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1. Introduction

String theory is known to have many different vacua. An important direction of

research aims at understanding whether these different vacua are connected. For com-

pactifications to 4 dimensional Minkowski space the situation is as follows. With N = 4

supersymmetry (susy), it is known that there are several disconnected components of the

space of vacua (see e.g. [1]). With N = 2 susy, naively disconnected components are

known to be connected up in a large web [2], although it is premature to say that all

such models are connected. For N = 1, less is known,1 although some classical obstruc-

tions to connecting vacua are circumvented by string theory via chirality changing phase

transitions [3].

In the discussion above, the notion of connectedness relates to moving along a moduli

space of degenerate solutions. It is known that Minkowski vacua with different amounts

of susy can never be connected, in this sense. A theorem to this effect was proved for the

perturbative heterotic theory in [4]. However, it is clear that weaker notions of connected-

ness exist and could be physically relevant. For instance, two vacua can be connected by

a finite potential barrier, Vbar. For Vbar much less than the four dimensional (4d) Planck

scale M4, low-energy field theory would correctly describe the dynamics in rolling betwen

these vacua. Such a notion of connectedness might be relevant in cosmology. A related

weaker notion of connectedness requires the existence of vacuum bubbles of one vacuum

inside the other, with the domain wall separating the two having a tension σ � (M4)3.

In this letter we show that one can unify some vacua with different amounts of super-

symmetry in this weaker sense. Our starting point is IIB string theory compactified on the

T 6/Z2 orientifold. This vacuum has N = 4 susy and is a dual description of the heterotic

theory on T 6. Appropriately turning on RR and NS fluxes yields vacua with N = 3, 2, 1

susy [5,6,7]. We show that the vacua with reduced susy can be connected to the N = 4

vacuum, and to each other, by spherical domain walls. In the ten dimensional string the-

ory, these domain walls are made up of NS and Dirichlet five branes, each of which wrap

an internal three cycle, besides spanning the spherical boundary. It is important to note

that the tension of the resulting domain walls can be made parametrically lighter than

(M4)3 (by tuning the compactification volume V , as we will demonstrate). This ensures

1 In this case, we generically expect the moduli to be lifted by quantum corrections. For this

reason our discussion will mostly focus on N ≥ 2 vacua, but our idea would also apply to any

N = 1 models where the flux-generated no-scale potential is the full potential.
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that the vacuum inside the bubble is not shielded from the one outside by a black hole

horizon, and is available for inspection from the outside.

The bubble configuration we construct is not BPS and evolves in time, with a trajec-

tory determined primarily by the tension of the domain wall. By tuning the radius of the

internal space, one can make the lifetime of the bubble arbitrarily large.

We should emphasise that the vacua under consideration here are quantum mechan-

ically stable, and all of them have zero ground state energy. As a result, the spherical

bubbles referred to above are not produced by quantum tunneling, as in the decay of a

false vacuum.

In §2, we briefly review the construction of the various vacua in IIB on T 6/Z2 with

fluxes. §3 describes the domain wall brane configurations which interpolate between the

different vacua. We discuss the construction of the domain walls from wrapped five branes,

their resulting dynamics, and the stability of the walls. As a concrete example we consider

a bubble of the standard N = 4 vacuum inside a theory with N = 2 susy. We close with

a discussion in §4.

2. Vacua with various N in IIB on T 6/Z2

Our starting point is IIB theory compactified on a T 6/Z2 orientifold. This model is

T-dual to Type I theory and preserves N = 4 supersymmetry. 16 D3 branes are needed

to cancel the RR tadpoles arising from the O3 planes. The resulting low energy theory is

SO(32) N = 4 supersymmetric Yang-Mills theory coupled to N = 4 supergravity.

