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Abstract—Grid Computing capabilities are needed for the 
High Energy and Nuclear Physics research of today and in the 
future. Groups such as the Particle Physics Data Grid are 
developing tools to meet these needs. An additional challenge is 
the evaluation and fine tuning of these applications, as well as 
support for long term monitoring, performance analysis, and 
troubleshooting. In September 2001, SLAC started the 
development of an infrastructure for measuring the available 
bandwidth and actual bandwidth utilization that is achievable by 
the network and various bulk data transfer applications. The 
purpose of these active and passive measurements is to 
understand what throughputs are achievable, the constraints, 
and how to optimize, and to make the data and predictions 
available for net-workers and application tuning. This paper 
discusses the measurement methodology and pathologies, 
analysis, results, and avenues for future development. 

Keywords— Network measurements, available vs achievable 
bandwidth, measurement infrastructure, high performance bulk 
throughput, international networks, quality of service, 
application steering, passive vs. active measurement. 

I. INTRODUCTION  
The strategies being adopted to analyze and store the 

unprecedented volumes of data being gathered by 
current and future High Energy and Nuclear Physics 
(HENP) experiments include the coordinated 
deployment of Grid technologies such as those being 
developed for the Particle Physics Data Grid (PPDG) [1] 
and the Grid Physics Network (GriPhyN) [2]. It is 
anticipated that these technologies will be deployed at 
hundreds of institutes that will be able to search out and 
analyze information from an interconnected worldwide 
grid of tens of thousands of computers and storage 
devices. This in turn will require the ability to sustain 
over long periods the transfer of large amounts of data 
between collaborating sites with relatively low latency.  

The purpose of the Internet End-to-end Performance 
Monitoring – Bandwidth (IEPM-BW) project [3] is to 
develop a lightweight infrastructure, based on standard 
open technologies, to make active end-to-end application 
and network performance measurements and 
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predictions. The measurements and predictions are 
targeted at high performance network links, such as 
those used worldwide by Grid applications and other 
academic and research (A&R) applications deployed 
over high performance networks such as ESnet, 
Internet2 and other A&R networks in the developed 
world. It may be regarded as complementary to the 
lighter-weight PingER [4] infrastructure in that it is not 
as extensive, it is more network-intrusive, and is aimed 
more at high performance links.  

The monitoring infrastructure and results are expected 
to be valuable for: 
• Providing planning information to applications, grid 

and network planners by:  

o Providing and understanding the achievable 
performance today in network and application 
(file copy & ftp) throughput.  

o Providing historical information on growth, and 
identifying incremental and sudden changes in 
performance.  

• Providing trouble shooting information to networks 
and users by:  
o Indicating when there are incremental or sudden 

changes and the magnitude of the changes, and 
providing alerts. 

o Helping to pin-point whether a performance issue 
is at the network layer or application layer, or at 
some sub-component such as a disk. 

• Providing network and applications developers, a 
better understanding of how networks and 
applications work together by providing:  
o Validation/correlation of how network 

performance relates to delays and loss 
performance (e.g. bandwidth estimators).  

o Assist users in selecting the optimum network 
(e.g. windows, streams, QoS) and application (e.g. 
compression) configuration options.  

o Identifying the critical bottlenecks such as disk, 
speed, file system, caching, operating system, 
network bandwidth, etc., for high throughput 
application performance.  

o Provide a public domain network performance 
data base, together with analyses, and provide 
public web accessible navigable reports and raw 
data. This data and information can be used for 

SLAC-PUB-9202
July 2003

Contributed to Sc2002: High Performance Networking and Computing, Baltimore, MD,  11/16/2002 - 11/22/2002



further research, for predictions and for 
application steering. 

• Provide a base on which to test, compare and 
validate various bandwidth measurement techniques 
and tools, determine their robustness, regions of 
applicability, resource consumption, and accuracy, 
and make recommendations to developers and users. 

 

There are several projects that are currently making 
continuous active (i.e. injecting probes) Internet End-to-
end Performance Measurements. A fairly complete 
comparison made in July 1999, can be found in 
reference [5]. Of those projects that provide public 
(without subscription or some form of membership 
requirement) access to the data and reports: AMP [6], 
PingER, skitter/skping [7] make ping and traceroute 
measurements but no bandwidth estimation or 
throughput measurements; Surveyor [8] makes only one 
way delay and traceroute measurements. NIMI [9] is an 
infrastructure for making on demand measurements and 
does not have continuous measurements and reports. 
The Network Weather Service (NWS) [10] makes round 
trip measurements and bandwidth estimates (single 
stream only). The NWS also has a sophisticated 
prediction mechanism. Unlike the infrastructure being 
described here, the NWS is mainly aimed at full mesh 
type measurements and currently does not provide file 
copy/transfer application measurements. The Work 
Package 7 of the European Data Grid [11] have 
developed an infrastructure for making ping (using 
PingER), iperf TCP throughput and UDP measurements 
between seven European sites, currently they make no 
file copy/transfer measurements. 

