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Abstract

We examine the virtual effects of Kaluza-Klein (KK) states on Higgs physics in uni-

versal extra dimension models. We study the partial widths Γh→gg, Γh→γγ , and Γh→γZ ,

which are relevant for Higgs production and detection in future collider experiments.

These interactions occur at one loop in the Standard Model, as do the KK contribu-

tions. We find that the deviations induced by the KK exchanges can be significant;

for one extra dimension, the gg → h production rate is increased by 10% − 85% for

the mass of the first KK state in the range 500 >∼ m1 >∼ 1500 GeV, a region untested

by current direct search and precision measurement constraints. The h → γγ decay

width is decreased by <∼ 20% in the same mass range. For two or more universal extra

dimensions the results are cutoff dependent, and can only be qualitatively estimated.

We comment on the detectability of these shifts at the LHC and at future e+e− and

γγ colliders.

∗Work supported by the Department of Energy, Contract DE-AC03-76SF00515



1 Introduction

Theories in which gravity propagates in large extra spacetime dimensions [1] have received

a great deal of attention during the past several years. These models permit some of the

qualitative features of string theory, such as the existence of extra dimensions and stringy

resonances [2], to be tested experimentally, and predict the appearance of a wide variety

of phenomenology at future high energy colliders [3]. They also furnish a solution to the

hierarchy problem by lowering the fundamental Planck scale to a TeV. The string theoretic

motivation for extra dimensions also allows new dimensions in which Standard Model (SM) or

other non-gravitational fields can propagate [4]; for consistency with experimental constraints

they must have a size of order an TeV−1. Models utilizing this idea have been shown to

yield a host of interesting phenomena, including TeV-scale unification [5], explanations of

fermion Yukawa hierarchies [6], mechanisms for generating neutrino masses [7], and methods

of rendering axions invisible [8].

One proposed scenario, referred to as the Universal Extra Dimensions (UED) model [9],

allows all the SM fields to propagate in TeV−1 extra dimensions. At tree level, the mo-

mentum in the extra dimensions is conserved, requiring pair production of the associated

Kaluza-Klein (KK) modes at colliders and preventing tree level mixing effects from altering

precision electroweak measurements. The compactification scale of the UED can therefore

be as low as 300 GeV for one extra dimension, and remains less than 1 TeV for two UED.

The phenomenological implications of UED for collider experiments [10], b → sγ [11], and

the muon anomalous magnetic moment [12] have been studied, and new mechanisms for

generating neutrino masses [13] and suppressing proton decay [14] have been developed.

The detection of direct production of UED KK states at future colliders is expected

to be difficult, for the following two reasons: (i) a remnant of extra-dimensional momen-

tum conservation when loop effects are included implies the existence of a neutral, stable

KK mode, leading to the necessity of interpreting missing energy signatures; (ii) the near

degeneracy of the KK excitations within each level renders the mass shifts due to radiative

corrections important in determining the pattern of decays [15]. It is therefore interesting

to determine whether there are other, indirect ways in which the effects of UED can be

detected. One such possibility is through the modification of Higgs production and decay

processes at future colliders; determining whether such deviations can significantly modify
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Higgs properties is also important considering the necessity of establishing the mechanism of

electroweak symmetry-breaking. We study here the processes gg → h, h → γγ, and h → γZ;

the first interaction is the dominant Higgs production mechanism at the LHC, while the sec-

ond is the primary discovery mode for mH <∼ 150 GeV. All three processes occur at one

loop in the SM, the same order at which the KK excitations first contribute; we expect, and

find, that these effects are quite large for the low compactification scales allowed for UED.

Furthermore, graviton exchanges do not contribute to these processes at one loop, as can be

seen from the unitary gauge Feynman rules in [3]. We can therefore with some sense of se-

curity neglect the gravitational effects which presumably also appear in the complete theory

in which the UED are embedded [16]. We concentrate here on modifications arising from

physics in UED, rather than from other extra-dimensional models, for two reasons: (i) in

the Randall-Sundrum model [17] in which SM fields can propagate in the full 5-dimensional

spacetime, Higgs physics is already modified at tree-level by the mixing between the Higgs

and the radion field which stabilizes the extra dimension [18]; (ii) in TeV−1 models where

only gauge fields propagate in the bulk, we expect the effects to be unobservable, because

the bound on the compactification scale from electroweak precision fits is quite high [19, 20]

and the top quark KK excitations which induce the majority of the effects found here are

absent.

Our paper is organized as follows. In Sec. 2 we review the formulation of the SM in

one additional UED, focusing on the appropriate gauge-fixing and the mixing within the top

quark KK tower. We study the modifications of the processes gg → h, h → γγ, and h → γZ

in Sec. 3; we find that the heavy KK modes decouple, yielding finite, unambiguous results

for one UED. For more than one UED the sums over KK modes diverge, and only qualitative

statements can be made. We find that observable modifications to Higgs production and

decay processes occur for compactification masses m1 <∼ 1.5 TeV; the gg → h production

rate is increased by ≈ 10% − 85% for 1500 >∼ m1 >∼ 500 GeV, respectively, while the decay

widths are shifted by <∼ 20% in the same interval. We present our conclusions in Sec. 4.