However, this is not the most general possibility. The IIB compactification also admits

other superselection sectors in which we turn on quantized fluxes of the three-form field

strengths H and F originating from the NS-NS and RR sectors. That is, H and F satisfy

the conditions
1

(2π)2α′

∫

γ

F = mγ ∈ Z,
1

(2π)2α′

∫

γ

H = nγ ∈ Z, (2.1)

where γ labels the classes in H3(T 6,Z). For the case of a six-torus with coordinates xi

and yi, each of period 1, we can be very explicit about this choice. Let dξa = dxi, dyj , 1 ≤
i, j ≤ 3, denote six one-forms. Then, a basis for H3(T 6,Z) is given by the twenty three

forms, dξa ∧ dξb ∧ dξc, 1 ≤ a, b, c ≤ 6. For the most general choice of flux, 1
(2π)2α′F and,

1
(2π)2α′H can be expanded in this basis with integer coefficients.
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In the presence of such fluxes, the full tadpole cancellation condition for the D3 brane

charge reads:2
1

2(2π)4(α′)2

∫

T6

H ∧ F +ND3 = 16. (2.2)

Here we consider only the susy preserving case with no anti-branes. Susy breaking by

adding anti-branes and vacuum bubbles in similar backgrounds was studied in [8].

In sectors with non-vanishing flux, one finds an effective (super)potential for the

Calabi-Yau complex structure and Kähler moduli [9] (for a detailed derivation, see Ap-

pendix A of [10]). Supersymmetric vacua are located at points in complex structure moduli

space where G = F −φH is of type (2,1) (here φ is the IIB axio-dilaton), while the Kähler

structure J should be chosen to make G primitive (i.e. satisfy J∧G = 0). These conditions

were studied in detail for the case of T 6/Z2 in [6], and it was found that for generic choices

of the fluxes there are no supersymmetric critical points. However, for suitable non-generic

choices of flux, one can find vacua with N = 1, 2, 3 supersymmetry. In these vacua, typ-

ically all the complex structure moduli and some of the Kähler moduli are fixed. The

dilaton-axion is also typically fixed with gs ∼ O(1). One Kähler modulus, governing the

overall volume of compactification V , is never lifted in these models; this will be important

in the discussion below.

In §3.3, a specific N = 2 vacuum will be considered. It corresponds to the choice of

flux
1

(2π)2α′
F = 2dx1 ∧ dx2 ∧ dy3 + 2dy1 ∧ dy2 ∧ dy3

1

(2π)2α′
H = 2dx1 ∧ dx2 ∧ dx3 + 2dy1 ∧ dy2 ∧ dx3.

(2.3)

Following [5,6] one easily finds that there is a moduli space of N = 2 supersymmetric

vacua with these fluxes. A particular locus in this moduli space has φ = i and a T 6 which

is of the form (T 2)3, where each two-torus has complex structure τ = i. The Kähler form

can be chosen to be J ∼ iR2
∑3
i=1 dzi ∧ dz̄i. This is just a product of square two-tori with

overall volume R6.

A quick way to see that the vacuum preserves N = 2 supersymmetry is by noticing

that along this locus, G takes the form

1

(2π)2α′
G = − i

2
(dz1 ∧ dz̄2 ∧ dz3 + dz̄1 ∧ dz2 ∧ dz3). (2.4)

N = 2 susy requires that there be another inequivalent choice of complex structure which

keeps G of type (2, 1); this corresponds to taking z1,2 → z̄1,2, z3 → z3.

2 Here we ignore the possibility of exotic O3 planes and choose the integer coefficients which

characterise the flux to be even, as explained in [7].
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3. Vacuum bubbles from D5 and NS5 branes

3.1. Overview

The key idea in our construction of bubbles is the following: by wrapping D5/NS5

branes on three cycles of the compact manifold it is possible to construct domain walls in

R3,1 across which the quantised fluxes in the compact manifold jump. E.g., wrapping a

D5 brane on a three cycle causes the flux of F through the dual three cycle to jump by

one unit. Since the vacua reviewed above differ essentially in the RR and NS fluxes along

the compact directions, this allows different vacua to be connected.

In fact this idea was used in [9] to construct BPS domain walls betweenN = 1 vacua in

the setting of non-compact Calabi-Yau constructions. Our interest is in compact internal

manifolds, resulting in flat 4d spacetime. In this case, we do not expect BPS domain walls

to interpolate between vacua with different amounts of supersymmetry for two reasons.

First, the central extensions of the supersymmetry algebra do not admit BPS domain

walls of nonzero tension between supersymmetric Minkowski vacua in supergravity (see

e.g. [11,12]).3 Second, planar domain walls have codimension one and are often singular

in supergravity, see e.g. [13].

