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Abstract

With more and more and larger and larger Linux clus-
ters, the question arises how to install them. This pa-
per addresses this question by proposing a solution us-
ing only standard software components. This instal-
lation infrastructure scales well for a large number
of nodes. It is also usable for installing desktop ma-
chines or diskless Linux clients, thus, is not designed
for cluster installations in particular but is, neverthe-
less, highly performant.

The infrastructure proposed uses PXE as the net-
work boot component on the nodes. It uses DHCP and
TFTP servers to get IP addresses and a bootloader
to all nodes. It then uses kickstart to install Red Hat
Linux over NFS.

We have implemented this installation infrastruc-
ture at SLAC with our given server hardware and in-
stalled a 256 node cluster in 30 minutes. This paper
presents the measurements from this installation and
discusses the bottlenecks in our installation.

1. Introduction

The problem of (re–)installing a lot of Linux machines
in a very short amount of time is getting more difficult
with the number of machines to be installed.
Two examples for large Linux cluster installations:
Many dot.com companies have several thousand Linux
machines in their WEB server clusters. All four exper-
iments for LHC at CERN are proposing Linux farms
with several thousand machines.
The EU DataGrid Project [1] even has a dedicated
work package ”Fabric Management” [2] to further in-
vestigate how to install and maintain large clusters.
The difficulty is that many tools and toolsets exist
which try to solve this installation or upgrade prob-
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lem. But most if not all of them assume that the hard-
ware is not diverse and are using some sort of disk
cloning techniques (e.g. Systemimager [12]). This ap-
proach does not work for farms with heterogeneous
hardware and makes it necessary to have one instal-
lation infrastructure for homogenous farm nodes and
one for more diverse machines.
Other tools like IBM’s LUI [5] are dealing with this
hardware diversification. But getting (e.g.) all desktop
machines configured for a larger site is a nightmare.
Red Hat’s installer ”anaconda” is ideal for both of
these situations because it probes the hardware and
installs the necessary driver and software packages
automatically. ”Anaconda” is automatically executed
from ”kickstart”, Red Hat’s automatic installer pro-
gram.
The question arises whether this rather general in-
stallation approach does scale for a large number of
machines to be installed or whether it really makes
sense to have a special cluster installation infrastruc-
ture.
One other objective of our approach is to use only
servers and services which are already in place or can
be reused for other purposes. Unlike an ”rsync server”
which can only be used for ”systemimager” (to pick
only one example), a DHCP server for the farm node
installation can also be used for installing desktop ma-
chines. Furthermore, one particular system image – to
stay with the ”systemimager” example – can only be
used on exactly the same hardware. Whereas a set of
RPM (”Red Hat Package Manager”) packages used by
”anaconda” is usable for all Linux installations.
NPACI’s ”Rocks” [9] package contains such a gen-
eral purpose installation infrastructure but some man-
ual intervention is still necessary and their approach
re–installs a machine whenever it boots. We would
like to pursue a less radical solution. Furthermore,
”Rocks” is meant to install only small clusters up to
128 nodes [8].
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Given all this, the design goals for our Linux instal-
lation infrastructure are the following:

1. Use only standard services which are in place al-
ready or can be used for other purposes.

2. Make it highly scalable to allow installation of
thousands of machines at the same time.

This paper describes our solution and gives some
benchmark results for our implementation to show its
feasibility.
In the next section we will describe all components
for our infrastructure. Section 3. discusses the scal-
ability features of this infrastructure and Section 4.
presents the measurements we made installing up to
256 nodes at the same time.

2. Architecture of Installation
Infrastructure

Our architecture for installing large Linux clusters fa-
cilitates the network boot capability (Preboot Execu-
tion Environment PXE [6]) of modern network inter-
face cards (NIC’s). This requires DHCP and TFTP
servers to get the necessary programs and configura-
tion files to the clients. The chain of programs loaded
and started from PXE are: a bootloader, a Linux ker-
nel, and an initial RAM disk for this kernel. The Linux
kernel starts kickstart to install Red Hat Linux. After
Linux is installed, a post–installation process makes
necessary local adaptions.
Figure 1 shows all necessary servers for the proposed
architecture in its most general appearance.
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Figure 1: General Architecture of the Installation En-
vironment

In the following sections we will describe all used
components in more detail. And we will present some
glueing scripts which bind everything together to
make a mass installation entirely automatic and unat-
tended.
The complete technical details and all mentioned
scripts are available from [13].

