
Overview of IEPM-BW Bandwidth Testing of Bulk Data
Transfer

R. Les Cottrell and Connie Logg,
Stanford University / Stanford Linear Accelerator Center (SLAC),

 2575 Sand Hill Road, Menlo Park, California 94025

Abstract—Grid Computing capabilities are needed for the
High Energy and Nuclear Physics research of today and in the
future. Groups such as the Particle Physics Data Grid are
developing tools to meet these needs. An additional challenge is
the evaluation and fine tuning of these applications, as well as
support for long term monitoring, performance analysis, and
troubleshooting. In September 2001, SLAC started the
development of an infrastructure for measuring the available
bandwidth and actual bandwidth utilization that is achievable by
the network and various bulk data transfer applications. The
purpose of these active and passive measurements is to
understand what throughputs are achievable, the constraints,
and how to optimize, and to make the data and predictions
available for net-workers and application tuning. This paper
discusses the measurement methodology and pathologies,
analysis, results, and avenues for future development.

Keywords— Network measurements, available vs achievable
bandwidth, measurement infrastructure, high performance bulk
throughput, international networks, quality of service,
application steering, passive vs. active measurement.

I. INTRODUCTION
The strategies being adopted to analyze and store the

unprecedented volumes of data being gathered by
current and future High Energy and Nuclear Physics
(HENP) experiments include the coordinated
deployment of Grid technologies such as those being
developed for the Particle Physics Data Grid (PPDG) [1]
and the Grid Physics Network (GriPhyN) [2]. It is
anticipated that these technologies will be deployed at
hundreds of institutes that will be able to search out and
analyze information from an interconnected worldwide
grid of tens of thousands of computers and storage
devices. This in turn will require the ability to sustain
over long periods the transfer of large amounts of data
between collaborating sites with relatively low latency.

The purpose of the Internet End-to-end Performance
Monitoring – Bandwidth (IEPM-BW) project [3] is to
develop a lightweight infrastructure, based on standard
open technologies, to make active end-to-end application
and network performance measurements and

. This work was supported in part by the Director, Office of Science. Office
of Advanced Scientific Computing Research, Mathematical, Information, and
Computational Sciences Division uder U.S. Department of Energy. The
SLAC work is under Contract No. DE-AC03-76SF00515.

Les Cottrell is with the Stanford Linear Accelerator Center (phone:650-
5926-2523; fax: 650-926-3329; e-mail: cottrell@ slac.stanford.edu).

Connie Logg is with the Stanford Linear Accelerator Center (phone 650-
926-2879; fax: 650-926-3329; e-mail: cal@slac.stanford.edu).

predictions. The measurements and predictions are
targeted at high performance network links, such as
those used worldwide by Grid applications and other
academic and research (A&R) applications deployed
over high performance networks such as ESnet,
Internet2 and other A&R networks in the developed
world. It may be regarded as complementary to the
lighter-weight PingER [4] infrastructure in that it is not
as extensive, it is more network-intrusive, and is aimed
more at high performance links.

The monitoring infrastructure and results are expected
to be valuable for:
• Providing planning information to applications, grid

and network planners by:

o Providing and understanding the achievable
performance today in network and application
(file copy & ftp) throughput.

o Providing historical information on growth, and
identifying incremental and sudden changes in
performance.

• Providing trouble shooting information to networks
and users by:
o Indicating when there are incremental or sudden

changes and the magnitude of the changes, and
providing alerts.

o Helping to pin-point whether a performance issue
is at the network layer or application layer, or at
some sub-component such as a disk.

• Providing network and applications developers, a
better understanding of how networks and
applications work together by providing:
o Validation/correlation of how network

performance relates to delays and loss
performance (e.g. bandwidth estimators).

o Assist users in selecting the optimum network
(e.g. windows, streams, QoS) and application (e.g.
compression) configuration options.

o Identifying the critical bottlenecks such as disk,
speed, file system, caching, operating system,
network bandwidth, etc., for high throughput
application performance.

o Provide a public domain network performance
data base, together with analyses, and provide
public web accessible navigable reports and raw
data. This data and information can be used for

SLAC-PUB-9202
July 2003

Contributed to Sc2002: High Performance Networking and Computing, Baltimore, MD, 11/16/2002 - 11/22/2002

further research, for predictions and for
application steering.

• Provide a base on which to test, compare and
validate various bandwidth measurement techniques
and tools, determine their robustness, regions of
applicability, resource consumption, and accuracy,
and make recommendations to developers and users.

There are several projects that are currently making
continuous active (i.e. injecting probes) Internet End-to-
end Performance Measurements. A fairly complete
comparison made in July 1999, can be found in
reference [5]. Of those projects that provide public
(without subscription or some form of membership
requirement) access to the data and reports: AMP [6],
PingER, skitter/skping [7] make ping and traceroute
measurements but no bandwidth estimation or
throughput measurements; Surveyor [8] makes only one
way delay and traceroute measurements. NIMI [9] is an
infrastructure for making on demand measurements and
does not have continuous measurements and reports.
The Network Weather Service (NWS) [10] makes round
trip measurements and bandwidth estimates (single
stream only). The NWS also has a sophisticated
prediction mechanism. Unlike the infrastructure being
described here, the NWS is mainly aimed at full mesh
type measurements and currently does not provide file
copy/transfer application measurements. The Work
Package 7 of the European Data Grid [11] have
developed an infrastructure for making ping (using
PingER), iperf TCP throughput and UDP measurements
between seven European sites, currently they make no
file copy/transfer measurements.

