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We study the cosmology induced on a brane probing a warped throat region in a Calabi-

Yau compactification of type IIB string theory. For the case of a BPS D3-brane probing the

Klebanov-Strassler warped deformed conifold, the cosmology described by a suitable brane

observer is a bouncing, spatially flat Friedmann-Robertson-Walker universe with time-

varying Newton’s constant, which passes smoothly from a contracting to an expanding

phase. In the Klebanov-Tseytlin approximation to the Klebanov-Strassler solution the

cosmology would end with a big crunch singularity. In this sense, the warped deformed

conifold provides a string theory resolution of a spacelike singularity in the brane cosmology.

The four-dimensional effective action appropriate for a brane observer is a simple scalar-

tensor theory of gravity. In this description of the physics, a bounce is possible because

the relevant energy-momentum tensor can classically violate the null energy condition.
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1. Introduction

There has recently been considerable interest in the properties of string theory cosmol-

ogy. A generic feature of general relativistic cosmologies is the presence of singularities,

which is guaranteed under a wide range of circumstances by the singularity theorems

[1]. Since string theory has had great success in providing physically sensible descrip-

tions of certain timelike singularities in compactification geometries, one can hope that it

will similarly provide insight into the spacelike or null singularities which arise in various

cosmologies. Proposals in this direction have appeared in e.g. [2,3,4,5,6,7,8,9,10,11,12,13].

In a slightly different direction, the possibility of localizing models of particle physics

on three-branes in a higher-dimensional bulk geometry has motivated a great deal of work

on brane-world cosmology (see [14,15,16,17,18] and references therein for various exam-

ples). Of particular interest to us will be the “mirage” cosmology [14] which is experienced

by a D3-brane observer as he falls through a bulk string theory background. In this note,

we present a simple and concrete example where such an observer would describe a cos-

mology which evades the singularity theorems: his universe is a flat FRW model which

smoothly interpolates between a collapsing phase and an expanding phase.

The background through which the D3-brane moves is a Klebanov-Strassler (KS)

throat region [19] of a IIB Calabi-Yau compactification. Compactifications including such

throats, described in [20], yield models with 4d gravity and a warp factor which can vary

by many orders of magnitude as one moves in the internal space (as in the proposal of

Randall and Sundrum (RS) [21]). The backgrounds discussed in [20] would also admit, in

many cases, some number of wandering D3-branes. Such a brane can fall down the KS

throat and bounce smoothly back out, as the supergravity background has small curvature

everywhere. The induced cosmology on this probe, as described by an observer who holds

particle masses fixed , is a spatially flat Friedmann-Robertson-Walker universe which begins

in a contracting phase, passes smoothly through a minimum scale factor, and then re-

expands.1 A D3-brane probe in this background satisfies a “no-force” condition which

makes it possible to control the velocity of the contraction; in addition, the background

can be chosen so that the universe is large in Planck units at the bounce. For this reason,

the calculations which lead the brane observer to see a bounce are controlled and do not

suffer from large stringy or quantum gravity corrections. It is important to note that in this

1 A different approach to using the KS model to generate an interesting string theory cosmology

recently appeared in [22].
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scenario, the effective 4d Newton’s constant GN varies with the scale factor of the universe;

this results from the varying overlap of the graviton wavefunction with the D3-brane.

The KS solution is actually a stringy resolution of the singular Klebanov-Tseytlin (KT)

supergravity solution [23], which ends with a naked singularity in the infrared. A brane

falling into a Klebanov-Tseytlin throat would therefore undergo a singular big crunch. In

this sense, the cosmology we study involves a stringy resolution of a spacelike singularity,

from the point of view of an observer on the brane.

Although one can describe the cosmological history of these universes using the be-

havior of the induced metric along the brane trajectory, it is also interesting to consider

the 4d effective field theory that a brane resident could use to explain his cosmology. We

construct a simple toy model of these cosmologies using a 4d scalar-tensor theory of gravity.

The scalar can be identified with the open string scalar field Φr (corresponding to radial

motion down the warped throat) in the Born-Infeld action for the D3-brane. It is well

known that such scalar-tensor theories can classically violate the null energy condition,

making a bounce possible. Related facts about scalar field theories coupled to gravity have

been exploited previously by Bekenstein and several subsequent authors [24,25,26,27].

