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I. INTRODUCTION

The recent observation of CP violation in theB-meson system, realized through the measurement
of a nonzero, time-dependent, CP -violating asymmetry in the process B0(B̄0) → J/ψKs (and
related ones) [1], heralds a new era of discovery. The result yields a value of sin(2β) in accord
with standard model (SM) expectations [2], where β, defined by exp(iβ) ≡ −V ∗

cbVcd/(V
∗
tbVtd), is an

angle of the unitarity triangle, Vij being an element of the Cabibbo-Kobayashi-Maskawa (CKM)
matrix [3]. Ascertaining the presence of physics beyond the SM thus demands the determination
of all the angles of the unitarity triangle.

In this paper, we consider the decays B0(B̄0) → ρπ → π+π−π0, as a Dalitz plot analysis of the
possible ρπ final states, under the assumption of isospin symmetry, permits the determination of
the CKM parameter α [4], where α = π − β − γ and exp(iγ) ≡ −V ∗

ubVud/(V
∗
cbVcd). Our interest

is in assessing the size of the nonresonant contributions which could possibly obscure the analysis,
and in ameliorating their impact. Indeed, the strategy for the extraction of α relies, in part, on
the assumption that the ρ mesons dominate the 3π final state. There are, however, empirical
indications that this assumption may not always be warranted. For example, combining the CLEO
measurements of the branching fractions, B(B̄0 → ρ∓π±) = (27.6+8.4

−7.4 ± 4.2) × 10−6 and B(B− →
ρ0π−) = (10.4+3.3

−3.4 ± 2.1)× 10−6 [5], with the BABAR result B(B0 → ρ±π∓) = (28.9± 5.4± 4.3)×
10−6 [6] yields

R =
B(B̄0 → ρ∓π±)

B(B− → ρ0π−)
= 2.7 ± 1.2 , (1)

where we have added the errors in quadrature and ignored correlations. These ratios are small [7]
with respect to simple theoretical estimates, which give R ∼ 6 [8]. An interesting possibility for
the resolution of this discrepancy has been suggested in Refs. [9, 10], whose authors investigate
the possible backgrounds to B → ρπ → 3π decay which arise from contributions mediated by
other resonances. They find that the light σ resonance, a broad I = J = 0 enhancement in ππ
scattering, as well as the heavy-meson resonances B∗ (JP = 1−) and B0 (JP = 0+), can modify the
B → 3π branching ratios in the ρ-mass region and give rise to values of R crudely compatible with
the empirical value of Eq. (1), given its large error. In particular, the contribution of B− → σπ−

decay significantly enhances the effective B− → ρ0π− branching ratio and lowers the value of R.
Analogously, the σ modestly impacts the B0 → ρ0π0 branching ratio [11]; let us consider the issues.

The analysis of B0(B̄0) → ρπ → π+π−π0 decay posits a two-step process, that is, that the
amplitude for B0 → π+π−π0 decay can be written as

A(B0 → π+π−π0) = f+a+− + f−a−+ + f0a00 , (2)

where aij ≡ A(B0 → ρiπj) and fi is the vector form-factor describing ρi → ππ [4]. An analogous
construct can be made for B0(B̄0) → σπ → π+π−π0 decay, which contains the scalar form-factor
describing σ → π+π−. It is evident that the manner in which the σ populates the ρ phase-space will
depend on the amplitude for B0 → σπ0 decay, as well as on the accompanying scalar form-factor.
The σ is a state of definite CP , so that the isospin analysis of Ref. [4] can be enlarged to include
it [11]; nevertheless, the analysis relies on the form factors adopted for the ρi → ππ and σ → ππ
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processes. The resonances of interest are broad, so that Breit-Wigner form-factors are generally
insufficient: they do not satisfy general theoretical constraints, such as analyticity and unitarity,
over the ππ invariant mass interval needed. As discussed in detail in Ref. [11], the differences are
striking for the scalar form-factor, and the resulting numerical impact on B → 3π decay is sizable.
In contrast, the numerical differences for the vector form-factor are not large.

The purpose of this paper is to extend the work of Ref. [11], which deals exclusively with the
ρ and σ contributions. We incorporate the B∗ and B0 contributions suggested in Ref. [9], as the
effects they find in the B0 → ρ0π0 channel are considerable. In this paper, however, we show that
the off-shell nature of the B∗ and B0 weak and strong vertices adds considerably to the uncertainty
of the estimate of Ref. [9] and may well reduce these contributions significantly. Nevertheless, we
also explore kinematical cuts which would be useful in reducing the impact of these effects in the
ρ-mass region.

We begin in Sec. II with the weak, effective Hamiltonian and the matrix elements pertinent to
our calculations. Subsequently, in Sec. III, we derive the amplitudes associated with the various
contributions of interest in the ρ-mass region of B → 3π decay. We discuss our numerical results
in Sec. IV and conclude in Sec. V.