In the rest of this paper, we first describe the 
development of the measurement methodology. Next we 
describe the analysis and presentation of the data. We 
then describe results from the monitoring. We conclude 
with a summary of the most significant results so far, 
and finish up with a discussion of possible future 
directions. 

II. METHODOLOGY 

A. First Version  
The first instantiation was for making TCP 

throughput measurements, using iperf [12], and secure 
file copy from memory-to-memory measurements, using 
bbcp [13], from a single measurements site, SLAC, to a 
set of 20-30 hosts at remote sites. The remote hosts were 
selected to be at PPDG sites or sites with strong 
collaborations with SLAC (usually HENP sites or 
Internet performance measurement sites). For each 
remote host we needed an account with secure shell 
("ssh") [14] logon access. We successfully demonstrated 
the first instantiation for the SC2001 Bandwidth 
Challenge: Bandwidth to the World project [15] in 
November 2001. 

One of the first steps was to contact people at the 
remote sites to request the accounts. It took about seven 
weeks to get accounts on suitable remote hosts at about 
25 sites. The variety of forms and procedures required at 
the sites was a revelation in itself, ranging from just a 
phone call to multiple paper forms that had to be faxed, 
or web forms requiring considerable personal details.  

We logged onto the first few remote hosts, set up the 
ssh keys, and copied over and installed the various initial 
applications (e.g. iperf, bbcp) by hand.  

The diversity of the remote hosts: hardware, 
operating systems, network interfaces, directory 
structures (e.g. the userid, where to find various 
applications, the home directory) required a master 
configuration database to enable remote ssh access to 
execute commands. This was implemented as a Perl [16] 
“require” script. This database also enabled us to provide 
an alias for each remote host so some level of privacy 
could be maintained, customize how to call the 
measurement tools (sensors), and keep the email 
addresses of the contacts for each host. 

B. 2nd Version 
Based on our experiences with SC2001, we rewrote 

the measurement infrastructure software with a major 
focus on improving the reliability and the ease of 
management, though still focused on making the 
measurements from a single monitoring host. To enable 
testing pathological cases we made it easy to call the 
production measurement script (run-bw-tests) from 
the command line with options to select the host and the 
measurement to perform. We also more formally defined 
the requirements for the remote host, and decided to 
support only Solaris 5.6 and above, and Linux 2.2 and 
above.  

We used the Unix cron facility to schedule tasks at 
the measurement host. The ssh keys were saved in an 
AFS file on the measurement host, and its tokens timed 
out after 25 hours, so we had to use an AFS unattended 
token renew mechanism (trscron) to renew the 
tokens for cron jobs. We also added code to the 
measurements to verify that we had a token. 

Early on we had many problems with the iperf server 
becoming non-functional on the remote host. For 
example, the remote host was rebooted and iperf was not 
restarted, and, in other cases the iperf process just 
disappeared or was still present but not responding 
(though in some cases it still had the TCP port attached). 
We were also concerned about leaving servers like iperf 
running all the time since it could assist in a denial of 
service attack. We therefore decided to start the remote 
server before each measurement and kill it when the 
measurement was complete. This helped to increase 
robustness, though it increased the complexity of the 
measurement process. 

We also found it necessary to time out processes 
since some would hang up and run forever, or others 



would run for elongated times. This also complicated the 
code since timing out required the code to fork 
processes, time them out and recover. 

We added ping and traceroute (with only one 
measurement per hop to reduce execution time) to the 
measurement suite in order to have an ongoing record of 
round trip times (RTT) and routes. We also added other 
sensors to the suite for test and comparison purposes. 
These initially included bbcp disk to disk ("bbcpdisk"), 
bbftp [17] and pipechar [18]. We found we had to 
decrease the frequency for each round of measurements 
from 1 hour to 90 minutes in order to complete each 
round before the next round was scheduled. The start 
time of each round was randomized, by including a wait 
of up to 15 minutes with a flat random distribution. Most 
of the delays were caused by timeouts, so we also 
worked on optimizing the timeouts by carefully 
reviewing the reasons behind them. Since pipechar 
tended to run for long periods compared to the other 
sensors, we reduced the frequency of pipechar 
measurements for each remote host to one in four rounds 
of measurements. 

To automate much of the remote host initialization 
and install updates we developed a tool 
(remoteos.pl). In addition we developed a tool 
(getbwversions.pl) to query and report on the 
configuration of the remote hosts (MHz, number of 
streams, TCP window sizes, Operating System (OS) 
etc.) as well as identifying what versions of the 
measurement sensors were installed.  

We added about seven more remote hosts to the 
monitoring during this phase, and as a result documented 
and simplified the procedures for adding new remote 
hosts.   