The organization of this note is as follows. In §2 we use the construction of [20] to

study the cosmology on a brane sliding down the KS throat. In §3 we provide a discussion

of the effective scalar-tensor theory of gravity a brane theorist would probably use to

explain his observations. We close with some thoughts on further directions in §4.

Several previous authors have investigated the possibility of bounce cosmologies in

scalar-tensor theories and in brane-world models. For FRW models with spherical spatial

sections (k = +1), examples in various contexts have appeared in [24,25,26]. As we were

completing this paper, other discussions of bounces in brane-world models appeared in

[28,29]. To the best of our knowledge, this note provides the first controlled example in

string theory of a bouncing, spatially flat FRW cosmology with 4d gravity.

2. Brane cosmology in a warped Calabi-Yau compactification

2.1. The compactifications

In [30,20,31], warped string compactifications were explored as a means of realizing

the scenario of Randall and Sundrum [21] in a string theory context. It was shown that
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compactifications of IIB string theory on Calabi-Yau orientifolds provide the necessary

ingredients. In such models, one derives a tadpole condition of the form

1

4
NO3 = ND3 +

1

2(2π)4(α′)2

∫

X

H3 ∧ F3 . (2.1)

Here X is the Calabi-Yau manifold, NO3 and ND3 count the number of orientifold planes

coming from fixed points of the orientifold action and the number of transverse D3-branes,

and H3, F3 are the NSNS and RR three-form field strengths of the IIB theory.2 In general,

the left-hand side of (2.1) is nonzero and can be a reasonably large number, giving rise to

the possibility of compactifications with large numbers of transverse D3-branes or internal

flux quanta. Since both of these lead to nontrivial warping of the metric as a function of

the internal coordinates, (2.1) tells us that these Calabi-Yau orientifolds provide a robust

setting for finding warped string compactifications [30,20,31].

We can make this somewhat vague statement much more precise in the example of

the warped deformed conifold. The conifold geometry is defined in C4 by

z1
2 + z2

2 + z3
2 + z4

2 = 0. (2.2)

It is topologically a cone over S2×S3; we will refer to the direction transverse to the base

as the “radial direction” (with small r being close to the tip and large r being far out along

the cone). The deformed conifold geometry

z1
2 + z2

2 + z3
2 + z4

2 = ε2 (2.3)

has two nontrivial 3-cycles, the A-cycle S3 which collapses as ε → 0, and the dual B-

cycle. Klebanov and Strassler found that the infrared region of the geometry which is

holographically dual to a cascading SU(N +M) × SU(N) N = 1 supersymmetric gauge

theory is precisely a warped version of the deformed conifold geometry, with nontrivial

3-form fluxes
1

(2π)2α′

∫

A

F = M,
1

(2π)2α′

∫

B

H = −k (2.4)

and N = kM . In particular, the space (2.3) is non-singular and the smooth geometry

dual to the IR of the gauge theory reflects the confinement of the Yang-Mills theory (with

the small parameter ε mapping to the exponentially small dynamical scale of the gauge

2 In an F-theory description, the left-hand side of (2.1) is replaced by χ(X4)
24

, where X4 is the

relevant elliptic Calabi-Yau fourfold.
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theory). In a cruder approximation to the physics, Klebanov and Tseytlin had earlier found

a dual gravity description with a naked singularity [23]; this heuristically corresponds to

the unresolved singularity in (2.2).

In [20], the warped, deformed conifold with flux (2.3), (2.4) was embedded in string/F-

theory compactifications to 4d. The small r region is as in [19], while at some large r (in the

UV of the dual cascading field theory), the solution is glued into a Calabi-Yau manifold.

The fluxes give rise to a potential which fixes (many of) the Calabi-Yau moduli (and in

particular the ε in (2.3)), while the fluxes plus in some cases wandering D3-branes saturate

the tadpole condition (2.1). If one considers one of the cases with ND3 > 0, then it is

natural to imagine a cosmology arising on a wandering D3-brane as it falls down towards

the tip of the conifold (2.3).

2.2. The Klebanov-Strassler geometry

The KS metric is given by (we use the conventions of [32])

ds2 = h−1/2(τ )ηµνdx
µdxν + h1/2(τ )ds2

6 (2.5)

where ds2
6 is the metric of the deformed conifold,

ds2
6 =

1

2
ε4/3K(τ )(

1

3K3(τ )
[dτ 2 + (g5)2] + cosh2(

τ

2
)[(g3)2 + (g4)2] + sinh2(

τ

2
)[(g1)2 + (g2)2]).