II. EFFECTIVE HAMILTONIAN AND MATRIX ELEMENTS

The effective, |∆B| = 1 Hamiltonian for b→ dqq̄ decay is given by [12]

Heff =
GF√

2

[

λu (C1O
u
1 + C2O

u
2 ) + λc (C1O

c
1 + C2O

c
2) − λt

10
∑

i=3

CiOi

]

, (3)

where GF is the Fermi coupling constant, λq ≡ VqbV
∗
qd are CKM factors, Ci are Wilson coefficients,

and Oi are four-quark operators. The expressions for Ci and Oi are detailed in Ref. [12], though
we interchange C1O

q
1 ↔ C2O

q
2 , so that C1 ∼ 1 and C1 > C2 . We neglect the electroweak-

penguin operators O7,···,10 because their coefficients C7,···,10 are smaller than the others. In the decay
amplitudes that we derive, the Ci enter through the combinations ai = Ci + Ci+1/Nc if i is odd
and ai = Ci + Ci−1/Nc if i is even, where Nc = 3 is the number of colors.

The diagrams contributing to the B → 3π amplitudes considered here, as shown in Fig. 1, each
have a strong vertex and a weak vertex, where the latter describes the transition Mb → M1M2,

in which Mb is a heavy meson containing a b quark and M1,2 are light mesons. The amplitude
corresponding to the weak vertex is given by

A(Mb →M1M2) = 〈M1M2|Heff |Mb〉 . (4)

To evaluate this, we adopt the naive factorization approximation, following earlier calculations [9–
11] to which we compare.

The relevant matrix elements are

〈π−(p)|d̄γµLu|0〉 =
√

2 〈π0(p)|ūγµLu|0〉 = ifπ p
µ ,

〈ρ−(p, ε)|d̄γµu|0〉 =
√

2 〈ρ0(p, ε)|ūγµu|0〉 = fρ ε
∗µ ,

(5)
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FIG. 1: Diagrams contributing to B → 3π, decay with each square denoting a weak vertex.

qµ〈ρ+(p, ε)|ūγµLb|B̄0(k)〉 = −2iAB→ρ
0 (q2)Mρ ε

∗ · q ,

〈π+(p)|ūγµLb|B̄0(k)〉 = (k + p)µ FB→π
1 (q2) +

M2
B −M2

π

q2
qµ
(

FB→π
0 (q2) − FB→π

1 (q2)
)

,

qµ〈σ(p)|d̄γµLb|B̄0(k)〉 = −i
(

M2
B −M2

σ

)

FB→σ
0 (q2) ,

(6)

qµ〈π+(p)|ū γµL b|B̄∗0(k, εB∗)〉 = 2i
√

2AB∗→π
0 (q2)MB∗ εB∗ · q ,

qµ〈π+(p)|ūγµLb|B̄0
0(k)〉 = −i

(

M2
B

0

−M2
π

)

F
B

0
→π

0 (q2) ,
(7)

where fπ and fρ are the usual decay constants, q ≡ k − p, and L ≡ 1− γ5. The various A0(q
2) and

F0,1(q
2) are form factors. Other meson-to-meson matrix elements can be determined using isospin

symmetry. In our phase convention, the meson flavor wave functions are given by π+ = ud̄,
√

2 π0 =
uū− dd̄, π− = dū, B̄0 = bd̄, B− = bū, and similarly for the ρ, B∗, and B0. This implies that we
have, for example, 〈π+|ūγµb|B̄0〉 = −

√
2 〈π0|d̄γµb|B̄0〉 = +

√
2 〈π0|ūγµb|B−〉 = 〈π−|d̄γµb|B−〉. We

now employ these matrix elements to realize amplitudes for B → 3π decays.

III. AMPLITUDES

Practical considerations drive our interest in the π+π−π0 and π∓π∓π± decay modes; we shall
not consider the π0π0π± ones. We write the amplitude for B̄0 → π+(p+)π−(p−)π0(p0) decay as a
coherent sum of the ρ, σ, B∗, and B0 amplitudes, namely,

A+−0 = A+−0
ρ + A+−0

σ + A+−0
B∗ + A+−0

B
0

. (8)

For B− → π−(p1)π
−(p2)π

+(p+), the amplitude A−−+ can be constructed in an analogous manner.

We consider first the B → ρπ → 3π contributions, represented by the diagram denoted by
“ρ” in Fig. 1(a). For each ρi diagram and 3π state, the amplitude is written as a product of an
amplitude for the B → ρiπj weak transition and a vertex function Γρππ describing the ρi → ππ
form factor. Were the ρ a narrow resonance, the Breit-Wigner (BW) form

ΓBW
ρππ(s) =

gρ

s−M2
ρ + iΓρMρ

(9)

would suffice, where
√
s is the invariant mass of the 2π system and gρ is the ρ → ππ coupling

constant. However, since the ρ is not narrow — its width is some 20% of its mass — this form
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must be generalized to accommodate known theoretical constraints over the region in s for which
it is appreciable. For example, unitarity and time-reversal invariance compel the phase of Γρππ(s)
to be that of L = 1, I = 1 ππ scattering for s . (Mπ +Mω)2, for which the scattering is elastic.
Moreover, the imaginary part of Γρππ(s) must vanish below physical threshold, s = 4M 2

π . For a
detailed discussion with references to earlier work, see Refs. [11, 13]. Following Ref. [13], we have