C. 3rd Version 
To enable the monitoring code to run at another sites, 

we first ported it from Solaris to Linux. The major 
difficulty with doing this was caused by the different 
ways Solaris and Linux handled the threads we forked in 
the measurement script so we could timeout the various 
tasks. We also parameterized the locations of all the 
major file directories and placed the parameter values in 
a small configuration file. Since we planned to export 
the code to other sites we also added disclaimers to all 
the scripts at this time. We also took the opportunity to 
clean up the code and generalize it in many cases. 
Following porting from a Solaris to a Linux host we then 
ported the code manually to a second site, Manchester 
University, taking careful notes and documenting what 
was required. Using these notes we then automated 
many of the procedures required to port the monitoring 
code to a another site. At this stage we also added the 
UPPmon measurement tool to the infrastructure and 
began work on generalizing and simplifying adding new 
measurement tools. 

D. Pathologies 
We ran into problems getting ssh to work properly 

when the remote host was running SSH protocol version 
2 and while the measurement host was defaulting to 
version 1. This was tracked down to an ssh mis-
configuration error in the measurement host. We also ran 
into difficulties in capturing all the ssh output from 
commands, especially when running multiple processes. 
A third ssh challenge was making ssh work through a 
gateway machine which required cascading the ssh 
commands. When using an OpenSSH client with an SSH 
Communications, Inc. server we found we had to 
reformat the public key before saving it on the server 
host. There was also confusion about exactly where to 
save the public key on the server especially for protocol 
version 2 servers: the directory was sometimes called 
.ssh and other times .ssh2; sometimes the public key was 
appended to the file auhorized_keys, other times 
authorized_keys2; sometimes it was placed in a separate 
file with a pointer being placed in a file called 
authorization.  

Usually we were able to copy the measurement 
executable that had been built at SLAC for the 
appropriate OS version, to the remote host. However, in 
some cases there were library incompatibilities. In about 
40% of the iperf cases, and 20% of bbcp and bbftp cases 
we had to make the executables on the remote host. The 
information on whether an executable had to be made on 
the remote host was kept in the configuration database. 
Executables such as ping, traceroute and pipechar did 
not need anything to be installed on the remote host.  

When measuring disk to disk throughput on fast links 
we had to be careful to understand the effects of caching. 
We used the Solaris Unix File System  mount 
forcedirectio facility [19] to ensure that the source 
files were not cached (use the Solaris man 
mount_ufs command for more details) when we 
were reading them on the measurement host. Though 
this gave us a realistic estimation of disk read speed for 
large files, it also meant that for high speed links the 
gating factor in overall file transfer rates was often the 
speed of the disk reads. Further work is in progress to 
understand disk throughputs for various Operating 
Systems and file systems, with and without caching and 
with and without committing the writes, on about 25 
different hosts. If possible we requested large amounts 
disk space at the remote host. Until we have sufficient 
disk space set aside we used space in /tmp. At the same 
we checked and recorded whether the /tmp space was 
using memory (e.g. swap space on Solaris).  

Some hosts blocked a protocol, or rate limited 
throughput for the port. If this was permanent, for 
example a host did not respond to pings, then it was 
simple to add this to the configuration database. In other 
cases, ssh access or the applications server  port would 
be blocked due to security concerns. To detect such 
failures we logged attempt information and developed a 
tool (codeanal)  to analyze the logs to highlight 



repeated failures, so we could send email to the host 
contact. For cases where we were unsure if the port was 
blocked, we tested by running the iperf server on the 
port at the remote host, and then running the iperf client 
at SLAC to see if the port was accessible. We checked 
what ports were required by a particular application by 
reading the man pages and also by tracing the packets by 
running tcpdump [20]. 

At any given time, we observed that about 20% of 
the hosts would be unreachable via ssh. Included among 
the reasons were: the host was changed or removed; 
difficulty in getting account/password or getting ssh to 
work on a changed host; problems with using Kerberos 
credentials to access the remote host in an unattended 
fashion; concerns at the remote site about charging for 
usage; difficulties in interworking between various 
versions of ssh; host was wrongly configured; link to 
host was down for a long period (e.g. several weeks in 
one case where a new link from Europe to Chicago was 
being brought up).  

E. Current Deployment 
Currently the participants to which the tests are made 

include: Argonne National Laboratory (ANL) in 
Chicago IL, Brookhaven National Laboratory (BNL) in 
Long Island NY, California Institute of Technology 
(Caltech) in Pasadena CA, Fermi National Accelerator 
Laboratory (FNAL) in Chicago IL, Thomas Jefferson 
National Laboratory (JLAB) in Newport News VA, 
Lawrence Berkeley National Laboratory (LBNL) in 
Berkeley CA, San Diego Supercomputing Center 
(SDSC) in San Diego CA, University of Wisconsin 
(UWisc) in Madison WI, National Energy Research 
Scientific Computing Center (NERSC) in Oakland CA, 
University of Florida (UFL) in Gainesville FL, Indiana 
University (IU), the University of Michigan (UMich) in 
Ann Arbor MI, CERN in Geneva Switzerland, KEK in 
Tokyo Japan, Rutherford Laboratory near Oxford 
England and Daresbury Laboratory near Liverpool 