In the rest of this paper, we first describe the
development of the measurement methodology. Next we
describe the analysis and presentation of the data. We
then describe results from the monitoring. We conclude
with a summary of the most significant results so far,
and finish up with a discussion of possible future
directions.

II. METHODOLOGY

A. First Version
The first instantiation was for making TCP

throughput measurements, using iperf [12], and secure
file copy from memory-to-memory measurements, using
bbcp [13], from a single measurements site, SLAC, to a
set of 20-30 hosts at remote sites. The remote hosts were
selected to be at PPDG sites or sites with strong
collaborations with SLAC (usually HENP sites or
Internet performance measurement sites). For each
remote host we needed an account with secure shell
("ssh") [14] logon access. We successfully demonstrated
the first instantiation for the SC2001 Bandwidth
Challenge: Bandwidth to the World project [15] in
November 2001.

One of the first steps was to contact people at the
remote sites to request the accounts. It took about seven
weeks to get accounts on suitable remote hosts at about
25 sites. The variety of forms and procedures required at
the sites was a revelation in itself, ranging from just a
phone call to multiple paper forms that had to be faxed,
or web forms requiring considerable personal details.

We logged onto the first few remote hosts, set up the
ssh keys, and copied over and installed the various initial
applications (e.g. iperf, bbcp) by hand.

The diversity of the remote hosts: hardware,
operating systems, network interfaces, directory
structures (e.g. the userid, where to find various
applications, the home directory) required a master
configuration database to enable remote ssh access to
execute commands. This was implemented as a Perl [16]
“require” script. This database also enabled us to provide
an alias for each remote host so some level of privacy
could be maintained, customize how to call the
measurement tools (sensors), and keep the email
addresses of the contacts for each host.

B. 2nd Version
Based on our experiences with SC2001, we rewrote

the measurement infrastructure software with a major
focus on improving the reliability and the ease of
management, though still focused on making the
measurements from a single monitoring host. To enable
testing pathological cases we made it easy to call the
production measurement script (run-bw-tests) from
the command line with options to select the host and the
measurement to perform. We also more formally defined
the requirements for the remote host, and decided to
support only Solaris 5.6 and above, and Linux 2.2 and
above.

We used the Unix cron facility to schedule tasks at
the measurement host. The ssh keys were saved in an
AFS file on the measurement host, and its tokens timed
out after 25 hours, so we had to use an AFS unattended
token renew mechanism (trscron) to renew the
tokens for cron jobs. We also added code to the
measurements to verify that we had a token.

Early on we had many problems with the iperf server
becoming non-functional on the remote host. For
example, the remote host was rebooted and iperf was not
restarted, and, in other cases the iperf process just
disappeared or was still present but not responding
(though in some cases it still had the TCP port attached).
We were also concerned about leaving servers like iperf
running all the time since it could assist in a denial of
service attack. We therefore decided to start the remote
server before each measurement and kill it when the
measurement was complete. This helped to increase
robustness, though it increased the complexity of the
measurement process.

We also found it necessary to time out processes
since some would hang up and run forever, or others

would run for elongated times. This also complicated the
code since timing out required the code to fork
processes, time them out and recover.

We added ping and traceroute (with only one
measurement per hop to reduce execution time) to the
measurement suite in order to have an ongoing record of
round trip times (RTT) and routes. We also added other
sensors to the suite for test and comparison purposes.
These initially included bbcp disk to disk ("bbcpdisk"),
bbftp [17] and pipechar [18]. We found we had to
decrease the frequency for each round of measurements
from 1 hour to 90 minutes in order to complete each
round before the next round was scheduled. The start
time of each round was randomized, by including a wait
of up to 15 minutes with a flat random distribution. Most
of the delays were caused by timeouts, so we also
worked on optimizing the timeouts by carefully
reviewing the reasons behind them. Since pipechar
tended to run for long periods compared to the other
sensors, we reduced the frequency of pipechar
measurements for each remote host to one in four rounds
of measurements.

To automate much of the remote host initialization
and install updates we developed a tool
(remoteos.pl). In addition we developed a tool
(getbwversions.pl) to query and report on the
configuration of the remote hosts (MHz, number of
streams, TCP window sizes, Operating System (OS)
etc.) as well as identifying what versions of the
measurement sensors were installed.

We added about seven more remote hosts to the
monitoring during this phase, and as a result documented
and simplified the procedures for adding new remote
hosts.

C. 3rd Version
To enable the monitoring code to run at another sites,

we first ported it from Solaris to Linux. The major
difficulty with doing this was caused by the different
ways Solaris and Linux handled the threads we forked in
the measurement script so we could timeout the various
tasks. We also parameterized the locations of all the
major file directories and placed the parameter values in
a small configuration file. Since we planned to export
the code to other sites we also added disclaimers to all
the scripts at this time. We also took the opportunity to
clean up the code and generalize it in many cases.
Following porting from a Solaris to a Linux host we then
ported the code manually to a second site, Manchester
University, taking careful notes and documenting what
was required. Using these notes we then automated
many of the procedures required to port the monitoring
code to a another site. At this stage we also added the
UPPmon measurement tool to the infrastructure and
began work on generalizing and simplifying adding new
measurement tools.