Γρππ(s) =
−Fρ(s)

fργ

, (10)

where Fρ(s) is the vector form-factor of the pion and fργ is the ρ-γ coupling constant. The pa-
rameters in Fρ(s) are determined by fitting to e+e− → π+π− data; what is important is that the
parametrization itself is consistent with theoretical constraints. The value of fργ is determined
from the ρ → e+e− width, which, in turn, is extracted from the e+e− → π+π− cross section
at s = M 2

ρ [13, 14]. The overall sign is chosen so that Eq. (10) is equivalent to the BW form,
Eq. (9), as s → M 2

ρ . At s = M 2
ρ the BW form is compatible with the various theoretical con-

straints. In our numerical analysis, we adopt the “solution B” fit of Ref. [13] for Fρ, for which
fργ = 0.122 ± 0.001 GeV2 [14]. Alternatively, a BW form with a running width Γρ(s), chosen to
be compatible with the form of the ππ phase shift (in the crossed channel) as s → 4M 2

π , is given
in Ref. [15]. However, the numerical differences between this form and the one we have chosen are
small [11].

For the decay amplitudes, after summing over the ρ polarizations, we find

A+−0
ρ = η− (s+− − s+0) Γρππ(s−0) + η+ (s−0 − s+−) Γρππ(s+0) − η0 (s−0 − s+0) Γρππ(s+−) ,

A−−+
ρ = −η̄0

[

(s12 − s1+) Γρππ(s2+) + (s12 − s2+) Γρππ(s1+)
]

,
(11)

where skl ≡ (pk + pl)
2, with

η− =
GF√

2
(λu a1 − λt a4) fρ F

Bπ
1 , η+ =

GF√
2

[

λu a1 − λt

(

a4 − a6Rq

)]

fπMρA
Bρ
0 ,

η0 =
−GF

2
√

2

{

[

λu a2 + λt

(

a4 − a6Rq

)]

fπMρA
Bρ
0 + (λu a2 + λt a4) fρ F

Bπ
1

}

,

η̄0 =
GF

2

{

[

λu a1 − λt

(

a4 − a6Rq

)]

fπMρA
Bρ
0 + (λu a2 + λt a4) fρ F

Bπ
1

}

.

(12)

Here ABρ
0 ≡ AB→ρ

0 (M2
π) and FBπ

1 ≡ FB→π
1 (M2

ρ ), whereas Rq ≡ M2
π/[(mb + m̂)m̂] — note that

we work in the isospin-symmetric limit, for which m̂ = mu = md . The relative signs between the
different terms in Eq. (11) follow from the ρππ couplings1

〈π0(p0) π
±(p±)|ρ±〉 = ±gρ ερ · (p± − p0) ,

〈π+(p+) π−(p−)|ρ0〉 = gρ ερ · (p− − p+) ,
(13)

1 We use the notation
〈

M2M3

∣

∣M1

〉

≡
〈

M2M3

∣

∣Hstrong

∣

∣M1

〉

.
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which follow, in turn, from the phase conventions we have chosen for the flavor wave functions:
|π±〉 = ∓|I = 1, I3 = ±1〉 and |π0〉 = |I = 1, I3 = 0〉, and similarly for the ρ states. Our Aρ

amplitudes agree with those of earlier calculations [9, 11, 16].

We turn next to the σ “meson” contributions, represented by the diagram denoted by “σ” in
Fig. 1(a). We use the σ to denote a two-pion state with total isospin I = 0 and total angular-
momentum J = 0 ; it need not be a “pre-existing” resonance, but, rather, can be generated dy-
namically by the strong pionic final-state interactions in this channel [17]. The peak of the broad
enhancement associated with the σ is close to the ρ in mass, so that the decay B → σπ → 3π can
populate the B → ρπ phase space [10]. As in the ρ case, the amplitudes for B → σπ → 3π decays
are written as a product of an amplitude for the B → σπ weak transition and a vertex function
Γσππ describing the σ → ππ form factor. We write [11]

Γσππ(s) = χΓn∗
1 (s) , (14)

where Γn
1 is defined as

〈0|d̄d|π+(p+)π−(p−)〉 =

√

2

3
Γn

1 (s+−)B0 . (15)

We note that B0 ≡ M2
π/(2m̂) is the vacuum quark condensate and χ is a normalization constant,

to be discussed shortly. For our numerical work in the next section, we adopt the Γn
1 (s) as derived

in Ref. [18], after Refs. [17, 19, 20]. The calculated form factor is realized in a chiral, unitarized,
coupled-channel approach; at low energies, the form factor is matched to the one-loop-order expres-
sion in chiral perturbation theory [18, 21]. The resulting form factor is consistent with low-energy
constraints and is comparable to the scalar form-factor which emerges from the dispersion analysis
of Ref. [22]; however, it is notably different from the Breit-Wigner form adopted in Refs. [10, 23] to
study the role of the σ in B and D decays into the 3π final state. That is,