2 Kaluza-Klein Reduction of the 5-dimensional Stan-

dard Model

We review here the formulation of the UED model, in which all the SM fields can propagate

in the extra dimensions. We restrict our attention to the 5-dimensional scenario, and focus on
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the issues most pertinent to our calculation: the appropriate choice of gauge-fixing and the

effects of mixing within the top quark KK tower. A detailed construction of the SM in UED

is given in [9], while a discussion of generalized Rξ gauges in a variety of extra-dimensional

models is presented in [21].

We begin with the action

S =
∫ πR

−πR
dy
∫

d4x
{
− 1

2

3∑
i=1

Tr
[
FiMNF MN

i

]
+ (DMH)†DMH + µ2|H|2 − λ5

4
|H|4

+i Q̄ 6DQ + i t̄ 6D t +
[
λt

5Q̄ i σ2 H t + h.c.
] }

. (1)

Here (M, N) are the 5-dimensional Lorentz indices, and R is the radius of the fifth dimension,

which we have anticipated compactifying on S1/Z2. H is the Higgs doublet, and the F MN
i

are the field strengths for the SM gauge groups. Q is the third generation quark doublet and

t is the top quark singlet; we will not need the remaining SM fermions in our analysis, and

they have consequently not been included. The covariant derivative DM can be expressed as

DM = ∂M − i
3∑

i=1

gi
5 T a

i Aa
i M , (2)

where the gi
5 are the 5-dimensional coupling constants for U(1)Y , SU(2)L, and SU(3)c, and

the T a
i are the generators of these groups. The 5-dimensional Dirac matrices are γM =

(γµ, i γ5). µ2, λ5, and λt
5 are the 5-dimensional versions of the usual Higgs couplings and

top quark Yukawa coupling. The parameters λ5, λt
5, and gi

5 are dimensionful, and must be

rescaled to obtain the correct dimensionless SM couplings; no rescaling is necessary for the

the Higgs mass parameter µ2.

To derive the 4-dimensional effective action we must expand the 5-dimensional fields

into their KK modes; we must also remove several extra massless particles from the resulting

theory. Five-dimensional fermions are necessarily vector-like, and we wish to obtain the chiral

zero modes necessary for construction of the SM; this necessitates the removal of the extra

zero modes appearing in the top quark KK tower. We also must eliminate the zero modes

of the scalars A5
i that arise in the reduction of the gauge fields. To do this we follow the

standard recipe of compactifying the fifth dimension on an S1/Z2 orbifold and requiring

that the fields whose zero modes we wish to remove are odd under the orbifold projection
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y → −y. The appropriate KK expansions of the 5-dimensional fields are:

H(xµ, y) =
1√
2πR

{
H(0)(xµ) +

√
2
∞∑

n=1

H(n)(xµ) cos (
ny

R
)

}
,

Ai µ(xν , y) =
1√
2πR

{
A

(0)
i µ (xν) +

√
2
∞∑

n=1

A
(n)
i µ (xν) cos (

ny

R
)

}
,

A5
i (x

ν , y) =
1√
πR

∞∑
n=1

A
5(n)
i (xν) sin (

ny

R
) ,

Q(xν , y) =
1√
2πR

{
Q

(0)
L (xν) +

√
2
∞∑

n=1

[
PLQ

(n)
L (xν) cos (

ny

R
)

+PRQ
(n)
R (xν) sin (

ny

R
)
]}

,

t(xν , y) =
1√
2πR

{
t
(0)
R (xν) +

√
2
∞∑

n=1

[
PRt

(n)
R (xν) cos (

ny

R
)

+PLt
(n)
L (xν) sin (

ny

R
)
]}

, (3)

where we have introduced the projection operators PR,L = (1 ± γ5)/2. We thus obtain the

desired zero modes A
(0)
i µ , Q

(0)
L , and t

(0)
R , corresponding to the SM fields. These expansions

should be inserted into the action of Eq. 1. We must also expand the zero mode Higgs

doublet around its vev, and express the KK Higgs doublets in terms of their component

fields:

H(0) =


 φ(0)+

1√
2

(
ν + h(0) + i χ(0)

)

 , H(n) =


 φ(n)+

1√
2

(
h(n) + i χ(n)

)

 . (4)

Here ν is the usual 4-dimensional Higgs vev, h(0) is the physical zero mode Higgs, and χ(0),

φ±(0) are the zero mode Goldstone bosons. The h(n) are the CP-even Higgs KK excitations,

the χ(n) are CP-odd scalars that will combine with the Z5(n) to form a tower of CP-odd

Higgs bosons and generate the longitudinal components for the Z(n)
µ , and the φ±(n) are

charged scalars that together with the W±5(n) will form a tower of charged Higgs scalars and

longitudinal components for the W±(n)
µ . Inserting the expansions of Eqs. 3 and 4 into the

action in Eq. 1 leads to a slew of mass terms, mixings, and couplings. We focus first on the

masses and mixings in the gauge sector, introducing the appropriate gauge-fixing terms and

deriving the spectrum of physical states and Goldstone fields.
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We first examine the photon KK tower; the relevant mass terms and mixings are