(2.6)

Here

g1 =
e1 − e3

√
2

, g2 =
e2 − e4

√
2

g3 =
e1 + e3

√
2

, g4 =
e2 + e4

√
2

g5 = e5

(2.7)

where
e1 = −sin(θ1)dφ1, e2 = dθ1

e3 = cos(ψ)sin(θ2)dφ2 − sin(ψ)dθ2

e4 = sin(ψ)sin(θ2)dφ2 + cos(ψ)dθ2

e5 = dψ + cos(θ1)dφ1 + cos(θ2)dφ2 .

(2.8)

ψ is an angular coordinate which ranges from 0 to 4π, while (θ1, φ1) and (θ2, φ2) are the

conventional coordinates on two S2s. The function K(τ ) in (2.5) is given by

K(τ ) =
(sinh(2τ )− 2τ )1/3

21/3sinh(τ )
. (2.9)
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Clearly in (2.5) τ plays the role of the “radial” variable in the conifold geometry, with

large τ corresponding to large r.

Finally, the function h(τ ) in (2.5) is rather complicated; it is given by the expression

h(τ ) = (gsMα′)222/3ε−8/3I(τ ) (2.10)

where

I(τ ) =

∫ ∞

τ

dx
xcoth(x) − 1

sinh2(x)
(sinh(2x) − 2x)1/3. (2.11)

It will be useful to note that this reaches a maximum at τ = 0 and decreases monotonically

as τ → ∞. There are also nontrivial backgrounds of the NSNS 2-form and RR 2-form

potential; their detailed form will not enter here, but they are crucial in understanding

why the D3-brane propagates with no force in the background (2.5).

Since the form of h(τ ) will be important in what follows, we take a moment here to

give some limits of the behavior of formulae (2.10),(2.11)[32]. For very small τ , one finds

I(τ ) ∼ a0 + O(τ 2), with a0 a constant of order 1. In this limit the complicated metric

(2.5) simplifies greatly (c.f. equation(67) of [32]):

ds2 → ε4/3

21/3a
1/2
0 gsMα′

dxndxn+a
1/2
0 6−1/3(gsMα′)(

1

2
dτ 2 +

1

2
(g5)2 + (g3)2 + (g4)2

+
1

4
τ 2[(g1)2 + (g2)2]) .

(2.12)

This is R3,1 times (the small τ limit of) the deformed conifold. In particular, the S3 has

fixed radius proportional to
√
gsM , and so the curvature can be made arbitrarily small

for large gsM . In the opposite limit of large τ , the metric simplies to Klebanov-Tseytlin

form. Introducing the coordinate r via

r2 =
3

25/3
ε4/3e

2τ
3 (2.13)

and using the asymptotic behavior I(τ ) ∼ 3× 2−1/3(τ − 1
4 )e−

4τ
3 , one finds

ds2 → r2

L2
√
ln(r/rs)

dxndxn +
L2
√
ln(r/rs)

r2
dr2 + L2

√
ln(r/rs)ds

2
T1,1 (2.14)

where ds2
T1,1 is the metric on the Einstein manifold T 1,1 and L2 = 9gsMα′

2
√

2
. This means

that up to logarithmic corrections, the large τ behavior gives rise to an AdS5 metric for

the xµ and τ directions. This is the expected behavior from the field theory dual, since

large τ corresponds to the UV, where the theory is approximately the Klebanov-Witten

N = 1 SCFT [33].
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2.3. Trajectory of a falling brane

We will start the D3-brane at some fixed τ = τ ∗ and send it flying towards τ = 0 with

a small initial proper velocity v in the radial τ direction. Before describing the trajectory

we will briefly explain our notation. τ always indicates the radial coordinate in the KS

geometry (2.5) and is dimensionless in our conventions. We will reserve t for proper time

(for the infalling brane) and ˙ for d
dt

, while ξ represents the coordinate time, in terms of

which the metric is

ds2 = h(τ )−
1
2 (−dξ2 +

∑

i

dx2
i ) + gττdτ

2 + angles (2.15)

and thus

(
dt

dξ
)
2

= h(τ )−
1
2 (1− h(τ )

1
2 gττ (

dτ

dξ
)
2

) . (2.16)

To leading order in the velocity we have ( dtdξ )
2 ≈ h(τ )−

1
2 .