2.1. Preboot Execution Environment
(PXE)

To boot an Intel PC over the network, most NICs
come equipped with PXE, a standard proposed by In-
tel. The first step in this procedure is a DHCP broad-
cast from a client to get its IP address. It allows a
PXE server to send the IP address and a menu back
to the client such that a user can choose which operat-
ing system should be installed on this system. PXE on
the client then loads a bootloader via TFTP which in
turn loads the chosen operating system. We only need
the DHCP and TFTP part to get an IP address and
a bootloader onto each machine. We always want to
install Linux as the OS. Hence, we don’t need a PXE
server, only a DHCP and TFTP server.

2.2. DHCP

For several reasons each machine at SLAC needs a
static IP address. Thus, we cannot simply provide a
range of free IP addresses to our DHCP server which
would be assigned to clients in chronological order of
their requests.
To allow static IP address assignment via DHCP,
the DHCP server needs to know all client’s MAC ad-
dresses beforehand. This is no problem for already
running machines which need to be reinstalled. For
new machines with unknown MAC addresses there are
several possibilities to achive this. 1. Get a list of MAC
addresses and machine serial numbers from the ven-
dor and keep track of each machine during racking. 2.
All machines have barcode labels which contain their
MAC address. After the machines are racked, they can
be scanned in their racked order. 3. Switch the ma-
chines on in the order you want IP addresses assigned
to them. Scan the dhcpd logfiles for incoming requests
and assign IP addresses according to this order. This
third option is chosen by NPACI for ”Rocks” [9].
All this is painful, needs additional effort and/or
hardware and is error prone. The third approach
highly depends on the timing of the machines when
they are powered on.
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2.2.1. MAC address Detection

We have developed a script to detect MAC addresses
automatically and on–the–fly while the clients perform
their PXE DHCP broadcast. This broadcast sends a
signal over the Ethernet through the switch to find a
DHCP server. The switch sees this new MAC address
on one of its ports and fills its ”bridging table” with
this information. Our switches, Cisco Catalyst 6509
switches, can be queried via SNMP to read out the
bridging table. IP addresses can now be assigned in
the order of ports on the switch: the machine with the
MAC address seen on the first port gets the first IP
address and so on.
The only prerequisite for this technique to work
is careful Ethernet cabling between machines and
switch. The machine in the first position in the rack
must be connected to the first port on the switch,
the second position in the rack must be connected to
the second port, and so on. This order determines the
order in which IP addresses are assigned to the ma-
chines.
Our Perl script which queries the switch, takes as
input only the switch name, the cards in the switch
and the ports on these cards to look for. It outputs
a new DHCP server configuration file (dhcpd.conf)
with all previously unknown MAC addresses added. A
second script observes this dhcpd.conf file and stops
and starts the DHCP server whenever the configura-
tion file has changed.
This entire process is highly time critical because
the PXE standard requires clients to issue only 2
DHCP requests. Therefore, our script reads the entire
dhcpd.conf file only once at the beginning and keeps
it in memory. Whenever it adds one or more MAC ad-
dresses, it writes out the entire file instead of editing
it. All changes to this file made in the meantime by
other scripts would be overridden! We will come back
to this point in Section 2.4.2.
With this programming trick and our clients, which
issue about 10 DHCP requests which take about 1
minute to eventually time out, we have enough time
to detect the MAC addresses automatically.

2.3. TFTP

PXE poses some requirements on the TFTP server
it can use. For details about the special requirements,
see H. Peter Anvin’s discussion in [4]. One open source
server which meets these conditions is the TFTP
server by Jean-Pierre and Remi Lefebvre [7]. This
TFTP server is able to run as a standalone daemon

which improves performance compared to a TFTP
server started by an inetd process.