SA =
∫

d4x
∞∑

n=1

{
1

2
m2

nA(n)
µ Aµ(n) −mnA(n)

µ ∂µA5(n)
}

, (5)

where mn = n/R is the KK mass of the nth level arising from the derivative ∂5 acting on

the 5-dimensional wavefunctions of Eq. 3. The most natural choice of gauge-fixing is the

five-dimensional analog of the Feynman gauge,

SA
gf = −1

2

∫ πR

−πR
dy
∫

d4x
(
∂MAM

)2
. (6)

Utilizing the KK expansion of AM , and summing Eqs. 5 and 6, we find that the mixing

between A(n)
µ and A5(n) cancels, and that we are left with the mass terms

SA + SA
gf =

1

2

∫
d4x

∞∑
n=1

{
m2

nA(n)
µ Aµ(n) −m2

n

(
A5(n)

)2
}

; (7)

the spectrum then consists of a massless zero mode A(0)
µ , a tower of KK modes A(n)

µ with

masses mn, and a tower of Goldstone particles A5(n) also with mass mn. The treatment of

the gluon KK tower proceeds identically, and we will not present it explicitly.

We next study the Z boson KK tower, together with the KK excitations of the zero

mode Goldstone particle, χ. The corresponding masses and mixing terms are

SZ =
1

2

∫
d4x

{
M2

Z

(
Z(0)

)2
+ 2MZZ(0)

µ ∂µχ(0) +
∞∑

n=1

[
−m2

n

(
χ(n)

)2
+ m2

Z,nZ
(n)
µ Zµ(n)

−M2
Z

(
Z5(n)

)2 − 2mnMZZ5(n)χ(n) + 2Z(n)
µ ∂µ

(
MZχ(n) −mnZ5(n)

) ]}
, (8)

where we have introduced the abbreviation m2
Z,n = M2

Z +m2
n. We choose the straightforward

5-dimensional generalization of the usual SM Feynman gauge,

SZ
gf = −1

2

∫ πR

−πR
dy
∫

d4x
(
∂MZM −MZχ

)2
; (9)

utilizing the KK expansion of Eq. 3 and combining this with Eq. 8, we derive the following

mass terms:

SZ + SZ
gf =

1

2

∫
d4x

{
M2

ZZ(0)
µ Zµ(0) −M2

Z

(
χ(0)

)2
+

∞∑
n=1

[
m2

Z,nZ
(n)
µ Zµ(n)

−m2
Z,n

(
χ(n)

)2 −m2
Z,n

(
Z5(n)

)2
]}

; (10)
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the mixing between Z(n)
µ and Z5(n) cancels. It is clear from Eq. 8 that the linear combinations

of fields that serve as Goldstone modes for the Z boson KK tower are

G
(n)
Z =

MZχ(n) −mnZ5(n)√
M2

Z + m2
n

, (11)

while the physical CP-odd scalars are

χ
(n)
Z =

mnχ(n) + MZZ5(n)√
M2

Z + m2
n

. (12)

With the gauge choice we have made, the states G
(n)
Z , χ

(n)
Z , and Z(n)

µ all possess the mass

mZ,n.

Finally, we consider the masses and mixing terms involving the W± KK tower and

the KK excitations of the zero mode Goldstone fields φ±:

SW =
∫

d4x
{
M2

W W+(0)
µ W−µ(0) + iMW

(
W−(0)

µ ∂µφ+(0) −W+(0)
µ ∂µφ−(0)

)

+
∞∑

n=1

[
−m2

nφ+(n)φ−(n) + m2
W,nW

+(n)
µ W−µ(n) −M2

W W+5(n)W−5(n)

−imnMW

(
W−5(n)φ+(n) −W+5(n)φ−(n)

)
−W−(n)

µ ∂µ
(
mnW+5(n) − iMW φ+(n)

)

−W+(n)
µ ∂µ

(
mnW−5(n) + iMW φ−(n)

) ]}
, (13)

where we have abbreviated m2
W,n = M2

W + m2
n. The appropriate choice of gauge-fixing term

is again the obvious 5-dimensional extension of the SM Feynman gauge:

SW
gf = −

∫ πR

−πR
dy
∫

d4x
(
∂MW+M − iMW φ+

) (
∂MW−M + iMW φ−

)
. (14)

Inserting the KK expansions of Eq. 3 into this expression, and adding it to Eq. 13, we find

that the mixing between W±(n)
µ and W±5(n) cancels, and we obtain the mass terms

SW + SW
gf =

∫
d4x

{
M2

W W+(0)
µ W−µ(0) −M2

Wφ+(0)φ−(0)

+
∞∑

n=1

[
m2

W,nW
+(n)
µ W−µ(n) −m2

W,nW+5(n)W−5(n) −m2
W,nφ+(n)φ−(n)

]}
.(15)
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Again, the Goldstone modes are linear combinations of the 5-dimensional components of the

gauge fields, W±5(n), and the KK excitations of the zero mode Goldstone, φ±(n):

G±(n) =
mnW±5(n) ∓ iMW φ±(n)√

m2
n + M2

W

. (16)

The physical charged Higgs pair is the orthogonal combination:

H±(n) =
mnφ±(n) ∓ iMW W±5(n)√

m2
n + M2

W

. (17)

In the 5-dimensional generalization of the SM Feynman gauge we employ, the fields W±µ(n),

G±(n), and H±(n) share the common mass mW,n.