Proper distance is given by d =
∫
dτ ′g1/2

ττ , and proper velocity by v ≡ ḋ = τ̇g
1/2
ττ . The

initial values of the position, proper distance, coordinate velocity, and proper velocity are

denoted by τ∗, d∗, τ̇0 and v0, respectively.

The D3-brane trajectory is determined by the Born-Infeld action

SBI =
−1

g2
s l

4
s

∫
d3σdξ


h(τ )−1

√
1− h(τ )

1
2 gττ (

dτ

dξ
)
2

− h(τ )−1


 (2.17)

where we have neglected contributions from the U(1) gauge field on the brane. At leading

order in a low-velocity expansion, rewritten in terms of derivatives with respect to proper

time,

SBI =
1

2g2
s l

4
s

∫
d3σdξ h(τ )−1gττ τ̇

2 (2.18)

where the cancellation of the potential h(τ )−1 is the realization of the no-force condition.

Conservation of energy then yields

τ̇ (t)
2

= τ̇ 2
0

h(t)

h(τ∗)
gττ (τ∗)
gττ (t)

(2.19)

From the profile of h
gττ

it follows that the brane accelerates gradually toward the tip of

the conifold. For large τ we may use the KT radial coordinate r (2.13), in terms of which

(2.19) is d2r
dξ2 = 0, which is another expression of the balancing of gravitational forces and

forces due to flux.
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2.4. The Induced Cosmology

An observer on the brane naturally sees an induced metric

ds2
brane = −dt2 + h−1/2(τ )(dx2

1 + dx2
2 + dx2

3) . (2.20)

But given that the brane trajectory is a function τ (t), (2.20) gives rise to a standard FRW

cosmology

ds2 = −dt2 + a2(t)(dx2
1 + dx2

2 + dx2
3) (2.21)

with a(t) given by

a(t) = h−1/4(τ (t)). (2.22)

Notice that the graviton wavefunction has a τ -dependent overlap with a brane located

at various points in the metric (2.5). This is simply the effect exploited in [21]. The

dimensionless strength of gravity therefore scales according to

GN (t)m2
open ∼ h(τ (t))−

1
2 ∼ a(t)2 (2.23)

where mopen is the mass of the first oscillating open string mode. A physicist residing on

the brane may choose to fix one of the dimensionful quantities GN , mopen in order to set

his units of length. Grinstein et al. [34] have shown that a brane observer who uses proper

distance to measure lengths on the brane will necessarily find fixed masses and variable

GN . One can argue for the same system of units by stipulating that elementary particle

masses should be used to define the units, and should be considered fixed with time. In

this model we will use the mass of the first excited open string mode to fix such a frame;

in a more realistic model, one would want other (perhaps “standard model”) degrees of

freedom to be the relevant massive modes.

A brane observer following an inward-falling trajectory in the background (2.5) would

therefore make the following statements.

1. Elementary particle masses, e.g. mopen, are considered fixed with time.

2. In these units, the proper distance between galaxies on the brane scales with a(t) as in

standard FRW cosmology. In consequence, for the infalling brane (moving towards τ = 0)

one observes blueshifting of photons.

3. The gravitational coupling on the brane is time-dependent,

GN(t) ∼ a(t)2 . (2.24)
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Therefore, as the universe collapses, the strength of gravity decreases.

In fact, (2.22) together with (2.24) imply that in 4d Planck units, the size of the

universe remains fixed . From this “closed string” perspective, the cosmology is particularly

trivial; the brane radial position is described by a scalar field Φr in the 4d action which

is undergoing some slow time variation (and, for small brane velocity, carries little enough

energy that backreaction is not an issue). However, in this frame particle masses vary with

time. We find it more natural, as in [34], for a brane observer to view physics in the frame

specified by 1-3 above; we will henceforth adopt the viewpoint of such a hypothetical

brane cosmologist. In §3.1 we describe the field redefinition which takes one from the

“brane cosmologist” frame to the “closed string” frame in a toy model.

The Bounce

As the brane falls from τ ∗ towards zero, the scale factor decreases monotonically. It

hits τ = 0 in finite proper time. However, as is clear from the metric (2.5), there is no real

boundary of the space at this point; τ = 0 is analogous to the origin in polar coordinates.