With this in mind, we construct non-BPS spherical domain walls in R3,1, separating

a bubble of one vacuum inside the wall from another vacuum outside. Two requirements

must be met by the domain wall to consistently interpolate between the vacua. First,

the flux of F,H must jump appropriately across the wall. Second, the moduli must vary

smoothly across it. It is clear that any jump in F,H fluxes can be engineered by choosing

D5,NS5 branes wrapping three cycles in the appropriate homology classes. We will choose

the minimum area three cycle in each homology class which is consistent with our boundary

conditions. The domain wall is then the composite configuration made out of the resulting

D5,NS5 branes.

To meet the condition on the moduli, we restrict ourselves here to considering pairs of

vacua such that moduli lifted in both vacua are fixed to the same values. The remaining

moduli, unfixed in one or both vacua, can then simply be tuned to take the same values

on both sides of the wall (we will show that the backreaction of the walls is small enough

to make this a good approximation).

3 This is not true in global supersymmetry. The additional constraint in supergravity arises

roughly because one needs the superpotential W to vanish for a Minkowski vacuum.
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In fact, this condition is not very restrictive, and allows our construction to connect

several vacua, including many with different susy’s. For example, since none of the moduli

in the standard N = 4 vacuum are fixed, it can be connected to all the other vacua in the

above manner. This is enough to establish that all the vacua of §2 are connected by the

above construction.

The two vacua connected by the wall will in general have different numbers of D3

branes (2.2). One can verify that the extra D3 branes in one vacuum terminate on the 5

branes making up the domain wall consistently [14]. Also, we note that being composed

of 5 branes, the resulting domain walls have a thickness of order the string scale. As a

result, in analysing their dynamics below we can work in the thin wall approximation.

Some features of the resulting domain wall dynamics were discussed in the introduc-

tion. Let us verify that the tension of the domain wall, compared to (M4)3, can be lowered

by tuning the volume modulus V ∼ R6. In the estimate below, we set gs ∼ O(1). A

5-brane wrapping a three cycle of size R3 gives rise to a domain wall tension

σ ∼ R3/(α′)3. (3.1)

On the other hand, M4 ∼ (α′)−2R3, so that σ/(M4)3 ∼ (α′)3/R6. This ratio can be made

small by taking R to be large.4

The rest of this section is organised as follows. The time dependent dynamics of the

domain wall is analysed in §3.2, under the assumption that the the wall moves as a single

cohesive unit, driven primarily by its net tension. A specific example of two vacua and

the interpolating domain wall is discussed next, in §3.3. Finally in §3.4, the relative forces

between branes which make up the wall are analysed. These forces are found to be small,

thereby justifying the analysis of §3.2.

3.2. Bubble dynamics

We begin by neglecting the backreaction of the domain wall on the metric and other

closed string modes, and analyse its trajectory in flat space. Next, we estimate the back-

reaction effects and show that they are small most of the time. All along we work with

walls of tension σ � (M4)3.

4 The tension of the domain wall depends on both the volume and the moduli that control the

sizes of the relevant three cycles. We will show that the backreaction of the wall on all moduli,

including these, is small.
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A spherical domain wall in flat space is described by the action,

S = −
∫ tf

ti

dt 4πσρ2
√

1− ρ̇2, (3.2)

or equivalently an energy

M =
4πσρ2

√
1− ρ̇2

. (3.3)

The dynamics is easy to work out in detail. For fixed M and initial outward radial

velocity, the bubble expands to a maximum size

4πσρ2
max = M, (3.4)

then recollapses.5

Birkhoff’s theorem tells us that the spherically symmetric geometry outside the wall is

described by the Schwarzschild metric, while that inside the wall is described by flat space.

The Schwarzschild radius Rs ∼ GNM (with GN ∼M−2
4 the 4d Newton’s constant). The

gravitational backreaction is therefore small as long as

ρ� GNM. (3.5)

When σ/(M4)3 � 1, (3.5) can be met by suitably choosing the initial radius ρi and the

total energy of the wall. E.g., for a slowly moving wall, ρ̇� 1, (3.5) is met by taking,

ρi �
(M4)2

σ
∼ R3

α′
. (3.6)

where we have used (3.3) and (3.1). Ultimately, as the bubble recollapses, (3.5) will no

longer hold and the gravitational backreaction will get significant, potentially leading to

the formation of a black hole.6

The important thing to emphasise is that even if a black hole eventually forms, by

tuning the volume and other moduli, the time for which the wall lies outside the black

hole horizon can be made as large as one wishes. E.g., the time it takes starting from an

initial radius ρi ≤ R3

α′ to recollapse back to ρf = ρi is of order ∆t ∼ R3

α′ .