D. Pathologies
We ran into problems getting ssh to work properly

when the remote host was running SSH protocol version
2 and while the measurement host was defaulting to
version 1. This was tracked down to an ssh mis-
configuration error in the measurement host. We also ran
into difficulties in capturing all the ssh output from
commands, especially when running multiple processes.
A third ssh challenge was making ssh work through a
gateway machine which required cascading the ssh
commands. When using an OpenSSH client with an SSH
Communications, Inc. server we found we had to
reformat the public key before saving it on the server
host. There was also confusion about exactly where to
save the public key on the server especially for protocol
version 2 servers: the directory was sometimes called
.ssh and other times .ssh2; sometimes the public key was
appended to the file auhorized_keys, other times
authorized_keys2; sometimes it was placed in a separate
file with a pointer being placed in a file called
authorization.

Usually we were able to copy the measurement
executable that had been built at SLAC for the
appropriate OS version, to the remote host. However, in
some cases there were library incompatibilities. In about
40% of the iperf cases, and 20% of bbcp and bbftp cases
we had to make the executables on the remote host. The
information on whether an executable had to be made on
the remote host was kept in the configuration database.
Executables such as ping, traceroute and pipechar did
not need anything to be installed on the remote host.

When measuring disk to disk throughput on fast links
we had to be careful to understand the effects of caching.
We used the Solaris Unix File System mount
forcedirectio facility [19] to ensure that the source
files were not cached (use the Solaris man
mount_ufs command for more details) when we
were reading them on the measurement host. Though
this gave us a realistic estimation of disk read speed for
large files, it also meant that for high speed links the
gating factor in overall file transfer rates was often the
speed of the disk reads. Further work is in progress to
understand disk throughputs for various Operating
Systems and file systems, with and without caching and
with and without committing the writes, on about 25
different hosts. If possible we requested large amounts
disk space at the remote host. Until we have sufficient
disk space set aside we used space in /tmp. At the same
we checked and recorded whether the /tmp space was
using memory (e.g. swap space on Solaris).

Some hosts blocked a protocol, or rate limited
throughput for the port. If this was permanent, for
example a host did not respond to pings, then it was
simple to add this to the configuration database. In other
cases, ssh access or the applications server port would
be blocked due to security concerns. To detect such
failures we logged attempt information and developed a
tool (codeanal) to analyze the logs to highlight

repeated failures, so we could send email to the host
contact. For cases where we were unsure if the port was
blocked, we tested by running the iperf server on the
port at the remote host, and then running the iperf client
at SLAC to see if the port was accessible. We checked
what ports were required by a particular application by
reading the man pages and also by tracing the packets by
running tcpdump [20].

At any given time, we observed that about 20% of
the hosts would be unreachable via ssh. Included among
the reasons were: the host was changed or removed;
difficulty in getting account/password or getting ssh to
work on a changed host; problems with using Kerberos
credentials to access the remote host in an unattended
fashion; concerns at the remote site about charging for
usage; difficulties in interworking between various
versions of ssh; host was wrongly configured; link to
host was down for a long period (e.g. several weeks in
one case where a new link from Europe to Chicago was
being brought up).

E. Current Deployment
Currently the participants to which the tests are made

include: Argonne National Laboratory (ANL) in
Chicago IL, Brookhaven National Laboratory (BNL) in
Long Island NY, California Institute of Technology
(Caltech) in Pasadena CA, Fermi National Accelerator
Laboratory (FNAL) in Chicago IL, Thomas Jefferson
National Laboratory (JLAB) in Newport News VA,
Lawrence Berkeley National Laboratory (LBNL) in
Berkeley CA, San Diego Supercomputing Center
(SDSC) in San Diego CA, University of Wisconsin
(UWisc) in Madison WI, National Energy Research
Scientific Computing Center (NERSC) in Oakland CA,
University of Florida (UFL) in Gainesville FL, Indiana
University (IU), the University of Michigan (UMich) in
Ann Arbor MI, CERN in Geneva Switzerland, KEK in
Tokyo Japan, Rutherford Laboratory near Oxford
England and Daresbury Laboratory near Liverpool

England, Rice University in Houston TX, University of
Delaware in Newark DE, Oak Ridge National
Laboratory (ORNL) Oak Ridge TN, NASA/GSFC,
IN2P3 in Lyon, France, Los Alamos national laboratory
(LANL) in Los Alamos NM, Tri-Universities Meson
Factory (TRIUMF) in Vancouver Canada, Internet2
Southern Exchange (SoX) in Atlanta GA, INFN/Rome
and Milan, NIKHEF in Amsterdam, Netherlands, and of
course the Stanford Linear Accelerator Center (SLAC)
near San Francisco CA. There are currently (April ’02)
33 active destination hosts at about 30 sites in 8
countries.

Fig. 1 shows the logical routes between SLAC and
many of the participants. Sites displayed to the left are
routed across ESnet from SLAC, and sites to the right
are routed across CalREN and Internet2. SLAC has
OC12 (622Mbps) connections to ESnet and Internet2.
Wide-area network connectivity between these sites is
almost entirely managed by the Energy Sciences
Network (ESnet) and the Internet2 networks. In this
paper, Internet2 is considered to be the Abilene
backbone network, and the regional connector networks
such as the California Research and Education Network
(CalREN). .