England, Rice University in Houston TX, University of 
Delaware in Newark DE, Oak Ridge National 
Laboratory (ORNL) Oak Ridge TN, NASA/GSFC, 
IN2P3 in Lyon, France, Los Alamos national laboratory 
(LANL) in Los Alamos NM, Tri-Universities Meson 
Factory (TRIUMF) in Vancouver Canada,  Internet2 
Southern Exchange (SoX) in Atlanta GA, INFN/Rome 
and Milan, NIKHEF in Amsterdam, Netherlands, and of 
course the Stanford Linear Accelerator Center (SLAC) 
near San Francisco CA. There are currently (April ’02) 
33 active destination hosts at about 30 sites in 8 
countries.  

Fig. 1 shows the logical routes between SLAC and 
many of the participants. Sites displayed to the left are 
routed across ESnet from SLAC, and sites to the right 
are routed across CalREN and Internet2. SLAC has 
OC12 (622Mbps) connections to ESnet and Internet2. 
Wide-area network connectivity between these sites is 
almost entirely managed by the Energy Sciences 
Network (ESnet) and the Internet2 networks. In this 
paper, Internet2 is considered to be the Abilene 
backbone network, and the regional connector networks 
such as the California Research and Education Network 
(CalREN). . 

F. Performance Measurements 

Current performance measurements (“sensors") 
include:  

• Ping – If the ping fails, no further tests are done 
for the node 

• Traceroute – if this fails the other tests are done 
anyway 

• Iperf  – if this fails the other tests are done anyway 
• Bbcp memory to memory copy (bbcpmem)– if 

this fails, the bbcp disk to disk (bbcpdisk) test is 
not done 

• Bbcp disk to disk (bbcpdisk) 
• Bbftp  
• UDPmon [21] 
• Pipechar – done infrequently 
In the future, others may be added and some of the 

above may be discontinued. 

The sensor output from a test is captured, identified 
with a token, time-stamped and written to a "log" file.  
For each remote host there is one log file per day. 

At the end of a run, two scripts (extract-data 
and codeanal) are called to process the log files for 
that day. Extract-data extracts the bandwidth 
results and other information related to the parameters of 
the test and saves it in flat data ASCII files for analysis, 
plotting and future reference. 

Codeanal processes the logs for performance 
information on the running of the run-bw-tests 
code.  The output of codeanal is a web page [22] that 

Figure 1: Topology of particpiating sites 



Figure 2: Part of code performance report 

Figure 3: Time series display of performance from SLAC to JLab 

presents, in tabular format, the amount of time it took to 
run a test (if it was successful) or a failure code if a test 
failed.  

Fig. 2 shows a portion of code performance web page 
that is created by codeanal. “NRH” indicates that the 
remote host could not find a route back to the 
measurement host. The “*” indicates that bbcp detected 
that "Sink I/O buffers > 25% of available memory; copy 
may be slow". “NR” indicates that pipechar was 
intentionally not run.  The “-43” indicates that the sensor 
timed out and did not complete in the allotted time. This 
helped to establish the time limits for each test. In 
addition the page provides an overall picture of the 
reliability and performance of the test code itself. 
Patterns of failure are easily recognizable and can thus 
be dealt with in a timely manner. 

III. ANALYSIS  

A. Time Series 
The first displays created were the time series 

displays [23]. That is, plot n days of data by date and 
time. Currently we use n=28. This displays all the 
measurements, while providing a reasonable density of 
points, and allowing immediate visualization of several 
weeks data. We also provide access to 56 (4 points/day) 

and 180 day (1 point/day) plots. An example of a 28 day 
time series is shown below in Fig. 3. This shows 
throughputs/bandwidths measured from SLAC to JLab 
for 28 days starting on April 6 ‘02. The measurements 
are made with iperf (top x), bbcp memory to memory 
(grey + symbols), bbcp disk to disk (black + symbols), 
bbftp (grey filled in boxes), average ping RTT (line) and 
min ping RTT (grey vertical bars). The time series plots 
are valuable for giving an overall view of the 
performance and relative throughputs, as well as 
identifying step changes and diurnal patterns in 
performance, long-term trends, and rough correlations 
between the sensors. For example in Fig. 3, one can see 
that when the average ping RTT increases the 
throughput is also reduced. 

B. Scatter Plots 

As can be seen by the header on the graph, other 
types of plots are also available. Clicking on 
“Scatterplots” brings up a panel of scatter-plots that 
indicate correlations.  The panel plots each of the tests 
against the others. Fig. 4 shows part of a panel of scatter 
plots of the throughput/bandwidths measured by each 
test (e.g. iperf) vs. each other test. The line through the 
origin is a least squares fit to a straight line while 
constraining the line to go through the origin. The other 
line is a similar fit but without the constraint.  The 
parameters of the fits are also reported.  