The brane smoothly continues back to positive τ , and the scale factor re-expands. Although

it is hard to provide an analytical expression for a(t) given the complexity of the expressions

(2.10) and (2.11), we can numerically solve for a; a plot appears in Figure 1.

t

a

Fig. 1: The scale factor a(t) as a function of proper time for a brane near
the tip of the Klebanov-Strassler geometry. This particular bounce begins
from radial position τ = 4.

In the approximate supergravity dual to the cascading gauge theory studied in [23],

there is instead a naked singularity in the region of small τ , which is deformed away by the

fluxes (2.4). In the KT approximation to the physics, then, the cosmology on the brane

would actually have a spacelike singularity at some finite proper time. The evolution in

8



this background agrees with Figure 1 until one gets close to the tip of the conifold; then, in

the “unphysical” region of the KT solution, the brane rapidly re-expands, and a singularity

of the curvature scalar of the induced metric arises at a finite proper time. A plot of a(t)

for this case appears in Figure 2.

t

a

Fig. 2: The scale factor a(t) as a function of proper time for a brane near
the singularity of the Klebanov-Tseytlin geometry. The explosive growth of
a(t) on the right coincides with a curvature singularity in the induced metric.

Hence, we see that string theory in the smooth KS background gives rise to a bouncing

brane cosmology, while the KT approximation would have given rise to a cosmology with a

spacelike crunch. There has been great success in understanding the resolution of timelike

singularities in string theory, so it is heartening to see that in some special cases one can

translate those results to learn about spacelike singularities as well.

Limiting behaviors

In the two asymptotic regimes of τ ∼ 0 and very large τ , the formulae simplify [32]

and the behavior of a(t) can be given explicitly. For small τ , the geometry is just the

product (2.12). Hence, in this limit, the brane is effectively falling in an unwarped 5d

space, and the cosmology is very simple:

a(t) = constant +O(t2) . (2.25)

In the large τ regime, the metric (2.14) differs from AdS5 by logarithmic corrections,

and so the brane trajectory deviates very gradually from that of a D3-brane in AdS. For

simplicity we present here the induced cosmology on a D3-brane in AdS; the logarithmic

9



corrections require no new ideas but lead to more complicated formulae. From (2.18),

using the D3-brane form of the AdS5 metric

ds2 = r2(−dξ2 + dx2
1 + dx2

2 + dx2
3) +

dr2

r2
(2.26)

we find, in terms of proper time,

a2(t) = a2(0)(1 + 2
ṙ0
r0
t) (2.27)

for a brane with initial position and velocity r0, ṙ0 at t = 0. It follows that

(
ȧ

a
)2 =

C

a4
(2.28)

where C = a4(0)( ṙ0
r0

)
2
. Because the right hand side of (2.28) scales like the energy density

of radiation, this has been termed “dark radiation” [35,36]. In the language of [14] it might

also be called “mirage matter with equation of state ρ = 3p.”

The Friedmann equation (2.28) has been thoroughly investigated in the context of

Randall-Sundrum models. In particular, just such a law was found to arise on a visible

brane which is separated from a Planck brane by an interval whose length varies with

time (see [37] and references therein). This is entirely consistent with our scenario, as the

Calabi-Yau provides an effective Planck brane and the bulk motion of the probe changes

the length of the interval between the branes.

As the brane proceeds to larger τ , eventually it will reach the region where the KS

throat has been glued onto a Calabi-Yau space. Beyond that point it is no longer possible

for us to say anything universal about the behavior of the brane cosmology.

2.5. Issues of backreaction

There are several issues involving backreaction that merit consideration. To argue

that the bounce we have seen in §2.4 accurately describes the behavior of the brane as it

propagates in from τ∗ and back out again, we must ensure that the state with nonzero

τ̇ on the brane does not contain enough energy to significantly distort the closed string

background geometry. In fact we must check both that a motionless brane in the throat

creates a negligible backreaction, and that the kinetic energy on the brane does not un-

dergo gravitational collapse (yielding a clumpy brane) on the relevant timescales. It is also

important to understand the extent of the backreaction from semiclassical particle pro-

duction. Finally, the presence of nonzero energy density on the brane leads to a potential

10



for the Calabi-Yau volume modulus (as in §6 of [38]). We will imagine that this modulus

has been fixed and will neglect this effect.

The first concern can be dismissed quickly. In the limit of small gs the backreaction

on the closed string background is small. The second concern needs to be discussed in

somewhat more detail. The falling brane necessarily has energy density localized on its

worldvolume. After a sufficiently long time this initially uniform energy can become inho-

mogeneous because of the Jeans instability. In this subsection we demonstrate that, for a

suitable choice of the parameters of the KS geometry, this instability is negligible during

the bounce portion of the history of the brane universe.