Having computed the spectrum of states in the gauge sector, we can now derive

the interactions of the gauge and scalar particles; we identify the 4-dimensional couplings

as λ = λ5/2πR, λt = λt
5/
√

2πR, and gi = gi
5/
√

2πR so that the zero mode interactions

match those of the SM. Letting φ
(n)
i denote a KK excitation of an arbitrary SM field, the

contributing KK interactions take the form

φ
(0)
i φ

(n)
j φ

(n)
k , φ

(0)
i φ

(0)
j φ

(n)
k φ

(n)
l . (18)

The explicit expressions for these vertices are simple to obtain; for every SM vertex φ
(0)
i φ

(0)
j φ

(0)
k

or φ
(0)
i φ

(0)
j φ

(0)
k φ

(0)
l , there is a corresponding KK vertex with exactly the same coupling

strength. We note explicitly that the h(0)W+(n)W−(n) and h(0)Z(n)Z(n) vertices are iden-

tical to the h(0)W+(0)W−(0) and h(0)Z(0)Z(0) vertices; the masses that appear in the KK

interactions are MW and MZ , not mW,n and mZ,n. The heavy KK states decouple from the

processes considered here, allowing us to obtain finite results in five dimensions when the

sum over KK modes is performed. The only other interactions needed for our calculation

are those involving W±5(n); these are given in the appendix. For a complete list of the SM

vertices we refer the reader to [22]; we will not reproduce them here.

We now derive the interactions of the top quark KK states required in our analysis.

Although there is no mixing between different levels of the top quark KK tower, the doublet

and singlet states within each level mix. The mass matrix for the nth KK level arising from
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the reduction of Eq. 1 is

(
Q̄

(n)
L , t̄

(n)
L

) mn mt

mt −mn




 Q

(n)
R

t
(n)
R


+ h.c. , (19)

where mt is the zero mode top quark mass. This can be diagonalized with the following

unitary matrices for the left and right-handed fields:

U
(n)
L =


 cos(α(n)/2) sin(α(n)/2)

sin(α(n)/2) −cos(α(n)/2)


 , U

(n)
R =


 cos(α(n)/2) sin(α(n)/2)

−sin(α(n)/2) cos(α(n)/2)


 , (20)

where both states in the physical basis have mass mt,n =
√

m2
n + m2

t , and cos(α(n)) =

mn/mt,n, sin(α(n)) = mt/mt,n. We must derive the couplings of these states to h(0), A(0)
µ ,

Z(0)
µ , and g(0)

µ for our analysis. Denoting the mass eigenbasis of the nth level by the vector

T (n), we find the following KK interactions:

St =
∫

d4x
∞∑

n=1

{
T̄ (n) 6A(0)C

(n)
A T (n) + T̄ (n) 6Z(0)C

(n)
Z,V T (n) + T̄ (n) 6g(0)C(n)

g T (n)

+
[
h(0)T̄ (n)C

(n)
h T (n) + h.c.

] }
. (21)

The coupling matrices appearing in this expression are

C
(n)
A = eQt


 1 0

0 1


 , C

(n)
Z,V =

g

cW


 gv − ga cos(α(n)) 0

0 gv + ga cos(α(n))




C
(n)
h = mt


 sin(α(n)) cos(α(n))

−cos(α(n)) sin(α(n))


 , C(n)

g = g3


 1 0

0 1


 , (22)

where Qt is the top quark charge in units of e, cW is the cosine of the weak mixing angle, g

and g3 are respectively the coupling constants of SU(2)L and SU(3)c, and gv, ga are the top

quark vector and axial couplings to the SM Z. The γ5 component of the Z interaction does

not contribute to the studied processes, and has consequently not been included. We note

that the coupling of top quark KK states to the Higgs is proportional to mt, not mt,n; the
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heavy KK top quarks decouple as do the W±(n) and Z(n) towers. This is in contrast to the

behavior of a heavy fourth generation quark, whose coupling to the Higgs is proportional to

its mass, and which does not decouple.

We now possess the tools required to study corrections to Higgs boson production and

decay processes arising from one loop KK exchanges. We will concentrate on the processes

gg → h, h → γγ, and h → γZ, which occur at one loop in the SM; the KK contributions to

these interactions are therefore of the same order as the SM contributions. The decoupling of

the higher KK modes allows us to obtain finite predictions when only one extra dimension is

considered; furthermore, at one loop graviton exchanges do not contribute to these processes,

rendering our neglect of the gravity sector of the theory justifiable. These features allow us

to obtain unambiguous and testable predictions.