ΓBW
σππ(s) =

gσππ

s−M2
σ + iΓσ(s)Mσ

, Γσ(s) =
MσΓσ√

s

√

s− 4M 2
π

M2
σ − 4M2

π

, (16)

where the coupling gσππ ≡ 〈π+π−|σ〉 is determined from the σ → ππ decay rate. For B → 3π
decay, the numerical changes arising from the use of Γσππ(s) in place of the BW expression are
significant [11], as we will see here as well. We determine the normalization χ by requiring that [11]

χ
∣

∣Γn
1 (M2

σ)
∣

∣ =
gσππ

Γσ(M2
σ)Mσ

, (17)

which equates |Γσππ(s)| to its BW counterpart at s = M 2
σ . The values of Mσ and Γσ are extracted

from fits of ΓBW
σππ(s) to D → 3π decays [23]. The normalization condition is motivated by noting

that the modulus of Γn
1 (s) is peaked near s = M 2

σ , whereas the normalization of Γn
1 (s) is sensitive

to the values of certain, poorly known low-energy constants [11]. We emphasize that Mσ and Γσ

appear merely in the normalization of Γσππ.

The resulting decay amplitudes are then

A+−0
σ = η0

σ Γσππ(s+−) , A−−+
σ = η̄0

σ

(

Γσππ(s1+) + Γσππ(s2+)
)

, (18)
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where

η0
σ =

GF

2

{

[

λu a2 + λt

(

a4 − a6Rq

)] (

M2
B −M2

σ

)

fπF
Bσ
0 − λt a6

2〈σ|d̄d|0〉
mb − m̂

(

M2
B −M2

π

)

FBπ
0

}

,

η̄0
σ =

GF√
2

{

[

λu a1 − λt

(

a4 − a6Rq

)] (

M2
B −M2

σ

)

fπF
Bσ
0 + λt a6

2〈σ|d̄d|0〉
mb − m̂

(

M2
B −M2

π

)

FBπ
0

}

,

(19)

with FBπ
0 ≡ FB→π

0 (M2
σ) and FBσ

0 ≡ FB→σ
0 (M2

π). From Eqs. (14) and (15), it follows that
〈σ|d̄d|0〉 = M 2

π/(
√

6χm̂). We agree with the weak amplitudes of Ref. [11], but disagree with those
of Ref. [10] in that our η0

σ and η̄0
σ, neglecting penguin terms, are smaller and larger, respectively,

than theirs by a factor of
√

2.

We now evaluate the B∗ and B0 contributions, whose diagrams are shown in Fig. 1(b); we
suppose that other excited B-meson states could also contribute, but we expect that their larger
masses ought to make them less important [9]. Presently, no reliable data exists on the widths of
these heavy mesons, so that their values have to be calculated. Recent estimates [24, 25] suggest that
the B∗ is a very narrow resonance, whereas the B0 is less so, its width being some 6% of its mass.
Nevertheless, the resonances are sufficiently narrow that it is reasonable to adopt a Breit-Wigner
representation for the propagators of these mesons, as in Ref. [9]. In the combined heavy-quark and
chiral limit [26], the strong couplings connecting the (B∗, B0), B, and π mesons are [9, 24, 27]2

〈B−(p′)π+(p)|B̄∗0(k, ε)〉 = −2g
√

MBMB∗

fπ

ε · p , (20)

〈B−(p′)π+(p)|B̄0
0(k)〉 =

h
√

MBMB
0

fπ

k2 −M2
B

MB
0

. (21)

Using isospin symmetry, we derive

〈B−π+|B̄∗0〉 = −
√

2 〈B̄0π0|B̄∗0〉 = 〈B̄0π−|B∗−〉 (22)

and analogous relations for 〈Bπ|B0〉. We then obtain

A+−0
B∗ =

1√
2
K Π(s−0, s+−) +K1 Π(s−0, s+0)

s−0 −M2
B∗ + iΓB∗MB∗

−
1√
2
K Π(s+−, s−0)

s+− −M2
B∗ + iΓB∗MB∗

,

A−−+
B∗ =

K Π(s1+, s12)

s1+ −M2
B∗ + iΓB∗MB∗

+
K Π(s2+, s12)

s2+ −M2
B∗ + iΓB∗MB∗

,

(23)

A+−0
B

0

=

(

K̃0 + K̃cc

s−0 −M2
B

0

+ iΓB
0

MB
0

− K̃0

s+− −M2
B

0

+ iΓB
0

MB
0

)

(

M2
B

0

−M2
π

)

√
2

,

A−−+
B

0

=

(

K̃0

s1+ −M2
B

0

+ iΓB
0

MB
0

+
K̃0

s2+ −M2
B

0

+ iΓB
0

MB
0

)

(

M2
B

0

−M2
π

)

,

(24)

2 We note that 〈B∗−(k, ε)π+|B̄0〉 = −〈B−π+|B̄∗0(k, ε)〉 and 〈B−
0 (k)π+|B̄0〉 = −〈B−π+|B̄0

0(k)〉.
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where

K = −4GF

[

λu a1 − λt

(

a4 − a6Rq

)]

gMB∗

√

MBMB∗ AB∗π
0 ,

K1 = −2
√

2GF

[

λu a2 + λt

(

a4 − a6Rq

)]

gMB∗

√

MBMB∗ AB∗π
0 ,

(25)