In addition to the scatter plots between each 
measurement sensor for each remote host, we also 
provide superimposed scatter plots of each pair of 
sensors for all hosts. Each host is identified with a 
different symbol/color combination for its set of points. 
This facilitates looking for general trends such as 
whether a bandwidth estimator (e.g. pipechar) fails for 
some throughput domain, or whether there are common 
limits on throughput for disk related operations, etc. 
Together with the combined scatter plots, various 
statistical summaries of the data are reported including, 
the average and standard deviations for each coordinate, 
and the correlation coefficient R. 



Figure 4: Scatter plot examples for JLab 

Figure 5: Examples of histogram reports 

Figure 6: Iperf TCP throughput to Caltech and IN2P3. 

C. Histograms 

The results from the tests are also plotted in a 
frequency histogram panel. The histograms provide a 
clear picture of the distribution of the values.  Fig. 5 is 
an example from one of the histogram panels and shows 
part of a frequency histogram panel for throughput 
measurements from SLAC to ANL for 21 days starting 
March 21 ’02. The 2 histograms shown are for (left to 
right) iperf, and bbcpmem, and they are for CERN. 

D. Tables 

Tabular information with drill down URL links to 
more detailed information is also provided. The tables 
contain remote host configurations, the most recent 
measurement results, and more detailed statistical results 
such as averages, standard deviations, errors, correlation 
coefficients, etc. In many cases, the tables also provide 
access to the analyzed data in space or comma separated 
value (csv) format for further analysis. 

IV. RESULTS 

A. Measurement Results 

To evaluate the effect of the duration of the 
individual measurements on the throughput measured 
we selected durations of 2, 5, 10, 20, 40, 80, 160, 250 
and 320 seconds, and window sizes of 256, 512, 1024, 
2048 and 4096 KBytes. For each of the above possible 
pairs we made a single stream measurement of the iperf 
TCP throughput 17 times from SLAC to the remote host. 
We used a single stream since multiple streams are in 
general more agile to adjusting to network conditions 
such as loss, and are thus expected to require less time to 

reach a stable throughput rate. The results for SLAC to 
Caltech and SLAC to IN2P3 are shown in Fig. 6, which 
shows the iperf median TCP throughput measured from 
SLAC to Caltech (RTT 40 msec.) and to IN2P3 in Lyon, 
France (177 msec. RTT) for various window sizes. The 
points are the medians of each set of 17 measurements, 
and the error bars are determined from the Inter Quartile 
Ranges (IQRs). 

It is seen that though the medians continue to rise for 
durations of over 10 seconds (by about 10% going from 
10 to 20 seconds) to within the accuracy of the 
measurements this is a small effect. Since we are 
interested in the performance for long duration transfers, 
we took the miimum duration that was representative of 
a long duration transfer. So for most of our 
measurements we settled on a duration of 10 seconds. 

It was pointed out to us by Matt Mathis [24], that the 
optimum duration may depend critically on the buffer 
sizes in the first router(s) in the path. Also as one moves 
to larger RTT times bandwidth products, slow start will 
take longer and thus more time will be needed for 
throughput to get close to capacity.  As pointed out to us 
by Tom Dunigan [25], if you know when slow start is 
over, then you can more quickly get the bandwidth by 
just using Web100 [26] to look at how many bytes have 
been transferred over the last second once slow start is 
over. 

B. Impact on CPU Utilzation 

Fig. 7 shows the behavior of the ratio of 
measurement host MHz / iperf TCP throughput as a 
function of the speed (MHz) of the source. The 
utilization was obtained using the Unix "time" command 
and is the sum of the "system" and "user" times.  The 
points are the medians for each complete set of 
measurements made with the various window sizes and 
streams. The error bars are the Inter Quartile Range for 
each complete set.  



Figure 7: Ratio of measurement host MHz utilization to 
Mbits/s transferred 

Figure 8: Bbcp memory to memory throughput vs, iperf TCP 
throughput 

Figure 9: Bbcp disk to disk vs. iperf TCP  throughput 

It is seen that there is a lot of variability in the 
observed values. More measurements would be needed 
to determine whether one OS is superior to another in 
terms of minimizing MHz/Mbps. The averages of the 
median values of MHZ/Mbps are: all 22 hosts  0.85+-0.5 
(11 Linux hosts: 1.02+-0.6, 11 Solaris hosts: 0.68+-
0.27). 

C. Comparing TCP with application throughputs 

We compared iperf TCP throughput versus bbcpmem 
throughput. An example of a scatter plot for iperf TCP 
vs. bbcpmem measurements, made for 28 days starting 
April 2 ’02 between SLAC and about 30 remote hosts, is 
shown in Fig. 8. 