3 KK Effects in One Loop Higgs Processes

We now study the effects of virtual KK exchanges in gg → h, h → γγ, and h → γZ, processes

relevant for Higgs production and decay at the LHC. Both the SM and KK contributions to

these interactions occur at one loop, and we therefore expect the modifications arising from

KK exchanges to be significant. This is indeed the case; we will find that KK effects are visible

for the compactification mass m1 in the range 400 GeV <∼ m1 <∼ 1500 GeV, a region consistent

with the constraints arising from both direct searches and precision measurements [9].

3.1 gg → h

The process gg → h proceeds in the SM through diagrams containing fermion triangle loops.

We consider only contributions arising from the top quark and its KK tower; the couplings of

other fermions to the Higgs are much smaller than that of the top quark, and are negligible

in our analysis. The production cross section, which is proportional to the h → gg width,

can be written in the form

σgg→h =
GF [αs(mH)]2

32
√

2πm4
H

|Ft|2 , (23)

where GF is the Fermi constant, αs(mH) is the QCD coupling strength evaluated at the

Higgs mass scale, and Ft is the contribution of the loop integrals over the top quark KK
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tower contributions. Introducing the abbreviation

C0(m
2) = C0(m

2
H , 0, 0; m2, m2, m2) (24)

for the three-point scalar Passarino-Veltman function [23, 22], the SM result becomes

F SM
t = −2m2

t + m2
t

(
m2

H − 4m2
t

)
C0(m

2
t ) . (25)

The scalar three-point function of Eq. 24 can be evaluated in terms of elementary functions,

yielding

C0(m
2) =




− 2
m2

H

[
arcsin

(
1√
τ

)]2
τ ≥ 1

1
2m2

H

[
ln
(

1+
√

1−τ
1−√1−τ

)
− iπ

]2
τ < 1

, (26)

where τ = 4m2/m2
H . The couplings of the top quark KK excitations to both zero mode

Higgs bosons and photons are given in Eq. 22; utilizing these expressions, we can write

Ft = F SM
t + FKK

t , where

F KK
t = 2 mt

∞∑
n=1

mt,n sin(α(n))
{
−2 +

(
m2

H − 4m2
t,n

)
C0(m

2
t,n)
}

. (27)

In obtaining this formula, and other formulae presented in this paper, we used QGRAF [28]

to check that we included all the appropriate diagrams and FORM [29] to verify our algebraic

manipulations. In the limit m2 →∞, C0(m
2) ≈ −1/2m2 −m2

H/24m4. Applying this result

to F KK
t , we find that

F KK
t ≈ −2m2

Hm2
t

3

∞∑
n=1

1

m2
n

(28)

in the limit that the KK mass parameters mn are much larger than either mt or mH . In

five dimensions this sum is over a single index n, and we obtain a convergent result. In

greater than five dimensions we must sum over an array of indices ni, where i ranges over

the number of extra dimensions, and FKK
t diverges (in more than five dimensions there is

also a greater multiplicity of states arising from the KK reduction [24], which affects both

the finite piece and the coefficient of the divergent part of the sum). These divergent sums

can be evaluated by introducing a cutoff Λ; in six dimensions, for example, this leads to the
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result F KK
t ∝ ln(ΛR). We will not study scenarios with D > 5 here; we expect, however,

that the results we obtain in the 5-dimensional case will be qualitatively similar to those

found in the complete D > 5 theory in which these UED are embedded, and in which this

arbitrariness is removed.

Since the lower bound on the KK mass parameter m1 in UED models is quite low,

m1 >∼ 300− 400 GeV, we expect the deviations due to the virtual KK exchanges to be large.

We present in Fig. 1 the fractional deviation of the production cross section from that of

the SM for the following choices of compactification mass: m1 = 500, 750, 1000, 1250, 1500

GeV. It was argued in [9] that the 4-dimensional effective theory remains valid until mn ≈ 10

TeV. A negligible fraction of the effects found here are induced by KK modes with masses

above this value, and we can therefore trust our results for the compactification masses

m1 ≤ 1.5 TeV considered. Fits to the electroweak precision data within the framework of

extra-dimensional models typically allow Higgs masses larger than the 95% CL upper bound

obtained in the SM [20]; we therefore present results for the range mH ≤ 500 GeV. For

m1 = 500 GeV and mH ≈ 120 GeV, the production rate is ≈ 85% larger than in the SM; this

decreases to 40% for a 500 GeV Higgs. For m1 = 1500 GeV and mH ≈ 120 GeV the increase

is ≈ 10%. A more complete analysis would take into account the next-to-leading order QCD

corrections, which significantly increase σgg→h [25], and the next-to-next-to-leading order

QCD corrections in the mt → ∞ limit, which have recently been computed [26]. However,

the KK contributions will receive the same QCD corrections, and we expect that for m1 <∼ 1.5

TeV and a light Higgs boson, deviations arising from physics in UED should be observable.

Future e+e− linear colliders will determine the h → gg decay width with a 10% − 12.5%

precision for Higgs masses in the range 120− 140 GeV [27], indicating that compactification

masses m1 <∼ 1500 GeV are indeed testable.