K̃0 =
GF√

2

[

λu a1 − λt

(

a4 − a6Rq

)]
M2

B
0

−M2
B

MB
0

h
√

MBMB
0

F
B

0
π

0 ,

K̃cc =
GF√

2

[

λu a2 + λt

(

a4 − a6Rq

)]
M2

B
0

−M2
B

MB
0

√

MBMB
0

F
B

0
π

0 ,

(26)

and the sum over B∗ polarizations yields

Π(u, v) =
(M2

B −M2
π − u)u

4M2
B∗

+ M2
π − v

2
. (27)

Note that AB∗π
0 ≡ AB∗→π

0 (M2
π) and F

B
0
π

0 ≡ F
B

0
→π

0 (M2
π). Our expressions for A+−0 in Eqs. (23)

and (24) disagree with those in Ref. [9] in that the factors of 1/
√

2 are missing in their formulas,
and that the minus sign in the middle of the big brackets in Eq. (24) is opposite to theirs. However,
our expressions for A−−+ in Eqs. (23) and (24) agree with theirs.

IV. NUMERICAL RESULTS AND DISCUSSION

We begin by listing the parameters that we use; we conform with the parameter choices of
Refs. [9, 11], in order to realize a crisp comparison with their results. In specific, the Wilson
coefficients we use are

C1 = 1.100 , C2 = −0.226 , C3 = 0.012 , C4 = −0.029 , C5 = 0.009 , C6 = −0.033 . (28)

For the CKM factors, we adopt the Wolfenstein parametrization [28], retaining terms of O(λ3) in
the real part and of O(λ5) in the imaginary part, to wit,

Vud = 1 − λ2/2 , Vub = Aλ3 [ρ− iη (1 − λ2/2)] , Vtd = Aλ3 (1 − ρ− iη) , Vtb = 1 , (29)

and using

λ = 0.2196 , ρ = 0.05 , η = 0.36 , A = 0.806 . (30)

For decay constants, light meson masses, and resonance parameters, we have

fπ/
√

2 = 92.4 MeV , Mπ = 139.57 MeV ,

fρ = 0.15 GeV2 , Mρ = 769.3 MeV , Γρ = 150 MeV , gρ = 5.8 ,

Mσ = 478 MeV , Γσ = 324 MeV , gσππ = 2.52 GeV .

(31)
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The decay constants fπ and fρ are associated with π± and ρ± decay, respectively. We neglect
isospin-violating effects throughout, so that Mπ± = Mπ0 = Mπ, Mρ± = Mρ0 = Mρ, as well as
M

B̄0 = MB− = MB. Moreover, m̂ = 6 MeV. The B∗ and B are degenerate in the heavy-quark
limit, so that we neglect their mass difference as well. We also neglect the lifetime difference between
the B̄0 and B−, setting τ

B̄0 = τB− = τB. For the B and related mesons, we have

MB = 5.279 GeV , τB = 1.6 × 10−12 s , mb = 4.6 GeV ,

ΓB∗ = 0.2 keV , MB
0

= 5.697 GeV , ΓB
0

= 0.36 GeV ,
(32)

and use

g = 0.6 , h = −0.7 . (33)

The heavy-to-light transition form factors are given by

ABρ
0 = 0.29 , FBπ

0 = 0.37 , FBπ
1 = 0.37 , FBσ

0 = 0.46 ,

AB∗π
0 = 0.16 , F

B
0
π

0 = −0.19 .
(34)

Finally, for the vector and scalar form-factors, Γρππ(s) and Γσππ(s), respectively, we follow the
treatment of Ref. [11]. The Fρ(s) parametrization we adopt was fit to e+e− → π+π− data in the
elastic region [13], 2Mπ ≤ √

s ≤Mπ +Mω, only, so that for larger values of s we use a Breit-Wigner
form, matched to the value of Γρππ(s) at

√
s = Mπ +Mω. That is, for

√
s & 923 MeV we employ

Γρππ(s) = [cr (M2
ρ − s) + iciΓρMρ]gρ/[(M

2
ρ − s)2 + Γ2

ρM
2
ρ ], with cr ' 0.929 and ci ' 1.29. For

the scalar form-factor, we employ the Γn
1 (s) derived in Ref. [18], which is valid for

√
s . 1.2 GeV.

The normalization of Eq. (17) implies that χ = 20.0 GeV−1. For
√
s > 1.2 GeV, we match to the

asymptotic form of Γσππ(s) [22], as detailed in Ref. [11].

To obtain branching ratios for B → 3π decay in the ρ-mass region, we integrate over the region
of phase space satisfying the requirement that two of the three pions reconstruct the ρ mass within
an interval of 2δ, as was done in Refs. [9, 11]. This amounts in each case to calculating the effective
width

Γeff(B → ρ(p1 + p2)π(p3)) = Γ(B → π(p1)π(p2)π(p3))
∣

∣

∣

(M
ρ
−δ)2≤s

12
≤(M

ρ
+δ)2

. (35)

We choose δ = 0.3 GeV, following earlier work [9, 11].