5 We do not consider trajectories where the wall moves in the internal directions. This is a

consistent approximation to make.
6 See however the discussion of stability in §3.4
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The domain wall also acts as a source for the various moduli that determine its tension.

We now show that the back reaction on these moduli is also small as long as the domain wall

is well outside its Schwarzschild radius. We denote the canonically normalised modulus

under consideration as ψ, and by an additive shift ensure that asymptotically far away,

r →∞, ψ = 0 (e.g. for the radius ψ ∼ (log(R)− log(R∞)). One can show that ψ satsifies

the equation:

∇2ψ =
βσ

(M4)2

√
1− ρ̇(t)2

δ(r − ρ(t)). (3.7)

The right hand term arises because the tension, σ, depends on ψ. β is determined by this

dependence, and ρ(t) is the radius of the wall.

Since our main concern is the part of the trajectory where the bubble is well outside its

Schwarzschild radius, we consider a simplified model for the domain wall’s history below.

We assume the wall is constructed at time t = ti and then evolves till t = tf with the

radius, ρ(t), meeting the condition (3.5) all along. At time tf we assume the bubble is

destroyed.

In this example, ψ satisfies the following boundary conditions:7 it vanishes as r →∞
for all t, and also as t → ±∞ for all r. Also, we choose boundary conditions such that

ψ = 0 inside the bubble.

The resulting solution for ψ is,

ψ =
f+(t + r) + f−(t− r)

r
. (3.8)

f± meet two junction conditions across the wall: f+(t + ρ(t)) + f−(t − ρ(t)) = 0, and,

f ′+(t + ρ(t)) + f ′−(t − ρ(t)) =
β σ0ρ(t)
M2

4
, with prime indicating derivative with respect to

argument. σ0 is the tension at ψ = 0. Using these, we can solve for f− in terms of the

trajectory ρ(t) :

f−(t− ρ(t)) =





0 t < ti
β σ0

2M2
4

∫ t
ti
dtρ(t)

(
1− ρ̇(t)2

)
ti < t < tf

β σ0

2M2
4

∫ tf
ti
dtρ(t)

(
1− ρ̇(t)2

)
tf < t

. (3.9)

f+, and finally ψ can then be determined from (3.8) and the junction conditions above. A

small backreaction means ψ � 1. It is easy to see from (3.9), (3.8) that this requirement

is met when the bubble radius is much larger than the Schwarzschild radius, (3.5).

7 r, t are the usual radial and time coordinates in flat 4d space.
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3.3. An Example

As a concrete example, consider a spherical bubble of the standard N = 4 vacuum

inside the N = 2 vacuum determined by (2.3).

The domain wall in this case consists of two kinds of D5 branes and two kinds of NS5

branes. The D5 branes wrap the three cycles x1 = x2 = y3 = 0 and y1 = y2 = y3 = 0,

respectively, with appropriate orientations. Each of these branes carries two units of D5

brane charge. The NS5 branes, each carrying two units of NS 5-charge, wrap the three

cycles x1 = x2 = x3 = 0 and y1 = y2 = x3 = 0 respectively.

The compactification also has 64 O3 planes. Finally, the N = 4 vacuum has 16 D3

branes, while the N = 2 vacuum has 12 D3 branes (2.2). The extra D3 branes in the

N = 4 vacuum terminate on the 5 branes.

3.4. Stability

Our discussion of the wall dynamics assumed that the different branes making up the

wall do not come apart due to relative forces between them. This assumption is worth

examining, since the configuration breaks supersymmetry and gs ∼ O(1) in these vacua.

To begin, it is useful to understand the two sources of susy breaking in this configu-

ration. First, there is the curvature of the two sphere in spacetime, which via the bubble

tension gives rise to collective motion of the branes. Second, there is the presence of both

the branes, and the three-form flux.

To understand the second source, it is helpful to study the example of §3.3. Here, we

take the decompactification limit, R → ∞, and consider planar parallel branes in R3,1 in

this limit (while keeping the orientation of the branes in the internal directions unchanged).