2.4. Bootloader

The bootloader program is loaded from PXE via
TFTP to the client and then started. We are us-
ing H. Peter Anvin’s bootloader pxelinux.0 from his
syslinx package [4]. It loads its own configuration file
via TFTP and executes whatever this configuration
file dictates.

2.4.1. Bootloader Configuration

If the bootloader configuration file tells the bootloader
to perform a network boot, it loads (in our case) a
Linux kernel and its inital RAM disk over the network
onto the client. The bootloader then starts the Linux
kernel with all necessary parameters which it finds in
its configuration file. These parameters tell the kernel
to perform a kickstart installation and to look for the
kickstart configuration file in a certain location on an
NFS server.
In case its configuration file tells it to perform a
boot from the local hard disk, it does just this.
The pxelinux.0 bootloader allows us to have a sep-
arate configuration file for each client. The filename
is the machine’s IP address in hexadecimal notation
without any dots. This feature is handy for preventing
endless re–installations.

2.4.2. Preventing Endless Re–Installations

After the OS installation is complete, the machine re-
boots. Because the BIOS is set to PXE boot, we need
a mechanism to prevent a new installation. The obvi-
ous solution, changing the DHCP server configuration
to not give the client a filename for its following TFTP
phase does not work in our situation. See Section 2.2.1.
for the reason.
pxelinux.0 starting with version 1.53 understands
a ”localboot” parameter in its configuration file.
This parameter tells the boot loader to start the boot
process from the local hard disk and, thus, prevent a
new network installation. All we have to take care of is
to change the configuration file for each client after it
is done installing. We transfere one additional (empty)
marker file via TFTP at the end of the kickstart phase.
This adds an entry in syslog on the TFTP server.
With this additional file transfer it is simple to write a
script which looks in the syslog log file and checks for
the transferred marker file and changes the pxelinux
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configuration file for the machine which received this
file.
Starting a mass installation, each machine’s boot-
loader configuration file is symlinked to a file allowing
it to perform a network boot. The above described
mechanism removes this symlink when the machine is
done and creates a new one pointing to a file telling
the machine to perform a boot from its local hard disk.

2.5. Kickstart over eth1

Our client machines have two NIC’s: ”eth0” is on
the motherboard and ”eth1” is a PCI card. Because
the motherboard NIC cannot perform a PXE network
boot, we have to connect the machines via ”eth1.”
The production version of Red Hat Linux at SLAC
is still 6.2. The Red Hat installer ”anaconda” coming
with this version does not allow us to select a specific
Ethernet adapter to perform the installation – it is
hardcoded to ”eth0”. Hence, we had to change this to
”eth1” in the ”anaconda” source code, compile it, and
generate a new initial RAM disk (initrd.img).
”Anaconda” in Red Hat 7 and later has a new pa-
rameter ”ksdevice” for exactly this purpose.

2.5.1. NFS Mounting

Kickstart can do the installation either from a locally
attached media (harddisk or CD-ROM) or over the
network using FTP, HTTP or NFS. We have a cen-
trally maintained mirror of a (locally modified) Red
Hat distribution in NFS. Kickstart mounts this filesys-
tem and gets all necessary software packages from
there. The kickstart configuration file determines the
NFS server name and the filesystem to mount.

2.5.2. %post

The last step in a kickstart installation is to execute
the ”%post” section from the kickstart configuration
file. We are using this step to switch off unneeded ser-
vices and install our real post–installation script.

3. Scalability

Primary design goals for this installation infrastruc-
ture are scalability and performance. For smaller sites,
scaling down is an issue as scaling up is for larger sites.
Our infrastructure meets both these needs.

3.1. Scaling Down

All servers (DHCP, TFTP, NFS) and all control
scripts can run together on one single machine. This
might be the typical day–to–day operation of this in-
stallation infrastructure when it is also used to install
Linux desktop machines where the load is not very
high for each server/service.
Depending on the individual performance needs,
each one of these services can move to its own ma-
chine.

