 1

)
, Mq(f) =

(
1 0

−f−1 1

)
, (13)
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one can calculate that the effect of the weak focusing due to the presence of the right hand
side in Eq. (11) results in the change of the drift matrix Md(l) → Md(l) + Mw(l), where

Mw(l) = w

(
l2/2 l3/6
l l2/2

)
. (14)

The full transfer matrix M for the FODO cell can be written as

M = Mq(2f) · (Md(L/2) + Mw(L/2)) · Mq(−f)

· (Md(L/2) + Mw(L/2)) · Mq(2f) . (15)

The phase advance for this transfer matrix consists of its unperturbed value µc and the
perturbation due to the image forces ∆µ ∝ w. Keeping only linear terms in w results in the
following phase shift ∆µ

∆µ = −wL2 5 + cos(µc)

12 sin(µc)
. (16)

The condition for the instability is that the tune shift M∆µ/(2π) for the ring is equal to
the fractional part of the nominal tune

∆µ = 2π
{ν}
M

. (17)

Comparing this condition with Eqs. (9) and (4) gives the parameter Λ for the FODO lattice

Λ =
µc(5 + cos(µc))

6 sin(µc)
. (18)

The plot of Λ as a the function the bare phase advance µc is shown in Fig. (1). Note that
Λ = 1.31 for a 90 degrees lattice.

3 Estimate for PEP-II

We will estimate the instability condition for the Low Energy Ring (LER) of the PEP-II
assuming a lattice with 90 degrees phase advance, µc = 90◦, and L = 15.2 m, M ≈ 150,
{ν} ≈ 0.5. The ring consists of straight sections, with the round pipe of radius b = 4.76
cm, and arcs where the pipe cross section can be approximated by an ellipsoid with the
vertical half axis 2.5 cm and the horizontal one 4.8 cm. The length of the straight sections
is 517 m, and the total length of the arcs is 1522 m. The ring circumference Π is 2200
m and the magnets occupy only a small fraction of the ring. In the ellipsoidal part of the
vacuum chamber we will approximate the pipe by two parallel horizontal plates located at
the distance equal to 5 cm.

For parallel plates without magnetic material outside, the impedance factor g in Eq. (2)
contains two parts: driving and detuning, see Ref. [4]. The driving impedance describes
an electro-magnetic reaction on the beam offset, while a test particle is not deflected. The
detuning impedance describes a force felt by the test particle when it is deflected, but the
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Figure 1: Factor Λ as a function of the bare phase advance µc.

beam is on axis. For the problem under study, the test particle has the same offset as the
beam; thus, the effective impedance is a sum of the driving and detuning terms. In the
low-frequency case, both impedances reduce to a reaction of the image charges and can
be calculated by a summation of forces from an infinite series of reflections. This method,
presented in Ref. [5] for calculation of the Laslett tune shift (detuning), leads to the detuning
contribution to the factor g as gdetuning = π2/48, assuming that b is a half-gap between
the plates. The same method applied to the driving term gives two times larger value:
gdriving = π2/24. Both contributions have the same sign (defocusing), so the final result is
given by their summation: g = gdriving + gdetuning = π2/16.

From Eq. (5) it follows that in case when the pipe properties vary along the ring, the
quantity b2/(gΠ) should be replaced by the inverse integrated value of g/b2

b2

gΠ
→

(∫
ds

g(s)

b2(s)

)−1

.

Using this relation and assuming [ν] = 36, {ν} = 0.5, γ = 6000, we find the critical current
for the instability in LER of PEPII

Ith = 7.2 A . (19)

This should be compared with the design current I = 2 A.

4 Discussion

Even if the beam orbit is stable, the mode can be observed as a slow motion of the beam
orbit under the influence of external perturbations. The equation that describes this motion
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can be obtained in the following way.
In the smooth approximation, the closed orbit equation (1), expressed in terms of the

azimuthal Fourier components yn can be also presented as

1

λ

dyn(t)

dt
+ yn(t) =

N

Ns(n)
(yn(t)− y0n) , (20)

where y0n is the Fourier component of the chamber offset relative to the equilibrium position
of the beam with a zero current, and a substitution Γ = d/dt has been applied. A solution
of this equation,

yn(t) = −y0n
N

Ns(n)−N
(1− eΓnt) + yn(0)e

Γnt , (21)

shows evolution of the closed orbit from a non-zero initial condition yn(0). Below the thresh-
old Γn < 0, and the closed orbit returns to its equilibrium position −y0nN/(Ns(n)−N) with
time Γ−1

n .

5 Conclusion

In this paper we presented analysis that extends the previous treatment of Ref. [1] of the
closed orbit instability driven by the resistive wall impedance. Rather than using an integral
equation, we showed that the threshold of the instability can be also found as a solution of
a differential equation for the orbit that accounts for the interaction of the beam with image
charges in the wall. For large rings, the new approach can be more effective than the direct
solution of the integral equation, and it is easily generalizable for non-periodic lattices.

Our estimate for the PEPII LER shows that the critical current for the instability is
about 3 times higher than the nominal current in the ring. The instability should be taken
into account in the study of future upgrades of PEPII [6] which call for much higher current
in the rings. To obtain more accurate estimate for the instability threshold, an additional
analysis is needed that takes into account the real lattice of the machine and a possible
displacement of the equilibrium orbit from the axis.
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