The line shows a linear regression fit with the 
parameters y=0.88x-5.5. There was excellent agreement 
(correlation coefficient squared R2 ~ 0.91) when 
comparing the measurements for all remote hosts, with 
bbcpmem averaging about 88% of the iperf TCP 
throughput. It is reasonable to expect the bbcp 
throughput to be less than that of iperf since iperf simply 
measures TCP throughput while bbcp is a secure copy 
program built on top of TCP. Bbcp also synchronizes the 
streams so a slow down on one stream will cause others 
to slow down, whereas for iperf the streams are 
asynchronous. The points in a given cluster observed in 
Fig. 8 are usually associated with a given host. In fact, 
for many of the hosts, the correlation for that host is 
quite weak since the measurements all cluster around 
small ranges. It is only when we compare the 
measurements for all hosts that we get a strong 
correlation. The reason why some of the clusters are 
vertically or horizontally oriented will be the subject of 
further investigation. 

When we compared iperf TCP throughput with 
bbcpdisk throughput, horizontal lines indicated a non-
network throughput constraint. We believe this is due to 
disk I/O and are investigating this further to understand 
the effects of caching, file system, committing the data 
to disk, etc. We also observed vertical lines just under 

10Mbps, 100Mbps and 150Mbps where the constraint 
was probably network related (i.e. Ethernet, Fast 
Ethernet and OC3).  

Fig. 9 shows a typical scatterplot of bbcpdisk vs. 
iperf TCP throughputs for about 30 remote hosts as seen 
from SLAC. The different symbols and shades indicate 
different remote hosts. The line is for a linear least 
squares fit of bbcpmem to iperf. 

We also compared the iperf throughput with the 
minimum available predicted by pipechar. An example 
is shown in Fig. 10. The different shades and symbols 
represent different remote hosts. Since iperf is using 
TCP while pipechar uses packet trains, one might expect 
the agreement not to be excellent.  In general the 
agreement is particularly poor for 6 hosts with 
throughputs above 100Mbits/s. About 50% of the hosts 
have reasonable agreement. Pipechar uses packet 
dispersion methods to estimate bandwidth. At high 
bandwidths, this requires increased accuracy (better than 
tens of microsecs) of the measurement clock. Packet 
dispersion techniques using host timings will probably 
also suffer badly if the network interface card (NIC) 



Figure 10: Pipechar estimates vs. iperf TCP throughput 

coalesces interrupts inbound or does buffering and 
fragmentation outbound.  

D. Windows and Streams 
 

To determine the optimum window size and number 
of parallel streams for each site we first configured the 
hosts to use the maximum buffer and window sizes 
recommended in [27].  Then we used iperf to send TCP 
bulk data for 10 seconds from SLAC to an iperf server at 
the remote host. For each site we used window sizes 
from 8Kbytes to 4Mbytes, and for each window size we 
used different numbers of parallel data streams from 1 
up to 120 to comprise each transfer. The sequences of 
window sizes and number of parallel streams were 
deliberately chosen so they did not monotonically 
increase or decrease. Simultaneous with the data 
transfer, we also sent ten 100 byte pings separated by 1 
second, each with a 20 second timeout. Following each 
transfer, we also sent 10 more pings with no iperf 
transfer. The idea of the two sets of pings was to 
evaluate the RTT with and without competing iperf TCP 
transfers.   

We then plotted the throughput versus streams for 
each of the window sizes.  See Fig. 11 for a typical 
example in this case from SLAC to IN2P3.  

It is seen that, for small window sizes, the throughput 
grows linearly with number of streams. On unsaturated 
links, we can use this feature to generate TCP traffic 
with a known load. As the window size increases (in this 
case beyond 64Kbytes), the throughput begins to 
saturate as the number of streams increases. Since 
typical operating system default maximum window sizes 
vary from 8kBytes to 64kBytes, it is apparent, that in 
cases such as illustrated in Fig. 11, many streams may be 
required to achieve optimal throughput. We selected a 
windows streams combination that achieved about 80-
90% of the maximum throughput measured, while 
minimizing the number of streams.  We wished to 
minimize the number of streams since each stream 

consume resources (memory, a process, and extra CPU 
cycles). 

E. Impact on Others 

To investigate the impact of high bulk throughput on 
other users, we used iperf to send TCP traffic from a Sun 
Ultra 2 running Solaris 5.8 to a similar host in CERN. 
Iperf was set to have 1024KByte windows and 20 
parallel streams. We ran iperf in this fashion for 35 
minutes from 12:26 April 25 ’02, simultaneously 
measuring the ping RTT and loss (we sent a 100 byte 
ping once a second with a timeout of 20 seconds). While 
doing this we also observed the link utilization. The 
aggregate measured throughput from SLAC to CERN 
was about 120Mbps, which was close to the bottleneck 
bandwidth at the time. The ping loss was about 0.15%, 
the minimum ping RTT was 166ms, the average was 
295ms and the maximum was 408ms. We followed this 
up by measuring the ping RTT and loss for 24 minutes 
without generating any iperf traffic starting at 13:02. In 
this case there was no packet loss, and the minimum 
RTT was 166ms, the average was 167ms and the 
maximum was 377ms.  The effect on the ping RTT 
distributions is seen in Fig. 12. The blue triangles 
indicate the RTT with no iperf load, and the red squares 
with an iperf load. The bottom axis is the ping RTT. The 
lines on the graph represent the Cumulative Distribution 
Functions (CDF) and their axis is labeled on the right. 