Jeans Instability

For a uniform fluid of density ρ, the Jeans instability appears at length scales greater

than LJeans ≡ vs√
ρGN

, where vs is the velocity of sound. Perturbations with this wavelength

could destabilize the brane given a time tinstability ≥ LJeans. In terms of the volume V6 of

the Calabi-Yau,

GN = g2
s l

8
sV6
−1h(τUV )

1
2 h(τ )−

1
2 (2.29)

where we choose τUV such that rUV (as given in (2.13)) is of order one (so the throat extends

slightly into the KT regime before gluing into the Calabi-Yau). For the compactifications

of interest V6 ≥ l6s ,3 so that for τ ≤ τUV

GN ≤ gs
2ls

2 . (2.30)

From (2.18), (2.19), we see that the energy density on the brane is constant,

ρ =
1

2g2
s l

4
s

h(τ∗)−1gττ (τ∗)τ̇02 (2.31)

so

tinstability ≥
vs
τ̇0
h(τ∗)

1
2 gττ (τ∗)

− 1
2 ls . (2.32)

3 In fact, as discussed in [20], warped compactifications really reproduce the RS scenario when

the volume is not very large in string units (since the flux and brane backreaction which produce

the warping become larger effects at small Calabi-Yau volume). We are assuming we are at the

threshold volume where the warping becomes a significant effect, which should justify the estimate

(2.29).
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Because the brane accelerates toward the tip of the conifold, to fall from d∗ to the tip and

rebound requires a time

tbounce ≤
2d∗
v0

. (2.33)

This leads to (we now drop numerical factors of order one)

tbounce
tinstability

<
d∗
ls
h(τ∗)−

1
2 . (2.34)

Using the asymptotic form of I(τ ), K(τ ) we find

tbounce
tinstability

<
1√
gsM

τ∗
3
4 ls
−2(ε2eτ∗ )

2
3 . (2.35)

Because we have glued the KS throat into the Calabi-Yau geometry at a location

where r = rUV of (2.13) is of order one, we see that ε2eτ∗ = O(1). This leads to

tbounce
tinstability

<
1√
gsM

τ
3/4
∗ . (2.36)

Finally, since the hierarchy between the UV and IR ends of the throat is exponential in

τ∗, it is natural to take τ∗ to be a number of order 5-10 (in the language of RS scenarios,

τ∗ controls the length of the interval in AdS radii, up to factors of π). Therefore, in the

supergravity regime where gsM >> 1, (2.36) demonstrates that we can neglect the Jeans

instability on the brane in discussing the dynamics during the bounce.

Particle Creation

Because the bounce cosmology is strongly time-dependent, it is also important to

consider the spectrum of particles created semiclassically by the bounce. We will argue that

the energy density due to such particle production is small enough that its backreaction is

negligible.

The bounce geometry (2.21) is conformally trivial, so massless, conformally coupled

scalar fields will not be produced by the cosmological evolution. Massive fields break

the conformal invariance. The relevant massive scalar fields on the brane are excited

string states with mass m ≥ 1
ls

. Quite generally we expect that modes with frequencies

ω � ȧ
a
≡ H will not be significantly populated by the bounce, i.e. the probability that a

comoving detector will register such a particle long after the bounce is exponentially small

in ω
H . The cases of interest involve slow-moving branes, so the maximum value of H is far
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below the string scale. Thus we expect the energy density due to particle creation should

be quite small.

Concrete calculations of the production of massive scalar and fermion fields in a bounc-

ing k = 0 FRW cosmology were carried out in [39] (though the system in consideration

there did not satisfy Einstein’s equations). The scale factor in [39] has the same limiting

behaviors as our own, and the results there are consistent with our expectations. It would

be interesting to carry out the relevant particle creation calculation directly in string the-

ory. A particle creation calculation in closed string theory was described in worldsheet (2d

conformal field theory) language in [40].

3. Four-dimensional Lagrangian description

3.1. Effective Lagrangian

In the limit of low matter density on the probe brane, the cosmology is determined

entirely by the bulk geometry. The D3-brane trajectory is determined by the Born-Infeld

action, and the induced metric along this trajectory provides a time-dependent mirage

cosmology. The mirage cosmology proposal of [14] includes another step: one can write

down the Friedmann equations for the cosmology and identify the right hand side with

mirage density and mirage pressure.