F. Performance Measurements

Current performance measurements (“sensors")
include:

• Ping – If the ping fails, no further tests are done
for the node

• Traceroute – if this fails the other tests are done
anyway

• Iperf – if this fails the other tests are done anyway
• Bbcp memory to memory copy (bbcpmem)– if

this fails, the bbcp disk to disk (bbcpdisk) test is
not done

• Bbcp disk to disk (bbcpdisk)
• Bbftp
• UDPmon [21]
• Pipechar – done infrequently
In the future, others may be added and some of the

above may be discontinued.

The sensor output from a test is captured, identified
with a token, time-stamped and written to a "log" file.
For each remote host there is one log file per day.

At the end of a run, two scripts (extract-data
and codeanal) are called to process the log files for
that day. Extract-data extracts the bandwidth
results and other information related to the parameters of
the test and saves it in flat data ASCII files for analysis,
plotting and future reference.

Codeanal processes the logs for performance
information on the running of the run-bw-tests
code. The output of codeanal is a web page [22] that

Figure 1: Topology of particpiating sites

Figure 2: Part of code performance report

Figure 3: Time series display of performance from SLAC to JLab

presents, in tabular format, the amount of time it took to
run a test (if it was successful) or a failure code if a test
failed.

Fig. 2 shows a portion of code performance web page
that is created by codeanal. “NRH” indicates that the
remote host could not find a route back to the
measurement host. The “*” indicates that bbcp detected
that "Sink I/O buffers > 25% of available memory; copy
may be slow". “NR” indicates that pipechar was
intentionally not run. The “-43” indicates that the sensor
timed out and did not complete in the allotted time. This
helped to establish the time limits for each test. In
addition the page provides an overall picture of the
reliability and performance of the test code itself.
Patterns of failure are easily recognizable and can thus
be dealt with in a timely manner.

III. ANALYSIS

A. Time Series
The first displays created were the time series

displays [23]. That is, plot n days of data by date and
time. Currently we use n=28. This displays all the
measurements, while providing a reasonable density of
points, and allowing immediate visualization of several
weeks data. We also provide access to 56 (4 points/day)

and 180 day (1 point/day) plots. An example of a 28 day
time series is shown below in Fig. 3. This shows
throughputs/bandwidths measured from SLAC to JLab
for 28 days starting on April 6 ‘02. The measurements
are made with iperf (top x), bbcp memory to memory
(grey + symbols), bbcp disk to disk (black + symbols),
bbftp (grey filled in boxes), average ping RTT (line) and
min ping RTT (grey vertical bars). The time series plots
are valuable for giving an overall view of the
performance and relative throughputs, as well as
identifying step changes and diurnal patterns in
performance, long-term trends, and rough correlations
between the sensors. For example in Fig. 3, one can see
that when the average ping RTT increases the
throughput is also reduced.

B. Scatter Plots

As can be seen by the header on the graph, other
types of plots are also available. Clicking on
“Scatterplots” brings up a panel of scatter-plots that
indicate correlations. The panel plots each of the tests
against the others. Fig. 4 shows part of a panel of scatter
plots of the throughput/bandwidths measured by each
test (e.g. iperf) vs. each other test. The line through the
origin is a least squares fit to a straight line while
constraining the line to go through the origin. The other
line is a similar fit but without the constraint. The
parameters of the fits are also reported.

In addition to the scatter plots between each
measurement sensor for each remote host, we also
provide superimposed scatter plots of each pair of
sensors for all hosts. Each host is identified with a
different symbol/color combination for its set of points.
This facilitates looking for general trends such as
whether a bandwidth estimator (e.g. pipechar) fails for
some throughput domain, or whether there are common
limits on throughput for disk related operations, etc.
Together with the combined scatter plots, various
statistical summaries of the data are reported including,
the average and standard deviations for each coordinate,
and the correlation coefficient R.

Figure 4: Scatter plot examples for JLab

Figure 5: Examples of histogram reports

Figure 6: Iperf TCP throughput to Caltech and IN2P3.

C. Histograms

The results from the tests are also plotted in a
frequency histogram panel. The histograms provide a
clear picture of the distribution of the values. Fig. 5 is
an example from one of the histogram panels and shows
part of a frequency histogram panel for throughput
measurements from SLAC to ANL for 21 days starting
March 21 ’02. The 2 histograms shown are for (left to
right) iperf, and bbcpmem, and they are for CERN.

D. Tables

Tabular information with drill down URL links to
more detailed information is also provided. The tables
contain remote host configurations, the most recent
measurement results, and more detailed statistical results
such as averages, standard deviations, errors, correlation
coefficients, etc. In many cases, the tables also provide
access to the analyzed data in space or comma separated
value (csv) format for further analysis.

IV. RESULTS

A. Measurement Results

To evaluate the effect of the duration of the
individual measurements on the throughput measured
we selected durations of 2, 5, 10, 20, 40, 80, 160, 250
and 320 seconds, and window sizes of 256, 512, 1024,
2048 and 4096 KBytes. For each of the above possible
pairs we made a single stream measurement of the iperf
TCP throughput 17 times from SLAC to the remote host.
We used a single stream since multiple streams are in
general more agile to adjusting to network conditions
such as loss, and are thus expected to require less time to

reach a stable throughput rate. The results for SLAC to
Caltech and SLAC to IN2P3 are shown in Fig. 6, which
shows the iperf median TCP throughput measured from
SLAC to Caltech (RTT 40 msec.) and to IN2P3 in Lyon,
France (177 msec. RTT) for various window sizes. The
points are the medians of each set of 17 measurements,
and the error bars are determined from the Inter Quartile
Ranges (IQRs).