We will examine the observability of UED contributions at future colliders in more

detail in the following subsections, where we compute the corresponding deviations arising

from KK exchanges in the decays h → γγ and h → γZ. This will allow us to estimate the

total shift in production rates for the processes gg → γγ, γZ, which are relevant for Higgs

searches at the LHC.
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Figure 1: The fractional deviation of the gg → h production rate in the UED model as a
function of mH ; from top to bottom, the results are for m1 = 500, 750, 1000, 1250, 1500 GeV.

3.2 h → γγ

We now study the decay h → γγ, which is the primary discovery mode at the LHC for a

Higgs with mass mH <∼ 150 GeV. At one loop, this process proceeds through both top quark

and gauge sector loops, with the latter involving the W± tower and its associated Goldstone

modes and ghosts. The decay width can be written as

Γh→γγ =
GF α2

8
√

2π3mH

|F |2 , (29)

where α is the electromagnetic coupling, and F = FW + 3Q2
t Ft. The SM result for F SM

t is

given in Eq. 25, and

F SM
W =

1

2
m2

H + 3M2
W − 3M2

W

(
m2

H − 2M2
W

)
C0(M

2
W ) . (30)

In the UED model there are additional contributions from the top quark KK tower, the W±

tower and its associated Goldstone modes, ghost KK states, and the H± tower defined in

Eq. 17. We set Ft = F SM
t +F KK

t and FW = F SM
W +F KK

G , with F KK
t denoting the top quark

12



KK tower contribution and F KK
G including the contributions of the KK excitations in the

gauge and Higgs sectors. F KK
t is then given by the expression in Eq. 27, and

FKK
G =

∞∑
n=1

{
1

2
m2

H + 4M2
W −

[
4M2

W

(
m2

H − 2m2
W,n

)
−m2

Hm2
W,n

]
C0(m

2
W,n)

}
. (31)

Using the expansion C0(m
2) ≈ −1/2m2 − m2

H/24m4, it is simple to check that this sum

converges in five dimensions. However, it diverges for D > 5, as does the gg → h production

cross section. We again expect that the results we obtain will be qualitatively similar for

D > 5 when the cutoff dependence is fixed by a more complete theory.

The interference between the SM and KK contributions is more intricate in h → γγ

than in gg → h, as thresholds exist at both 2MW and 2mt where the relative importance of

the various contributions can change. The fractional deviation of the h → γγ decay width is

shown in Fig. 2 for five choices of m1, and the fractional deviations due to the top quark KK

tower and the gauge and Higgs tower contributions are presented separately for m1 = 500

GeV in Fig. 3. The γγ decay width in the UED model is ≈ 12% smaller than in the SM for

mH <∼ 2MW and m1 = 500 GeV, the Higgs mass region in which this decay is expected to

be the discovery mode at the LHC; this result drops to ≈ 4% for m1 = 1000 GeV. However,

at mH ≈ 2mt the decay width in the UED scenario becomes larger than in the SM. The

relevant contributions of the top quark and gauge sector KK towers are shown in Fig. 3. The

contribution of the top quark KK tower, the dominant UED term, interferes destructively

with the SM result below the 2mt threshold; this behavior reverses above threshold.

To determine the sensitivity of the LHC to these effects, we must compute the net

shift in the γγ production rate resulting from the deviations in both gg → h and h → γγ. For

resonant production of the Higgs, the γγ signal is well approximated by taking σgg→h×Γh→γγ,

including the parton density functions evaluated at the relevant scale, and multiplying by

the appropriate prefactors. The fractional deviation in the γγ production rate is presented

in Fig. 4 for five choices of m1. For mH <∼ 150 GeV, the region of interest at the LHC, the

increase in σgg→h and the decrease in Γh→γγ yield a total ≈ 10%− 65% increase in the total

rate as m1 is varied from 1250 GeV to 500 GeV, respectively. The LHC is expected to be

sensitive to this rate at the 10%− 15% level [30]; consequently, we expect signals from UED

to be visible if m1 <∼ 1000− 1250 GeV. An independent measurement of the h → γγ decay

width will be achievable at future linear colliders; for mh <∼ 150 GeV, a measurement of the

hγγ coupling at the 7% − 10% level will be possible [27]. This will provide a test of UED

13



Figure 2: The fractional deviation of the h → γγ decay width in the UED model as a function
of mH ; from top to bottom on the right, the results are for m1 = 500, 750, 1000, 1250, 1500
GeV.

Figure 3: The fractional deviation of the h → γγ decay width for m1 = 500 GeV as a
function of mH , with the contributions of the top quark sector and the gauge and Higgs
sectors shown separately.
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models with m1 <∼ 800 GeV. A measurement of the h → γγ width with an accuracy of ≈ 2%

is possible with the proposed photon collider option of future e+e− colliders [31]; this would

allow probes of the UED model with KK mass parameter m1 <∼ 1500 GeV.