This is not yet an ideal formulation from the perspective of a brane resident. One

would like a four-dimensional Lagrangian description of the mirage matter, of the cos-

mological evolution, and of the variation of GN . In particular, since a bounce in a flat

Friedmann-Robertson-Walker universe necessitates violation of the null energy condition,

it would be interesting to understand this violation in terms of a 4d Lagrangian and energy-

momentum tensor. In this section we will propose a toy scalar-tensor Lagrangian which

admits cosmologies reproducing the basic features of our “bouncing brane” solutions; sim-

ilar Lagrangians have arisen in the study of RS cosmology [41].

The massless fields in our 4d theory include a 4d graviton and the massless open

strings on the D3-brane: a U(1) gauge field Aµ, a scalar Φr corresponding to radial motion

in the compactified throat, and scalars Φi, i = 1, · · · , 5 parametrizing motion in the angular

coordinates. All other scalar fields are massive. (In fact without a no-force condition there

can be a potential and a mass for Φr . For simplicity we will work only with the BPS case,
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but the trajectory of anti-branes in the KS throat would also yield an interesting time-

dependent solution.4) We will choose to fix the Φi, and the requirement of negligible energy

density in open string modes on the brane means that Aµ is not relevant for cosmological

purposes. This leaves Φr and gµν as the only massless fields entering the 4d Lagrangian.

Our goal in this section is to show explicitly how an observer who sees particle masses

which depend on Φr could change his units of length and see an FRW cosmology with

varying GN . (In §2.4 we provided several arguments motivating this choice of frame.) Be-

cause the full Lagrangian for a brane observer in the KS background, including all massive

fields, is quite complicated, it will be most practical to work with a simpler Lagrangian

which has the correct schematic features. In particular, all particle masses depend on Φr

in the same way, so it will suffice to consider a single massive field χ (which could be, for

example, an excited open string mode).

A “mass-varying” Lagrangian with the appropriate features is

L =

∫
d3x
√−g (

R

16πGN
− R

12
Φ2
r−

1

2
gµν∇µΦr∇νΦr−

1

2
gµν∇µχ∇νχ−

1

2
m2(Φr)χ

2 − V (χ))

(3.1)

where χ is a matter field on the brane whose mass depends on Φr as

m2(Φr) ≡ Ω2(Φr)µ
2 (3.2)

for fixed µ. The form of the potential for χ and the coupling of χ to the curvature scalar

will be unimportant for this analysis, and we will henceforth omit these terms. Note that

Φr is conformally coupled.

As discussed in §2.4, an observer confined to the brane most naturally holds fixed

the masses of fields on the brane. This can be accomplished by performing the change of

variables

g̃µν = Ω2(Φr)gµν (3.3)

Φ̃r = Ω−1(Φr)Φr (3.4)

χ̃ = Ω−1(Φr)χ (3.5)

4 In particular, anti-branes near the tip of the conifold can annihilate by merging with flux [38].

This could potentially lead to a cosmology which begins or ends with a tunneling or annihilation

process.
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The resulting “mass-fixed” Lagrangian is

L =

∫
d3x
√
−g̃ (

R̃

16πGNΩ2(Φr)
+

3

8πGNΩ(Φr)4
g̃µν∇µΩ∇νΩ − R̃

12
Φ̃2
r

− 1

2
g̃µν∇µΦ̃r∇νΦ̃r −

1

2
g̃µν∇µχ̃∇νχ̃ −

1

2
µ2χ̃2) .

(3.6)

We have discarded terms which look like (∇Ω)2χ̃2 because Ω̇ << µ (at least in our example,

where χ represents a massive string mode). Terms which look like (∇Ω)2Φ̃2
r cancel due to

the conformal coupling of Φr.

The effective gravitational coupling is given by

GN
eff = GNΩ2(Φr) . (3.7)

According to the discussion in §2.4, we expect that Ω2(Φr) = h(τ (Φr))
− 1

2 , so indeed the

strength of gravity scales as required by (2.24). (We will not need the explicit relation

between τ and Φr.)