For crisp comparison with Ref. [9], we begin by computing the effective branching ratios arising
from the use of Breit-Wigner forms, as in Eqs. (9) and (16) for the ρ and σ, respectively, throughout.
The various contributions, reflective of the enumerated terms in Eq. (8), are reported in Table I.
There are differences between our results for the ρ, ρ+B∗ , and ρ+B∗+B0 contributions and the
corresponding ones in Ref. [9]. The differences are, however, not large and arise in part from
missing factors in the formulas for the B∗ and B0 amplitudes, which we delineated in the last
section. In contrast, as pointed out in Ref. [11], the σ effect on the B− decay is much bigger than
that found in Ref. [10], because our σ amplitude is larger than theirs by a factor of

√
2. This is

evident in the ρ+σ and ρ+σ+B∗ columns. Our results agree with those Ref. [11], to the extent
that they are applicable; we note that Ref. [11] neglects penguin contributions altogether and deals
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exclusively with the ρ and σ contributions. The last column of Table I contains the sum of all the
contributions, ρ+σ+B∗+B0 . Overall, it is apparent that the effect of the B0 is smaller than that
of the other contributions, although it is not negligible. Finally, in the last row, we collect the ratios
of branching ratios R defined in Eq. (1). These results show that the inclusion of the σ and B∗,
either individually or together, makes the estimated value of R consistent with the empirical one,
given its large error.

TABLE I: Effective branching ratios for B → ρπ decays, as per Eq. (35), with δ = 0.3 GeV. Breit-Wigner

form factors are used throughout, noting Eqs. (9) and (16) for the ρ and σ contributions, respectively. All

branching ratios are reported in units of 10−6.

Decay mode ρ σ B∗ B0 ρ + B∗ ρ + B∗ + B0 ρ + σ ρ + σ + B∗ ρ + σ + B∗ + B0

B̄0→ρ−π+

B̄0→ρ+π−

B̄0→ρ0π0

B−→ρ0π−

16.0

4.76

0.91

4.10

0.0003

0.0003

0.045

5.18

0.54

0.13

0.39

2.71

0.009

0.020

0.016

0.107

16.5

4.98

1.43

7.42

16.3

4.98

1.29

8.45

16.0

4.78

0.93

8.83

16.4

5.00

1.59

7.67

16.3

5.00

1.43

7.92

R 5.1 - - - 2.9 2.5 2.3 2.8 2.7

We now proceed to compute the effective branching ratios with the ρ and σ form-factors, Eqs. (10)
and (14), which we advocate. These results are presented in Table II. The results without the σ
contributions change little, as the vector form-factor is not terribly different from its BW counter-
part [11]. In the presence of the σ, this similarity persists for the B̄0 decays, but, in contrast, the
B− branching ratios are significantly increased compared to the corresponding ones in Table I. This
effect also tends to diminish the relative impact of the B∗ and B0 contributions on the ρ0π− mode,
though the heavy mesons persist in making a substantial impact on the effective branching ratio
for the ρ0π0 mode.

TABLE II: Effective branching ratios for B → ρπ decays, as per Eq. (35), with δ = 0.3 GeV. We adopt

the ρ and σ form factors, Eqs. (10) and (14), respectively, which we have advocated. All branching ratios

are reported in units of 10−6.

Decay mode ρ σ B∗ B0 ρ + B∗ ρ + B∗ + B0 ρ + σ ρ + σ + B∗ ρ + σ + B∗ + B0

B̄0→ρ−π+

B̄0→ρ+π−

B̄0→ρ0π0

B−→ρ0π−

16.0

4.76

0.86

4.06

0.001

0.001

0.065

7.66

0.54

0.13

0.39

2.71

0.009

0.020

0.016

0.107

16.6

4.90

1.35

7.20

16.4

4.93

1.21

8.25

15.9

4.80

0.91

11.1

16.5

4.94

1.47

11.9

16.3

4.98

1.33

12.7

R 5.1 - - - 3.0 2.6 1.9 1.8 1.7
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Were the heavy-meson contributions to the ρ0π0 mode seen in Table II as large as we have esti-
mated, the impact on the Dalitz plot analysis to extract α from B̄0(B0) → π+π−π0 decays would be
significant [9]. Since the B∗ and B0 masses lie outside the phase-space region of B → 3π, their ef-
fects behave as part of the nonresonant background, but are not uniform and obviously interfere with
other contributions. The manner in which the contributions are distributed throughout the Dalitz
plot are shown for B̄0 → π+π−π0 decay in Figs. 2; the heavy-meson contributions preferentially
populate the edges of the Dalitz plot, in which the ρ contributions lie as well. In B− → π+π−π−

decay, the distribution of the heavy-meson contributions is somewhat more uniform, as illustrated
in Fig. 3.
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FIG. 2: The B∗ and B0 contributions to B̄0 → π+(p+)π−(p−)π0(p0) decay, specifically, |A+−0
B∗ + A+−0

B0
|2

(in dimensionless units) as a function of its arguments s+0 and s−0, both in units of GeV2.
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FIG. 3: The B∗ and B0 contributions to B− → π−(p1)π
−(p2)π

+(p+) decay, specifically, |A−−+
B∗ + A−−+

B0
|2

(in dimensionless units) as a function of its arguments s1+ and s2+, both in units of GeV2.
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We now proceed to consider the reliability of the estimates we have effected. Let us first note
that the parameters g and h of the strong heavy-meson couplings in Eqs. (20,21) assume the values
given in Eq. (33) — these reflect the upper limits of their estimated ranges [9, 24]. Thus, the results
we find with these parameters can be regarded as extremal estimates (although variations in other
numerical inputs, such as the form factors, do introduce further uncertainties). Choosing central
values of g and h in their estimated ranges decrease the heavy-meson effects by up to some 50% [9],
as explicitly shown in Table III.