It is seen that though the medians continue to rise for
durations of over 10 seconds (by about 10% going from
10 to 20 seconds) to within the accuracy of the
measurements this is a small effect. Since we are
interested in the performance for long duration transfers,
we took the miimum duration that was representative of
a long duration transfer. So for most of our
measurements we settled on a duration of 10 seconds.

It was pointed out to us by Matt Mathis [24], that the
optimum duration may depend critically on the buffer
sizes in the first router(s) in the path. Also as one moves
to larger RTT times bandwidth products, slow start will
take longer and thus more time will be needed for
throughput to get close to capacity. As pointed out to us
by Tom Dunigan [25], if you know when slow start is
over, then you can more quickly get the bandwidth by
just using Web100 [26] to look at how many bytes have
been transferred over the last second once slow start is
over.

B. Impact on CPU Utilzation

Fig. 7 shows the behavior of the ratio of
measurement host MHz / iperf TCP throughput as a
function of the speed (MHz) of the source. The
utilization was obtained using the Unix "time" command
and is the sum of the "system" and "user" times. The
points are the medians for each complete set of
measurements made with the various window sizes and
streams. The error bars are the Inter Quartile Range for
each complete set.

Figure 7: Ratio of measurement host MHz utilization to
Mbits/s transferred

Figure 8: Bbcp memory to memory throughput vs, iperf TCP
throughput

Figure 9: Bbcp disk to disk vs. iperf TCP throughput

It is seen that there is a lot of variability in the
observed values. More measurements would be needed
to determine whether one OS is superior to another in
terms of minimizing MHz/Mbps. The averages of the
median values of MHZ/Mbps are: all 22 hosts 0.85+-0.5
(11 Linux hosts: 1.02+-0.6, 11 Solaris hosts: 0.68+-
0.27).

C. Comparing TCP with application throughputs

We compared iperf TCP throughput versus bbcpmem
throughput. An example of a scatter plot for iperf TCP
vs. bbcpmem measurements, made for 28 days starting
April 2 ’02 between SLAC and about 30 remote hosts, is
shown in Fig. 8.

The line shows a linear regression fit with the
parameters y=0.88x-5.5. There was excellent agreement
(correlation coefficient squared R2 ~ 0.91) when
comparing the measurements for all remote hosts, with
bbcpmem averaging about 88% of the iperf TCP
throughput. It is reasonable to expect the bbcp
throughput to be less than that of iperf since iperf simply
measures TCP throughput while bbcp is a secure copy
program built on top of TCP. Bbcp also synchronizes the
streams so a slow down on one stream will cause others
to slow down, whereas for iperf the streams are
asynchronous. The points in a given cluster observed in
Fig. 8 are usually associated with a given host. In fact,
for many of the hosts, the correlation for that host is
quite weak since the measurements all cluster around
small ranges. It is only when we compare the
measurements for all hosts that we get a strong
correlation. The reason why some of the clusters are
vertically or horizontally oriented will be the subject of
further investigation.

When we compared iperf TCP throughput with
bbcpdisk throughput, horizontal lines indicated a non-
network throughput constraint. We believe this is due to
disk I/O and are investigating this further to understand
the effects of caching, file system, committing the data
to disk, etc. We also observed vertical lines just under

10Mbps, 100Mbps and 150Mbps where the constraint
was probably network related (i.e. Ethernet, Fast
Ethernet and OC3).

Fig. 9 shows a typical scatterplot of bbcpdisk vs.
iperf TCP throughputs for about 30 remote hosts as seen
from SLAC. The different symbols and shades indicate
different remote hosts. The line is for a linear least
squares fit of bbcpmem to iperf.

We also compared the iperf throughput with the
minimum available predicted by pipechar. An example
is shown in Fig. 10. The different shades and symbols
represent different remote hosts. Since iperf is using
TCP while pipechar uses packet trains, one might expect
the agreement not to be excellent. In general the
agreement is particularly poor for 6 hosts with
throughputs above 100Mbits/s. About 50% of the hosts
have reasonable agreement. Pipechar uses packet
dispersion methods to estimate bandwidth. At high
bandwidths, this requires increased accuracy (better than
tens of microsecs) of the measurement clock. Packet
dispersion techniques using host timings will probably
also suffer badly if the network interface card (NIC)

Figure 10: Pipechar estimates vs. iperf TCP throughput

coalesces interrupts inbound or does buffering and
fragmentation outbound.

D. Windows and Streams

To determine the optimum window size and number
of parallel streams for each site we first configured the
hosts to use the maximum buffer and window sizes
recommended in [27]. Then we used iperf to send TCP
bulk data for 10 seconds from SLAC to an iperf server at
the remote host. For each site we used window sizes
from 8Kbytes to 4Mbytes, and for each window size we
used different numbers of parallel data streams from 1
up to 120 to comprise each transfer. The sequences of
window sizes and number of parallel streams were
deliberately chosen so they did not monotonically
increase or decrease. Simultaneous with the data
transfer, we also sent ten 100 byte pings separated by 1
second, each with a 20 second timeout. Following each
transfer, we also sent 10 more pings with no iperf
transfer. The idea of the two sets of pings was to
evaluate the RTT with and without competing iperf TCP
transfers.

We then plotted the throughput versus streams for
each of the window sizes. See Fig. 11 for a typical
example in this case from SLAC to IN2P3.