We are interested in the limit where the backreaction due to Φ̃r, χ̃ is small, so in

particular Φ̃r, χ̃ � meff
Planck. This means that for the purpose of solving the Einstein

equations in the mass-fixed frame we may neglect terms which are suppressed by a factor

of GN . Defining

γ =

√
3

4πGN
Ω−1(Φr) (3.8)

we may write the effective Lagrangian

L =

∫
d3x
√
−g̃
(
R̃

12
γ2 +

1

2
g̃µν∇µγ∇νγ +O(

Φr
mPlanck

)

)
. (3.9)

Observe that the kinetic energy term is now negative semidefinite (we are using signature

− + ++), so it is easy to violate the null energy condition which is relevant (via the

singularity theorems) in constraining the behavior of the metric g̃µν .5

The equation of motion which follows from this Lagrangian is

g̃µν∇µ∇νγ −
R̃

6
γ = O(

Φr
mPlanck

) (3.10)

5 Notice that because of the non-minimally coupled scalar, it is also possible to violate the null

energy condition which governs the behavior of gµν .
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Now let us see that this system reproduces our expectations from §2.4. Given an FRW

cosmology specified by a(t), if we set γ(t) = ca−1(t) for some constant c then (3.10) is

satisfied identically. From (3.3), (3.4), (3.5) it is clear that we should identify

a(t) ∝ Ω(Φr(t)). (3.11)

Then the Einstein equations for (3.9) are satisfied if the varying-mass metric gµν = ηµν

and the mass-fixed metric g̃µν = a2(t)ηµν . So as discussed in §2.4, we have two com-

plementary perspectives: the brane observer uses the mass-fixed action (3.6) and sees an

FRW cosmology with varying GN , while the “closed string” observer sees gravity of fixed

strength in Minkowski space.

3.2. Relation to Warped Backgrounds

We can be slightly more explicit about how the toy model of §3.1 would be related to a

given warped background. Given any function a(t), we can construct a warped background

h(r) such that a no-force brane probe of that geometry experiences an induced cosmology

specified by a(t). We simply define ξ =
∫

dt
a(t) , r = vξ (v constant), and h(r) = a(r)

−4
.

A few comments are in order:

1. Very few backgrounds h(r) will correspond to solutions of IIB supergravity. One which

does, and indeed corresponds to a D3-brane in the warped deformed conifold, is given by

taking τ (t) to solve (2.19) and setting a(t) = h−
1
4 (τ (t)) with h given by (2.10).

2. The no-force condition is only a convenience. We could instead take r(ξ) to be any

function of ξ. This would correspond to a brane which accelerates due to external forces.

Again, very few systems of this sort arise from known branes of string theory moving in

valid supergravity backgrounds.

4. Discussion

As demonstrated in general terms in §3, and in a special example in string theory in

§2, in the presence of scalar fields it is easy to evade the singularity theorems (from the

perspective of a reasonable class of observers), even with a k = 0 FRW universe. It therefore

seems likely that many examples of such constructions, arising both as cosmologies on D-

branes and perhaps even as closed string cosmologies, should be possible. The cosmology

we presented is just a slice of evolution between some initial time when we join the brane

moving down the throat, and a final time when it is heading into the Calabi-Yau region.
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The later evolution of our model is then non-universal; it depends on the details of the

Calabi-Yau model (or in the language of [21], the detailed structure of the Planck brane).

It would be very interesting to write down models with 4d gravity whose dynamics can be

controlled for an eternity; some controlled, eternal closed string cosmologies were recently

described in [40].

The cosmology discussed here is far from realistic. As a first improvement, one would

like to study probe branes with a spectrum of massive fields below the scale 1
ls

(which

could be called “standard model” fields). It may be possible to construct such examples

by using parallel D3-branes which are slightly separated in the radial direction, wrapped

Dp-branes with p > 3, or anti-branes in appropriate regimes. It is also important to control

the time-variation of GN during/after nucleosynthesis, since this is highly constrained by

experiment (see for instance [42]). To improve the situation, one can envision a program of

“cosmological engineering.” That is, one could try to design IIB solutions with background

fields specifically chosen to give rise to interesting mirage cosmologies (various authors have

already proposed mirage models of closed universes [43], inflation with graceful exit [44],

asymptotically de Sitter spaces [28], etc., though most of these models do not include 4d

gravity). Each desired feature of the cosmology would result in a new condition on the

closed string fields. Then one would simply impose these conditions along with the field

equations of IIB supergravity.
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[4] D. Lüst, “Cosmological String Backgrounds,” hep-th/9303175;
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