It is seen that the unloaded RTT is sharply clustered 
between 166 and 170 msec, while the loaded RTT 
distribution is fairly flat for over 150msec above the 
minimum RTT. We are looking for ways to ameliorate 
this effect. Some possibilities include using the QBone 
Scavenger Service (QBSS) [28], self rate limiting the 
application (i.e. enable the application to restrict its 
throughput), providing a feedback loop for the 

Figure 11: Ten second iperf TCP throughputs from SLAC to 
Manchester University 
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Figure 13: Forecasting iperf TCP throughput: observed (+) and forecasts 
(x with error bars) made for last 5 observations 

application by using Web100 to measure the RTT and/or 
retransmissions and using these values to adjust the 
application's offered throughput. 

F. Forecasting 
To enable use of the measurements for guiding 

applications, we looked at how to forecast the 
throughput from existing measurements. We developed 
a very simple prototype that, given a time, provides the 
average and standard deviation of the previous 5 
measurements. An example comparing the actual vs. 
forecasted values for the SLAC to U. Wisconsin path is 
seen in Fig. 13.  The plus signs with the error bars are 
equivalent to the standard deviation from the previous 5 
measurements. 

Besides being useful to assist applications, 
forecasting may also be useful to decide how often to 
make active measurements. For example, if the 
measurements are very consistent, then we may not need 
to make a measurement as frequently as otherwise. We 
also calculated the average error for the above type of 
measurements as:  

  error=average(abs(forecast-observed)/observed) 

The average errors between the forecasted and 
observed values are shown in Table 1. 

Table 1: average error between the forecasted and 
observed measurements. 

33  
hosts 

iperf 
TCP 

bbcp 
mem 

bbcp 
disk 

bbftp pipechar 

error 13% 23% 15% 14% 13% 
Stdev 11% 18% 13% 12% 8% 
It can be seen that, even with this simple forecasting 

method, reasonable agreement is achieved (better than 
25% in most cases) for 90 minutes after the last 
measurement.  

G. Passive and Active Measurements 
To validate whether the sensors were reporting the 

correct throughputs, we read the Netflow records [29] 
from a Cisco 6506 containing an MSFC module for 
routing. The Cisco 6506 is located at the SLAC network 
border and is connected to the outside world by 1 Gbit/s 
links, one to ESnet, the other to Stanford University and 
thence to CalREN 2. The methodology of collecting the 
Netflow records is described in [30]. A Netflow record 
includes the source and destination IP address and port 
4-tuple (source IP, destination IP, source port, 
destination port), the protocol, the number of packets 
and bytes, the start and end times and active time for 
each flow/stream. The flows were sorted by source and 
destination IP address and start time and flows starting 
with the same source and destination address that start 
within 2 seconds of one another are assumed to belong 
to a given application process. Thus we could aggregate 
the throughput for the application instance as the sum of 
the bytes for all streams divided by the sum of the active 
times for all streams divided by the number of streams. 
Typically we see about 10-20K applications per day 
transferring greater than one MByte of data between 100 
to 300 different pairs of hosts. 

We then compare the passive Netflow throughputs, 
calculated as above, with the throughputs recorded by 
the associated active application (sensor) by means of 
time series, scatterplots, calculating err = (passive-
active)/passive and the correlation coefficient R. An 
example of a time series is shown in Fig. 14. Fig. 14 
shows the time series of active and passive throughput 
measurements for iperf from SLAC to Caltech for 28 
days starting April 1 ’02.  For this case the err = 2% and 

Figure 14: Example of time series of active and passive throughputs 
from SLAC to Caltech, Mar-Apr '02 

Ping RTTs for loaded & unloaded link 
between SLAC & CERN

1

10

100

1000

10000

160 210 260 310 360 410
Ping RTT ms.

F
re

q
u

en
cy

0%

20%

40%

60%

80%

100%

C
D

F

Loaded frequency
No load frequency
Loaded CDF
No load CDF

Figure 12: Ping RTTs with and without simultaneous iperf 
load 



R=0.99 and the agreement is seen to be excellent. 