TABLE III: Effective branching ratios for B → ρπ decays, as in Table II, except that g = 0.40 and

h = −0.54 have been used.

Decay mode ρ B∗ B0 ρ + B∗ ρ + B∗ + B0 ρ + σ ρ + σ + B∗ ρ + σ + B∗ + B0

B̄0→ρ−π+

B̄0→ρ+π−

B̄0→ρ0π0

B−→ρ0π−

16.0

4.76

0.86

4.06

0.24

0.06

0.17

1.20

0.005

0.012

0.009

0.064

16.3

4.82

1.10

5.55

16.1

4.87

1.03

6.12

15.9

4.80

0.91

11.1

16.2

4.86

1.20

11.0

16.1

4.91

1.13

11.4

R 5.1 - - 3.8 3.4 1.9 1.9 1.8

Moreover, the relative signs chosen for the ρ, σ, and heavy-meson contributions will impact the
numerical values of the effective branching ratios. As noted by Ref. [9], the relative sign of the
B∗ and B0 contributions is fixed in the heavy-quark and chiral limits. The relative signs of the
heavy-meson, ρ, and σ contributions, however, are less clear. We define the ρ → ππ coupling as
per Eq. (13), after Ref. [9, 11], though we note that a chiral Lagrangian analysis suggests that
the relations of Eq. (13) should possess an additional overall sign. With this modification, the
branching ratios for the ρ+B∗+B0 combination in Table II typically become smaller by no more
than 15%. However, the ρ+σ results in B̄0 → ρ0π0 and B− → ρ0π− become some 3% and 10%
larger, respectively. The impact on the ρ+σ+B∗+B0 results is mixed, leading to a suppression of
about 10% in the ρ0π0 mode and an enhancement of 2% in the ρ0π− mode.

Kinematical cuts can mitigate the impact of the heavy-meson and σ contributions. Since the
ρ±π∓ modes are little affected by these notions, we evaluate only the ρ0π0 and ρ0π− modes. We
try two different sets of kinematical cuts. For the first one, we set δ = 0.15 GeV = Γρ and report
our results in Table IV. The relative suppression of the heavy-meson and σ contributions is quite
modest, if it exists at all. For the second set, we impose not only a δ cut but also a cut on
cos θ, where θ is defined as the angle between the direction of one member of a pion pair from
ρ decay and the direction of the parent B-meson evaluated in the pair’s rest-frame. Since the ρ
contribution has a cos2θ distribution in B → π+π−π0 decay [4], larger values of | cos θ| enhance the
ρ contribution. Interference effects in the B− → π+π−π− channel will make this cut less effective.
We set δ = 0.3 GeV and | cos θ| > 0.4, and collect the results in Table V. Comparing to Table II,
the θ cut is seen to decrease the relative size of the σ background, as discussed in Ref. [11].
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TABLE IV: Effective branching ratios for B → ρπ decays, as in Table II, except that δ = 0.15 GeV has

been used.

Decay mode ρ σ B∗ ρ + B∗ ρ + B∗ + B0 ρ + σ ρ + σ + B∗ ρ + σ + B∗ + B0

B̄0→ρ0π0

B−→ρ0π−

0.33

3.36

0.029

3.46

0.20

1.38

0.55

4.82

0.49

5.39

0.36

6.46

0.59

7.56

0.53

8.17

TABLE V: Effective branching ratios for B → ρπ decays, as in Table II, but with the additional kinematical

cut | cos θ| > 0.4 as explained in the text.

Decay mode ρ σ B∗ ρ + B∗ ρ + B∗ + B0 ρ + σ ρ + σ + B∗ ρ + σ + B∗ + B0

B̄0→ρ0π0

B−→ρ0π−

0.84

3.81

0.039

4.79

0.27

1.71

1.22

5.92

1.11

6.58

0.87

7.97

1.29

8.63

1.18

9.13

Finally, we must discuss a tacit assumption we have made in the estimation of the B∗ and B0

contributions, which is made in Ref. [9] as well. That is, in realizing the diagrams of Fig. 1(b), we
have treated the strong (B∗, B0)Bπ and weak (B∗, B0) → ππ vertices as if the B∗ and B0 mesons
were on their mass shell. However, for the B → 3π decays of interest, we require that two of the
three pions have an invariant mass