The spinor conditions can be analysed as in [15,16]. One finds that the configuration of

branes and O3 planes of §3.3 preserves N = 1 susy, i.e. four supercharges. Also, it turns

out that any two components, e.g., two kinds of branes or one brane and the O3 planes,

preserve N = 2 susy. Breaking to N = 1 requires three kinds of branes/planes.8

As R → ∞, the effect of the flux G vanishes and can be neglected. But for finite R,

the G flux (2.3) contributes additional terms in the spinor equations [16,17]. Now it turns

8 Essentially the same analysis of susy breaking and stability applies to the domain wall

obtained by replacing the N = 2 vacuum (2.3) with the example in §7.1 of [6]. This latter N = 2

vacuum lifts all complex structure moduli.
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out that the spinor conditions imposed by the brane configuration are in conflict with those

imposed by the fluxes. As a result, supersymmetry is completely broken at finite R.

With this example in mind, let us return to the general discussion about relative

forces between branes. These are of two kinds. First, the different branes couple to

different ambient fluxes (the effect of the flux sourced by a brane should be neglected in

this interaction). The electric potential energy of a brane in the flux background is

Vflux(ρ) ∼ µ

∫
C(6) ∼ (α′)−2ρ3, (3.10)

where C6 is the appropriate gauge potential and we have set gs ∼ O(1). µ is order one in

string units. The energy in the tension, (3.1), is Vtension ∼ σρ2 ∼ R3ρ2/(α′)3. Comparing,

we see that

Vflux(ρ)/Vtension(ρ) ∼ α′ρ/R3. (3.11)

This ratio is small as long as the bubble radius is bigger than the Schwarzschild radius,

(3.5).

Second, interbrane forces could arise if in the absence of flux, the brane/plane config-

uration breaks susy completely, or, as in the example above, the brane/plane configuration

preserves only N = 1 susy, which allows for a superpotential to be generated. One expects

the resulting (super)potential to scale like the common world volume of the branes required

to reduce the susy to N ≤ 1. To be comparable with Vtension the potential must scale like

R3, so all the required branes must be parallel in the internal direction.9 N ≤ 1 susy then

leaves only one possibility: a pair of NS and D5 branes. Such a pair of 5 branes breaks all

susy’s. However, in this case the pair can be replaced by a 5 brane susy preserving bound

state carrying both NS and D5 brane charge, which results in the same jump in F,H flux.

Thus, by appropriately choosing the components of the domain wall, such forces can be

made small.

9 In §3.3 three branes/planes are neccessary to break susy to N = 1, and the common world

volume lies entirely in the R3,1 spacetime. Thus the resulting potential energy δV scales like

δV ∼ ρ2/(α
′
)3 and is small compared to Vtension.
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4. Discussion

The general idea of unifying vacua through vacuum bubbles of some fixed tension, σ,

was discussed by Banks in [18]. There, the focus was on how gravitational back-reaction

makes it difficult to imagine using such bubbles as a diagnostic in gravity theories (as

opposed to field theories). In our construction, however, the moduli spaces we are unifying

allow us to make σ very small in 4d Planck units, and hence to manufacture bubbles

which are large but are not yet black holes. In such a circumstance, we find the notion of

“unification through vacuum bubbles” meaningful, even in the presence of gravity.

Our construction connects vacua with large enough volume. Starting with a vacuum

where the volume modulus is small, one can imagine first creating a large region of space-

time where the volume modulus is large. This can be done by a slowly varying, large

amplitude wave of the volume modulus. In this region the bubble construction could then

proceed as before. While we have not explored such time dependent solutions with moduli

waves and spherical bubbles in detail, it seems quite reasonable that they exist.10

Moving beyond, as a next step in making our construction useful in the overall scheme

of string duality, it would be important to find transitions connecting e.g. N = 2 models

on T 6/Z2 to N = 2 compactifications on some more generic Calabi-Yau space. In such a

case, up to standard dualities, one would have successfully unified the heterotic string on

T 6 with the best-understood web of vacua with less supersymmetry.

It would also be interesting to study connectedness by asking if one can find time

dependent solutions which roll between vacua separated by a finite potential barrier. The

fact that σ � M3
4 in our construction is suggestive. However, the existence of such

solutions cannot be explored in low energy field theory, since the fields which create the

five-branes would also have to be excited. Exploring such solutions in string field theory

seems difficult, at the moment.
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