The overall agreements, for 28 days starting April 1 
‘02, are shown in Table 2 below. The ranges are the 25 
percentile and 75 percentiles. On average the throughput 
for each sensor to each host was measured 279 times in 
that period. We excluded remote host-sensor 
combinations where there were fewer than 50 
measurements. It is seen that in general the correlations 
are strong.  The err ranges indicate that there is not an 
overall systematic difference between the active and 
passive measurements. For a given remote host-sensor 
the active measurements can be systematically greater 
(i.e. the err is negative) than the passive measurements 
and vice versa for another remote host-sensor. On 
average the bbftp active sensor reported throughputs 
25% lower than observed by the passive measurement. 
This may be since bbftp starts the timer before or after it 
starts or ends the actual TCP session.  In general the sign 
of the err would track for the bbcp and iperf 
measurements for a given host (i.e. if the iperf err was 
negative for a given host for then the bbcp err would 
also be negative). The strongest correlations are for iperf 
followed by bbcpdisk. The bbftp correlations are 
generally much weaker. Typically the agreement is 
poorer for remote hosts with lower throughputs and the 
disagreement for low throughputs is usually with a 
negative err. More work will be required to understand 
why bbftp has poorer agreement between active and 
passive measurements, and some of the details of the 
other disagreements. However, in general there is 
excellent correlation between the active and passive 
iperf and bbcp measurements, and the errs are < 5% for 
the majority of remote hosts. 

This agreement is important since it encourages us to 
include passive measurements into the throughput 
measurement database. Thus we now have an important 
extra (roughly 100-300 pairs per day) source of 
throughput measurements for pairs of hosts matching 
real use patterns, but which do not add any extra load to 
the network.  

Table 2: Errs and correlation coefficients (R) between 
active and passive measurements for throughput sensors 
for about 25 remote hosts seen from SLAC in April '02 

Metric iperf 
TCP 

bbcp 
mem 

bbcp 
disk 

bbftp Over 
all 

err 
median 

0% -3.9% -5.0% 25% 2.0% 

err 
range 

-4.5%, 
2.0% 

-7.5%, 
5% 

-14.5%, 
2.5% 

21.5%, 
37.5% 

-7%, 
12% 

R 
median 

0.99 0.86 0.94 0.68 0.94 

R range 0.98, 
0.99 

0.8, 
0.98 

0.82, 
0.98 

0.39, 
0.89 

0.73. 
0.99 

Remote 
hosts 

27 24 23 23  

 

V. CONCLUSIONS 

Preliminary results from IEPM-BW so far indicate: 

• Reasonable estimates of throughput can be made in 
our case with 10 second iperf measurements. This is 
much shorter than it typically takes many bandwidth 
estimators, such as pipechar, to make an estimate. 

• Roughly speaking one needs about 1 MHz of CPU 
cycles to provide 1 Mbit/s throughput on today’s 
CPUs and OSs. 

• Throughputs can vary by an order of magnitude with 
time of day or day of week etc. 

• The bbcp file copy rates from memory to memory 
are typically (25 to 75 percentile) in the range of 
58% to 96% of the iperf TCP throughputs. 

• Disk to disk file copy rates are typically 90% of the 
memory to memory rates for rates below 60Mbits/s, 
Above 40-60Mbits/s performance can vary 
depending on disk/file system performance, caching 
etc. Uncached disk performance for the remote hosts 
we were measuring to appears to top out at between 
4 and 8Mbytes/s in most cases. 

• When running high throughput applications, the 
RTT for other users can be noticeably increased. 

• We are able to predict performance 90 minutes into 
the future with better than 25% accuracy. 

• Passive Netflow measurements agree to within 5% 
with active measurements for most remote hosts. 

• Using standard operating systems (Linux and 
Solaris) for the monitoring and remote hosts, 
enabled us to easily take advantage of new sensors 
which in some case have not been ported to less 
popular operating systems.  

• Using a hierarchical infrastructure, where each 
monitoring host selects the remote hosts to monitor 
(as opposed to a full mesh measurement 
infrastructure), lends itself very well to the 
requirements of HENP where there a few sites 
providing access to large amounts of data, and each 
site often collaborates with a different set of remote 
sites. 

The next steps include: documenting the 
implementation, procedures and program logic, and 
porting the monitoring infrastructure to more sites. We 
plan to start the porting with Manchester University, 
FNAL and INFN/Milan. Initially, to preserve flexibility, 
each monitoring site will save its own data, and perform 
its own extraction/analysis and reporting. We are also 
working on validating other sensors such as pathrate 
[31], pathload [32], GridFTP [33], INCITE [34], 
UDPmon, etc., and hope to select a new recommended 
set of base measurement sensors. We have made the data 
available to the NWS project, and will look at more 
sophisticated methods to make the forecasts, as well as 
how to insert our data into their infrastructure. We hope 
the forecast study will also help to optimize the 



frequency of measurements. In addition we will 
integrate Web100 into the measurements which, besides 
providing detailed information from TCP, may also help 
in optimizing the duration of measurements. The 
analysis of the active measurements vs. the passive 
measurements of users’ applications is just beginning 
and further understanding of discrepancies is needed. 
Further work could involve looking at the effects and 
applicability of compression, application rate limiting, 
providing tools to assist in making applications such as 
bbcp network aware, and making the data available via 
more standard publish/subscribe methods.: 
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