Figure 4: The fractional deviation of R = σgg→h × Γh→γγ, the γγ production rate, in
the UED model as a function of mH ; from top to bottom, the results are for m1 =
500, 750, 1000, 1250, 1500 GeV.

3.3 h → γZ

We examine here the decay h → γZ, which proceeds in the SM through top quark and gauge

sector loops. Although the width of this process exceeds the h → γγ width for Higgs masses

in the range mH >∼ 130 GeV, the single photon and need to demand a leptonic Z decay for

reconstruction purposes render it less interesting at the LHC. However, since it potentially

provides another test of the detailed properties of the Higgs boson, we study modifications

of this decay arising from physics in UED.
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The decay width can be expressed as

Γh→γZ =
αG2

F M2
W m3

Hs2
W

64π4

(
1− M2

Z

m2
H

)3

|F |2 , (32)

where sW is the sine of the weak mixing angle. We introduce the abbreviation

C2(m
2) = C1(m

2
H , M2

Z , 0; m2, m2, m2) + C11(m
2
H , M2

Z , 0; m2, m2, m2)

+C12 (m2
H , M2

Z , 0; m2, m2, m2) , (33)

where C1, C11, and C12 are the Passarino-Veltman tensor coefficients defined in [22], and

change slightly our shorthand notation for the scalar three-point function:

C0(m
2) = C0(m

2
H , M2

Z , 0; m2, m2, m2) . (34)

These can be evaluated in terms of elementary functions [32]; setting τZ = 4m2/M2
Z and

τH = 4m2/m2
H , we have

4m2C2(m
2) =

τZτH

2 (τZ − τH)
+

τZτ 2
H

2 (τZ − τH)2 {τZ [f(τZ)− f(τH)] + 2 [g(τZ)− g(τH)]} ,

4m2C0(m
2) =

2τZτH

τZ − τH
[f(τZ)− f(τH)] , (35)

where

f(τ) =




[
arcsin

(
1√
τ

)]2
τ ≥ 1

−1
4

[
ln
(

1+
√

1−τ
1−√1−τ

)
− iπ

]2
τ < 1

, (36)

and

g(τ) =




√
τ − 1 arcsin

(
1√
τ

)
τ ≥ 1

1
2

√
1− τ

[
ln
(

1+
√

1−τ
1−√1−τ

)
− iπ

]
τ < 1

. (37)

Writing

F = cot(θW )FW + 3
gvQt

sW cW
Ft , (38)
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where θW is the weak mixing angle, the SM result becomes

F SM
t = 4 m2

t

{
4C2(m

2
t ) + C0(m

2
t )
}

F SM
W = 4

{
−M2

W

(
3C0(M

2
W ) + 5C2(M

2
W )
)
− 1

2
m2

HC0(M
2
W )

+s2
W

[
M2

W

(
6C2(M

2
W ) + 4C0(M

2
W )
)

+ m2
HC2(M

2
W )
] }

. (39)

In our notation, gv = I3/2− s2
WQt, where I3 is the third component of the top quark weak

isospin. In the UED model, there are additional contributions from both the top quark KK

tower and the gauge sector KK excitations; partitioning these pieces as in the h → γγ case,

Ft = F SM
t + FKK

t and FW = F SM
W + FKK

G , we find

FKK
t = 8

∞∑
n=1

{
mt mt,n sin(α(n))

[
4C2(m

2
t,n) + C0(m

2
t,n)
]}

F KK
G = 4

∞∑
n=1

{
−M2

W

(
3C0(M

2
W ) + 7C2(M

2
W )
)
− 1

2
m2

HC0(M
2
W )

+s2
W

[
M2

W

(
8C2(M

2
W ) + 4C0(M

2
W )
)

+ m2
HC2(M

2
W )
] }

. (40)

We have used the couplings given in Eq. 22 in deriving these results. It can be checked that

these sums converge in D = 5, but diverge for D > 5; again, we concentrate on the D = 5

scenario.

We present the fractional deviation of Γh→γZ in the UED model in Fig. 5 for five

choices of the KK mass parameter m1, and show the relative contributions of the top quark

and gauge sectors in Fig. 6. The decay width in the UED model is slightly larger than

the SM width for mH <∼ 275 GeV, and slightly smaller for higher values of mH . The top

quark and gauge sector KK towers have contributions with approximately equal magnitude

but opposite sign, as seen in Fig. 6, and their effects tend to cancel. For all mH and m1

considered the deviation is <∼ 10%, and is hence smaller than the modifications to the gg

and γγ widths. An effect of this magnitude is possibly observable at future linear colliders,

although a detailed analysis of this decay mode has not been performed; it is also possible

that such an effect could be observed in the γγ collision option of future colliders.

The fractional deviation of the γZ production rate at the LHC via gg → h → γZ is

shown in Fig. 7 for five choices of mH . The production increase is ≈ 95% for mH <∼ 150 GeV
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Figure 5: The fractional deviation of the h → γZ decay width in the UED model as a function
of mH ; from top to bottom on the left, the results are for m1 = 500, 750, 1000, 1250, 1500
GeV.