It is seen that, for small window sizes, the throughput
grows linearly with number of streams. On unsaturated
links, we can use this feature to generate TCP traffic
with a known load. As the window size increases (in this
case beyond 64Kbytes), the throughput begins to
saturate as the number of streams increases. Since
typical operating system default maximum window sizes
vary from 8kBytes to 64kBytes, it is apparent, that in
cases such as illustrated in Fig. 11, many streams may be
required to achieve optimal throughput. We selected a
windows streams combination that achieved about 80-
90% of the maximum throughput measured, while
minimizing the number of streams. We wished to
minimize the number of streams since each stream

consume resources (memory, a process, and extra CPU
cycles).

E. Impact on Others

To investigate the impact of high bulk throughput on
other users, we used iperf to send TCP traffic from a Sun
Ultra 2 running Solaris 5.8 to a similar host in CERN.
Iperf was set to have 1024KByte windows and 20
parallel streams. We ran iperf in this fashion for 35
minutes from 12:26 April 25 ’02, simultaneously
measuring the ping RTT and loss (we sent a 100 byte
ping once a second with a timeout of 20 seconds). While
doing this we also observed the link utilization. The
aggregate measured throughput from SLAC to CERN
was about 120Mbps, which was close to the bottleneck
bandwidth at the time. The ping loss was about 0.15%,
the minimum ping RTT was 166ms, the average was
295ms and the maximum was 408ms. We followed this
up by measuring the ping RTT and loss for 24 minutes
without generating any iperf traffic starting at 13:02. In
this case there was no packet loss, and the minimum
RTT was 166ms, the average was 167ms and the
maximum was 377ms. The effect on the ping RTT
distributions is seen in Fig. 12. The blue triangles
indicate the RTT with no iperf load, and the red squares
with an iperf load. The bottom axis is the ping RTT. The
lines on the graph represent the Cumulative Distribution
Functions (CDF) and their axis is labeled on the right.

It is seen that the unloaded RTT is sharply clustered
between 166 and 170 msec, while the loaded RTT
distribution is fairly flat for over 150msec above the
minimum RTT. We are looking for ways to ameliorate
this effect. Some possibilities include using the QBone
Scavenger Service (QBSS) [28], self rate limiting the
application (i.e. enable the application to restrict its
throughput), providing a feedback loop for the

Figure 11: Ten second iperf TCP throughputs from SLAC to
Manchester University

Iperf TCP throughput from SLAC to
Manchester U, UK, May 17 '02

0

50

100

150

200

250

300

350

400

450

500

0 20 40 60 80 100 120

Streams

T
h

ro
u

g
h

p
u

t
in

 M
b

it
s/

s

8KB 16KB 32KB
64KB 128KB 256KB
512KB 1024KB

Figure 13: Forecasting iperf TCP throughput: observed (+) and forecasts
(x with error bars) made for last 5 observations

application by using Web100 to measure the RTT and/or
retransmissions and using these values to adjust the
application's offered throughput.

F. Forecasting
To enable use of the measurements for guiding

applications, we looked at how to forecast the
throughput from existing measurements. We developed
a very simple prototype that, given a time, provides the
average and standard deviation of the previous 5
measurements. An example comparing the actual vs.
forecasted values for the SLAC to U. Wisconsin path is
seen in Fig. 13. The plus signs with the error bars are
equivalent to the standard deviation from the previous 5
measurements.

Besides being useful to assist applications,
forecasting may also be useful to decide how often to
make active measurements. For example, if the
measurements are very consistent, then we may not need
to make a measurement as frequently as otherwise. We
also calculated the average error for the above type of
measurements as:

 error=average(abs(forecast-observed)/observed)

The average errors between the forecasted and
observed values are shown in Table 1.

Table 1: average error between the forecasted and
observed measurements.

33
hosts

iperf
TCP

bbcp
mem

bbcp
disk

bbftp pipechar

error 13% 23% 15% 14% 13%
Stdev 11% 18% 13% 12% 8%
It can be seen that, even with this simple forecasting

method, reasonable agreement is achieved (better than
25% in most cases) for 90 minutes after the last
measurement.

G. Passive and Active Measurements
To validate whether the sensors were reporting the

correct throughputs, we read the Netflow records [29]
from a Cisco 6506 containing an MSFC module for
routing. The Cisco 6506 is located at the SLAC network
border and is connected to the outside world by 1 Gbit/s
links, one to ESnet, the other to Stanford University and
thence to CalREN 2. The methodology of collecting the
Netflow records is described in [30]. A Netflow record
includes the source and destination IP address and port
4-tuple (source IP, destination IP, source port,
destination port), the protocol, the number of packets
and bytes, the start and end times and active time for
each flow/stream. The flows were sorted by source and
destination IP address and start time and flows starting
with the same source and destination address that start
within 2 seconds of one another are assumed to belong
to a given application process. Thus we could aggregate
the throughput for the application instance as the sum of
the bytes for all streams divided by the sum of the active
times for all streams divided by the number of streams.
Typically we see about 10-20K applications per day
transferring greater than one MByte of data between 100
to 300 different pairs of hosts.