3.2. Scaling Up

With the way the control scripts operate, it is even
possible to use more than one machine for each service.
If the clients are connected to more than one switch,
use one instance of the MAC address detection script
for each switch. Each instance can run on a differ-
ent machine and can put detected MAC addresses in
several configuration files for different DHCP servers.
Each host entry in these files can have a different
TFTP server entry. Finally, each pxelinux configura-
tion file can contain a different NFS server name. The
simplest way to achieve an even distribution of clients
to servers is to assign the clients in a round–robin
fashion to the servers.

4. Performance

For our benchmarking tests we had two servers avail-
able for serving the Linux packages to the clients, one
with 100Mb/s and one with 1Gb/s network connec-
tivity. We had 256 client machines to install.
It is pretty clear that the server with 100Mb/s con-
nection has no chance to serve 256 clients. We there-
fore tried to install only 128 clients. Figure 2 shows
the total network output coming from this server seen
on the switch it is connected to. The link is completely
saturated with about 93Mb/s throughput. The deep
dip in the graph marks the end of the Linux installa-
tion and the start of our local post–installation script
which uses the same server as the installation itself.
Figure 3 shows a histogram of how many clients
needed what amount of time to finish their OS instal-
lation. The times are discretized in 5 second intervals.
It took 45 – 47 minutes for the machines to get in-
stalled.
Note, that the graphs contain data of only 105
clients although we started the installation with 128
machines. It turns out that there are always machines
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Figure 2: Network output of 100Mb/s connected NFS
server during Linux installation of 105 machines.

which have problems (like hardware problems) which
prevent them from finishing their installation.

4.1. Estimates

Before actually doing an installation with the faster–
connected server, let’s first do some calculations of
what we can expect by this change.
All 256 clients are connected with fast Ethernet. 256
x 100Mb/s = 25.6Gb/s. Thus, the 1Gb/s link will be
25 times oversubscribed.
Some installations by hand suggest that kickstart
is not network but CPU or disk I/O bound. Using
the same client machine on a 100Mb/s and a 10Mb/s
Ethernet connection makes virtually no difference in
installation time. Either installation takes about 10
minutes. Given the amount of 830MB data which gets
installed on a machine, the following throughput cal-
culation can be done:

830MB

10min
≈ 11Mb/s

Since this data rate occurs on each of the 256 ma-
chines, the 1Gb/s uplink will be oversubscribed only
11Mb/s∗256

1Gb/s = 1.4 times. Therefore, the estimated in-
stallation time for 256 machines purely based on nom-
inal network throughput is 1.4× 10min = 14min.
It was unclear how the NFS server performs with so
many clients connected to it and reading only small
to medium sized files.
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Figure 3: Distribution: Duration of Linux OS installa-
tion with 105 machine and 100Mb/s connected NFS
server.

4.2. Hardware Configuration

The described installation infrastructure was put to-
gether to install a new farm of 256 1RU dual PIII
VA1220 [11] machines. Each node is connected via a
100Mb/s fast Ethernet link to a switch. Right now all
nodes are connected to the same switch.
The switch is a Cisco Catalyst 6509 with a 1Gb/s
uplink connecting the farm to a multi–Gigabit Ether-
net backbone.
The DHCP server and TFTP server are connected
via fast Ethernet.
The NFS server used for serving the Linux packages
to the clients is a Network Appliance NetApp F760
filer with a 1Gb/s Ethernet connection, 1GB of main
memory, and a total of 1TB of disk space.
This set of machines is ”borrowed” and not exclu-
sively used for this Linux installations. Hence, we see
some small usages for other purposes which (after the
fact) turned out to be small enough to not affect the
installation performance in any way.

4.3. Measurements

All 256 client machines were remotely powered on via
VACM [10] within about 1 minute. They then per-
formed a DHCP broadcast followed by three TFTP
downloads and then a kickstart installation of Red
Hat Linux via NFS.
Again, our clients turned out to be not very reliable
with only 206 machines which actually could finish
their installation.
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Figure 4 shows a histogram of how many machines
needed what amount of time from the last TFTP
download until they finished the kickstart phase. This
is the time for installing the Linux operating system
on the machines. The times are discretized in 5 second
intervals. The fastest machine was ready after 29:35
minutes, the slowest machine took 31:00 minutes. The
average time is 30:23 minutes.
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Figure 4: Distribution: Duration of Linux OS installa-
tion.