√
s comparable to that of the ρ meson. This implies that in most

of the relevant phase-space region the mediating heavy-mesons carry s values much smaller than
their squared masses — they are highly off-mass-shell. This effect modifies the vertices we have
assumed in Eqs. (20,21) and Eq. (7). Unfortunately, the needed off-shell extrapolations cannot be
done reliably, although we would generically expect this effect to suppress the numerical importance
of the B∗ and B0 contributions. For example, the form factors of Eqs. (7) now depend on both q2

and k2; the vertices are only “half” off-shell, so that p2 does not enter, as the final-state π is on
its mass shell. Moreover, additional form factors appear. To illustrate, we note that the general
parametrization

〈π+(p)|ūγµLb|B̄0
0(k)〉 = −iF

B
0
→π

0 (k2, p2, q2)

(

M2
B

0

−M2
π

)

qµ

q2

− iF
B

0
→π

1 (k2, p2, q2)

[

pµ + kµ −
(

M2
B

0

−M2
π

) qµ

q2

]

(36)

predicated by an assumption of Lorentz invariance yields

qµ〈π+(p)|ūγµLb|B̄0
0(k)〉 = −i

(

M2
B

0

−M2
π

)

F
B

0
→π

0 (q2, k2) + i
(

M2
B

0

− k2
)

F
B

0
→π

1 (q2, k2) (37)

for the half-off-shell matrix element of interest. The matrix element is a linear combination of
signed, uncertain contributions, so that its sign is ultimately unclear. Similar considerations apply
to the B∗ → π matrix element, as well as to the strong vertices of Eqs. (20,21). In the treatment
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of Ref. [29], an off-shell extrapolation of Eq. (20), in the kinematic region of interest, is effected
through the replacement

√
MBMB∗ →

√

MB

√
s. To assess the impact of these considerations on

the numerical results we have reported, we shall adopt a similarly ad hoc prescription. Thus, we
perform the replacement

M
3/2
B∗ → s3/4 (38)

in the numerator of the B∗ amplitudes in Eq. (23), so that the “off-shellness” of both the strong and
weak vertices is taken into account. We neglect the B0 in this simple numerical estimate, as its effect
was rather small to start with. We calculate the corresponding branching ratios and collect the
results in Table VI. Our simple prescription leads to a dramatic reduction of the B∗ contributions,
as a comparison with Table II makes clear. Note that the computed values of R are still consistent
with the empirical ones, as a reduction in R is still realized through the σ contributions. Although
we cannot draw firm conclusions from this simple exercise, it serves to illustrate that neglecting the
off-shell nature of the heavy-mesons vertices in the kinematic region of interest could easily lead to
a considerable overestimate of their effects.

TABLE VI: Effective branching ratios for B → ρπ decays, as in Table II, except that the off-shellness of

the B∗ meson is included as explained in the text.

Decay mode ρ σ B∗ ρ + B∗ ρ + σ ρ + σ + B∗

B̄0→ρ−π+

B̄0→ρ+π−

B̄0→ρ0π0

B−→ρ0π−

16.0

4.76

0.86

4.06

0.001

0.001

0.065

7.66

0.03

0.01

0.02

0.25

16.0

4.85

0.88

4.43

15.9

4.80

0.91

11.1

16.0

4.88

0.95

10.7

R 5.1 - - 4.7 1.9 1.9

V. CONCLUSIONS

We have examined resonant and nonresonant backgrounds to B → ρπ → 3π decays which can
potentially impact the extraction of α from a Dalitz plot analysis of B → π+π−π0 decays [4], as well
as the value of the ratio of branching ratios we term R, as defined in Eq. (1). In particular, we have
evaluated the effects of nonresonant contributions mediated by the heavy mesons B∗ and B0, as
well as the contributions from the light σ resonance via B → σπ → 3π decay in the ρ-mass region.
In this, our analysis parallels that of Refs. [9, 10], though it differs fundamentally in two points.
Firstly, we use the vector and scalar form-factors of Ref. [11], which are consistent with low-energy
theoretical constraints and thus are suitable for the description of broad resonant structures such as
the ρ and the σ. The scalar form factor, in particular, is quite different from the Breit-Wigner form
adopted in other analyses [10, 23] and leads to differing results [11]. Secondly, in the kinematics of
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the interest, the B∗ and B0 are highly off-mass-shell, impacting the strong and weak vertices which
mediate the B → (B∗, B0)π → πππ decay. We find that these effects can reduce the heavy-meson
contributions substantially.

Our numerical results show, were we to neglect the off-shell effects we have mentioned, that
the B → ρ±π∓ decay modes are little affected by the σ and heavy-meson backgrounds, whereas
the ρ0π0 mode receives large contributions from the latter. In contrast, the B− → π+π−π− decay
mode contains large contributions from both the σ and B∗, though the σ contributions numerically
dominate. Effecting a simple model of off-shell effects, we find that the B∗ effects are substantially
reduced. The off-shell extrapolation of interest cannot be effected with certainty; nevertheless, our
estimates indicate that the neglect of this effect may lead to a substantial overestimate of the B∗

contributions in B → 3π decay. The role of the σ in lowering the theoretical value of R and yielding
a favorable comparison with experiment persists despite these considerations.
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