We then compare the passive Netflow throughputs,
calculated as above, with the throughputs recorded by
the associated active application (sensor) by means of
time series, scatterplots, calculating err = (passive-
active)/passive and the correlation coefficient R. An
example of a time series is shown in Fig. 14. Fig. 14
shows the time series of active and passive throughput
measurements for iperf from SLAC to Caltech for 28
days starting April 1 ’02. For this case the err = 2% and

Figure 14: Example of time series of active and passive throughputs
from SLAC to Caltech, Mar-Apr '02

Ping RTTs for loaded & unloaded link
between SLAC & CERN

1

10

100

1000

10000

160 210 260 310 360 410
Ping RTT ms.

F
re

q
u

en
cy

0%

20%

40%

60%

80%

100%

C
D

F

Loaded frequency
No load frequency
Loaded CDF
No load CDF

Figure 12: Ping RTTs with and without simultaneous iperf
load

R=0.99 and the agreement is seen to be excellent.

The overall agreements, for 28 days starting April 1
‘02, are shown in Table 2 below. The ranges are the 25
percentile and 75 percentiles. On average the throughput
for each sensor to each host was measured 279 times in
that period. We excluded remote host-sensor
combinations where there were fewer than 50
measurements. It is seen that in general the correlations
are strong. The err ranges indicate that there is not an
overall systematic difference between the active and
passive measurements. For a given remote host-sensor
the active measurements can be systematically greater
(i.e. the err is negative) than the passive measurements
and vice versa for another remote host-sensor. On
average the bbftp active sensor reported throughputs
25% lower than observed by the passive measurement.
This may be since bbftp starts the timer before or after it
starts or ends the actual TCP session. In general the sign
of the err would track for the bbcp and iperf
measurements for a given host (i.e. if the iperf err was
negative for a given host for then the bbcp err would
also be negative). The strongest correlations are for iperf
followed by bbcpdisk. The bbftp correlations are
generally much weaker. Typically the agreement is
poorer for remote hosts with lower throughputs and the
disagreement for low throughputs is usually with a
negative err. More work will be required to understand
why bbftp has poorer agreement between active and
passive measurements, and some of the details of the
other disagreements. However, in general there is
excellent correlation between the active and passive
iperf and bbcp measurements, and the errs are < 5% for
the majority of remote hosts.

This agreement is important since it encourages us to
include passive measurements into the throughput
measurement database. Thus we now have an important
extra (roughly 100-300 pairs per day) source of
throughput measurements for pairs of hosts matching
real use patterns, but which do not add any extra load to
the network.

Table 2: Errs and correlation coefficients (R) between
active and passive measurements for throughput sensors
for about 25 remote hosts seen from SLAC in April '02

Metric iperf
TCP

bbcp
mem

bbcp
disk

bbftp Over
all

err
median

0% -3.9% -5.0% 25% 2.0%

err
range

-4.5%,
2.0%

-7.5%,
5%

-14.5%,
2.5%

21.5%,
37.5%

-7%,
12%

R
median

0.99 0.86 0.94 0.68 0.94

R range 0.98,
0.99

0.8,
0.98

0.82,
0.98

0.39,
0.89

0.73.
0.99

Remote
hosts

27 24 23 23

V. CONCLUSIONS

Preliminary results from IEPM-BW so far indicate:

• Reasonable estimates of throughput can be made in
our case with 10 second iperf measurements. This is
much shorter than it typically takes many bandwidth
estimators, such as pipechar, to make an estimate.

• Roughly speaking one needs about 1 MHz of CPU
cycles to provide 1 Mbit/s throughput on today’s
CPUs and OSs.

• Throughputs can vary by an order of magnitude with
time of day or day of week etc.

• The bbcp file copy rates from memory to memory
are typically (25 to 75 percentile) in the range of
58% to 96% of the iperf TCP throughputs.

• Disk to disk file copy rates are typically 90% of the
memory to memory rates for rates below 60Mbits/s,
Above 40-60Mbits/s performance can vary
depending on disk/file system performance, caching
etc. Uncached disk performance for the remote hosts
we were measuring to appears to top out at between
4 and 8Mbytes/s in most cases.

• When running high throughput applications, the
RTT for other users can be noticeably increased.

• We are able to predict performance 90 minutes into
the future with better than 25% accuracy.

• Passive Netflow measurements agree to within 5%
with active measurements for most remote hosts.

• Using standard operating systems (Linux and
Solaris) for the monitoring and remote hosts,
enabled us to easily take advantage of new sensors
which in some case have not been ported to less
popular operating systems.

• Using a hierarchical infrastructure, where each
monitoring host selects the remote hosts to monitor
(as opposed to a full mesh measurement
infrastructure), lends itself very well to the
requirements of HENP where there a few sites
providing access to large amounts of data, and each
site often collaborates with a different set of remote
sites.

The next steps include: documenting the
implementation, procedures and program logic, and
porting the monitoring infrastructure to more sites. We
plan to start the porting with Manchester University,
FNAL and INFN/Milan. Initially, to preserve flexibility,
each monitoring site will save its own data, and perform
its own extraction/analysis and reporting. We are also
working on validating other sensors such as pathrate
[31], pathload [32], GridFTP [33], INCITE [34],
UDPmon, etc., and hope to select a new recommended
set of base measurement sensors. We have made the data
available to the NWS project, and will look at more
sophisticated methods to make the forecasts, as well as
how to insert our data into their infrastructure. We hope
the forecast study will also help to optimize the

frequency of measurements. In addition we will
integrate Web100 into the measurements which, besides
providing detailed information from TCP, may also help
in optimizing the duration of measurements. The
analysis of the active measurements vs. the passive
measurements of users’ applications is just beginning
and further understanding of discrepancies is needed.
Further work could involve looking at the effects and
applicability of compression, application rate limiting,
providing tools to assist in making applications such as
bbcp network aware, and making the data available via
more standard publish/subscribe methods.:

ACKNOWLEDGMENT

We would like to acknowledge the help of Manish
Bhargava, Jerrod Williams of SLAC and Fabrizio
Coccetti of INFN/Trieste in developing display and
analysis code. Warren Matthews provided much
assistance in installing Web100 and configuring the
measurement hosts. We are indebted to Andrew
Hanushevsky of SLAC for providing guidance and
adding features to bbcp to improve its measurement
capabilities. Jin Guojun of LBNL provided assistance in
understanding the pipechar results and providing new
versions to test. We also owe a large debt of gratitude to
all the contacts at the remote sites who helped us to get
accounts and put up with our questions. Finally we
would like to acknowledge many useful discussions with
Matt Mathis of PSC, Brian Tierney of LBNL, and Rich
Wolski of UCSB.

 REFERENCES
[1] Particle Physics data Grid: http/www.ppdg.org/.

[2] GriPhyN Project: http://www.griphyn.org/

[3] Internet End-to-end Performance Monitoring - Bandwidth to the World
(IEPM-BW) project http://www-iepm.slac.stanford.edu/bw

[4] W. Matthews and R. L. Cottrell, “The PingER Project: Active Internet
Performance Monitoring for the HENP Community”, IEEE
Communications Magazine Vol 38 No. 5 pp130-136, May 2000i

[5] R. L. Cottrell, " Comparison of some Internet Active End-to-end
Performance Measurement projects",
http://www.slac.stanford.edu/comp/net/wan-mon/iepm-cf.html

[6] A. J. McGregor and H. W. Braun, “Balancing cost and utility in active
monitoring: The AMP example.,” INET 2000, July 2000.

[7] Skitter/skping
http://www.caida.org/tools/measurement/skitter/skping/index.xml

[8] "Introduction to the Surveyor Project", http://www.advanced.org/csg-
ippm/

[9] V. Paxson, A. Adams, M. Mathis, "Experiences with NIMI", Passive and
Active Measurements workshop 2000.

[10] R. Wolski, "Dynamically Forecasting Network Performance to Support
Dynamic Scheduling Using the Network Weather Service" in 6th High-
Performance Distributed Computing, Aug 1997.

[11] "WP7 Networking", http://www.gridpp.ac.uk/wp7/index.html

[12] Iperf: http://dast.nlanr.net/projects/Iperf/

[13] A. Hanushevsky, A. Trunov, R. L. Cottrell, “Peer-to-peer Computing for
Secure High Performance data Copying” Computing In High Energy
Physics 2001, pp 444-447., Biejing 2001. Paper can be found at:
http://www.slac.stanford.edu/~abh/CHEP2001/7-018.pdf

[14] D. J. Barrett and R. Silverman, “SSH, The Secure Shell: The Definitive
Guide”, O’Reilly & Associates, 2002.

[15] SC2001 Bandwidth Challenge proposal: Bandwidth to the World:
http://www-iepm.slac.stanford.edu/monitoring/bulk/sc2001/

[16] L. Wall, T. Christiansen and R. l. Schwartz, “Programming Perl”,
O’Reilly & Associates.

[17] Bbftp: http://doc.in2p3.fr/bbftp/

[18] Pipechar: http://www-didc.lbl.gov/pipechar/

[19] See the Solaris man mount ufs command for more details..

[20] Tcpdump: http://www.tcpdump.org/.

[21] UDPmon: www.hep.man.ac.uk/~rich/net

[22] Example of the code performance analysis:
http://www.slac.stanford.edu/comp/net/bandwidth-
tests/html/codereports/2002_04/2002_04_25.html

[23] Time series web page:
http://www.slac.stanford.edu/comp/net/bandwidth-
tests/html/slac_wan_bw_tests.html

[24] Matt Mathis, private communication.

[25] Tom Dunigan, private communication.

[26] “The Web100 Project, facilitating Effective and transparent network
Use”, http://www.web100.org/.

[27] "TCP Tuning Guide for Distributed Application on Wide Area
Networks", http://www-didc.lbl.gov/tcp-wan.html

[28] Qbone Scavenger Service: http://qbone.internet2.edu/qbss/

[29] Cisco IOS Netflow,
http://www.cisco.com/warp/public/732/Tech/netflow/

[30] C. Logg and R. L. Cottrell, “Passive Performance Monitoring and
Traffic Characteristics on the SLAC Internet Border”, Proceedings of
Computing in High Energy Physics 2001 (CHEP01), Science Press,
Beijing, New York.

[31] C. Dovrolis, P. Ramanathan, D. Moore, “What do Packet Dispersion
Techniques measure?”, Proceedings of the 2001 Infocom, Anchorage
AK. April 2001.

[32] M. Jain and C. Dovrolis, “Pathload: a measurement tool for end-to-end
available bandwidth”, PAM 2002, Passive and Active Measurement
Workshop,pp 14-25, Fort Collins Colorado March 2002.

[33] “GridFTP: Universal Data Transfer for the Grid”, White paper.
http://www.globus.org/datagrid/

[34] “INCITE: Edge-based Traffic Processing and Service Inference for
High-Performance Networks”, http://www-ece.rice.edu/INCITE/