Figure 6: The fractional deviation of the h → γZ decay width for m1 = 500 GeV as a
function of mH , with the contributions of the top quark sector and the gauge and Higgs
sectors shown separately.
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and m1 = 500 GeV, and ≈ 20% for m1 = 1000 GeV. This shift is caused primarily by the

gg → h deviation; however, it may render this decay mode visible above the background at

the LHC. Again, a detailed analysis of this decay at the LHC has not been performed.

Figure 7: The fractional deviation of R = σgg→h × Γh→γZ , the γZ production rate, in
the UED model as a function of mH ; from top to bottom, the results are for m1 =
500, 750, 1000, 1250, 1500 GeV.

4 Conclusions

We have studied the virtual effects of KK excitations in UED on Higgs production and decay

processes relevant for high energy experiments at the LHC and at future linear colliders.

The heavy KK modes decouple, allowing us to obtain unambiguous predictions for one extra

dimension. For two or more extra dimensions the KK mode sums diverge, and while we

expect our results in these scenarios to be qualitatively similar to those obtained here, we

cannot make precise predictions. We have found that the KK excitation contributions can

be quite significant; the gg → h production rate can be ≈ 85% larger than the SM result

for mH <∼ 150 GeV and KK mass parameter m1 = 500 GeV, a value allowed by current
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constraints. For m1 ≈ 1500 GeV, the rate increase is ≈ 10%; assuming the SM theoretical

prediction is under control by the time the LHC turns on, this should be an observable shift.

The corresponding deviations in the h → gg decay width can be probed at future e+e−

colliders, allowing compactification masses in the range m1 <∼ 1500 GeV to be tested. The

width of the decay h → γγ, the primary discovery mode for a Higgs with mass mH <∼ 150

GeV at the LHC, is decreased relative to the SM prediction by ≈ 12%. The total γγ

production rate is increased by ≈ 10%− 65% for 1250 >∼ m1 >∼ 500 GeV when the reaction

gg → h → γγ relevant at the LHC is considered. With the 10%− 15% accuracy expected in

the determination of this rate at the LHC, compactification masses m1 <∼ 1250 GeV can be

probed. The h → γγ width can be independently measured at future e+e− and γγ colliders;

we expect the effects from compactification masses m1 <∼ 800 GeV to be observable with the

7%−10% precision expected at e+e− colliders, and from masses m1 <∼ 1500 GeV to be testable

with the 2% precision expected at γγ colliders. Finally, we have examined the deviations

in the decay h → γZ predicted by UED models. We have found that the deviations from

the SM result are less than ≈ 10% throughout the mH , m1 region studied. However, the

process gg → h → γZ is expected to increase by ≈ 20%− 95% for compactification masses

in the range 1000 >∼ m1 >∼ 500 GeV. No detailed study of this process has been performed

for either the LHC or future linear colliders; however, the production increase at the LHC

is possibly visible above background.

How do these results compare with the deviations induced in other new physics mod-

els? In the Randall-Sundrum model studied in [18], where the Higgs and radion fields mix,

both Γh→gg and Γh→γγ are decreased throughout the allowed parameter space; the total Higgs

production rate can be decreased to <∼ 1% of the SM value for a large range of Higgs-radion

mixing strengths. These results for Γh→gg are the opposite of those found here, in which

the width is increased throughout the allowed parameter space. The situation is murkier

in the Minimal Supersymmetric Standard Model (MSSM), as a large number of parameters

enter calculations at the one loop level. A detailed study of Higgs physics in the MSSM was

performed in [33]. Typically, Γh→gg is decreased by <∼ 15% throughout the allowed parameter

space, while Γh→γγ is shifted by <∼ 5%, with the direction of the shift parameter dependent.

Again, the deviation in Γh→gg is opposite that found here. The effects of either of these two

scenarios on Higgs physics should be distinguishable from the shifts found here in the UED

model; the direct production of the various new states associated with each model should

also assist in distinguishing them.
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In summary, the virtual effects of KK excitations in UED can significantly alter

Higgs properties which will be measured at future colliders. The implications of radiative

corrections in extra-dimensional models have not been studied extensively, primarily because

of the resulting divergences. We have shown that in certain scenarios such effects are both

calculable and important, and we believe that further investigations along these lines should

be undertaken.
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Appendix

We present here the Feynman rules involving the W±5(n), which are relevant for the calcu-

lations in this paper. All momenta are assumed to flow into the vertices.

h(0)

W±5(n)

φ∓(n)

= ∓ e
2sW

mn

h(0)
W+5(n)

W−5(n)

= −i e
sW

MW

{
A(0)

µ , Z(0)
µ

}
W±(n)

ν

W∓5(n)

= ∓mn

{
1,− cW

sW

}
gµν

{
A(0)

µ , Z(0)
µ

}

p3

p1

W+5(n)

W−5(n)

p2

= −ie
{
1,− cW

sW

}
(p1 − p2)µ

W±5(n)

W∓5(n)

A(0)
µ

{
A(0)

ν , Z(0)
ν

}
= 2ie2

{
1,− cW

sW

}
gµν

24