This is twice the time suggested by the network
throughput calculation.
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Figure 5: Disk reads on the NFS file server during
Linux installation.

The disk reads on the NFS filer during the installa-
tion are very moderate as can be seen in Figure 5 (all
measurements on the Network Appliance NFS server
are done with the sysstat command with an output

every 10 seconds). The entire Linux distribution of
about 835MB is held in its cache (the filer has 1GB
memory) so that no multiple disk accesses are neces-
sary to serve multiple clients.
As seen in Figure 6, the CPU utilization of the NFS
file server is not the reason for the slower installation
time, either. The utilization is about 83% with some
dips and peaks. In our all day usage of this filer, we
see up to 95% - 100% CPU utilization in peak times.
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Figure 6: CPU Utilization of NFS server during Linux
installation.

Figure 7 shows the actual network output seen on
the NFS file server during the Linux installation. The
filer is able to deliver about 370Mb/s sustained net-
work output over its 1Gb/s link. For our usage case of
256 clients reading only small to medium sized files,
this seems reasonable.

0

50

100

150

200

250

300

350

400

08:25 08:30 08:35 08:40 08:45 08:50

N
et

 o
ut

 [M
b/

s]

Daytime [Hour:Minutes]

Figure 7: Network output of NFS server during Linux
installation of 206 machines.
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If we compare these performance numbers with the
ones obtained during another test installation with
only 110 clients, we see that with about half the clients
connected, the filer already delivers about 370Mb/s
network output (cf. Figure 8). It is not able to scale
much above this rate with more clients connected.
Therefore, the one NFS fileserver serving the Linux
distribution during kickstart is the bottleneck in our
installation! Note that this is not a limitation of the
proposed infrastructure in general but of our imple-
mentation on our existing and available hardware.
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Figure 8: Network output of NFS server during Linux
installation of 110 machines.

To overcome this bottleneck, you can use more than
one filer and distribute the client load evenly over
them. This can be done by having a different kick-
start configuration file for each NFS server which is
assigned (e.g. via round–robin) to the Linux machines
by the PXE configuration file.

5. Further Applications

We used this infrastructure to freshly install new
Linux machines. The same method can be used to re–
install machines. This is necessary for system upgrades
but may also be necessary when a batch job requires
an operating system on a cluster of machines which is
currently not stored on their hard disks. Given that a
batch scheduler schedules all jobs which require this
new operating system consecutively and given more
fast file servers this might even be feasable.
With all the servers in place, it is now also straight
forward to implement an add–on to this infrastruc-
ture for automatic and unattended desktop machine

installation. One way to do this, is to design a Web
page where a user supplies a MAC address and hard-
ware configuration (disk size in particular). The back-
end script would add an entry to the DHCP server
configuration file and would supply a suitable kick-
start configuration file. The desktop machine can then
be booted with a generic Red Hat Linux installation
floppy.
A more general desktop installation procedure could
even facilitate the full PXE functionality: a user could
then choose whether s/he wants to install Linux or
Windows on her/his desktop machine.
Even diskless clients (see LTSP [3]) are not difficult
to support with the given installation infrastructure
in place.

6. Conclusions

In this paper, we presented a general purpose high per-
formance Linux installation infrastructure. We have
implemented this infrastructure and performed the in-
stallation of a medium sized cluster of up to 256 nodes
in 30 minutes.
If a shorter installation time is needed or if more
clients need to be installed the presented infrastruc-
ture allows each single service (TFTP, DHCP, NFS) to
be distributed over more than just one physical server.
It is straight forward to modify the presented scripts
to perform a round–robin load balancing over all these
servers.
With these changes, the presented architecture
should be capable of installing clusters of thousands
of nodes as it will be necessary to do in the very near
future.
Our measurements provide some data points which
allow to predict roughly how to scale your installation
infrastructure to your needs.
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