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Abstract

The radion may be the lightest new state present in the Randall-Sundrum(RS)

model. We examine the couplings of the radion to the Standard Model(SM) fields in

the scenario where they propagate in the bulk and expand into Kaluza-Klein towers.

These couplings are then contrasted with those of the more familiar case where the

SM fields are confined to the TeV brane. We find that the couplings of the radion to

both gg and γγ can be significantly different in these two cases. Implications for radion

collider phenomenology are discussed.
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1 Introduction

Theories with extra dimensions provide a new way to attack the hierarchy problem. An

exciting feature of these scenarios is that they lead to concrete and quite distinctive phe-

nomenological tests. If such theories truly describe the source of the observed hierarchy, then

their direct signatures should appear in future collider experiments that probe the TeV scale.

In the specific model of Randall and Sundrum (RS)[1], the observed hierarchy is created by

an exponential warp factor which arises from a 5-dimensional non-factorizable geometry.

The collider signatures for this model have been studied in detail in [2].

The RS setup consists of a 5-dimensional non-factorizable geometry based on a slice

of AdS5 space with length πrc, where rc denotes the compactification radius. Two 3-branes,

with equal and opposite tensions, rigidly reside at the S1/Z2 orbifold fixed points at the

boundaries of the AdS5 slice, taken to be y = rcφ = 0, rcπ. The 5-dimensional Einstein’s

equations permit a solution which preserves 4-dimensional Poincaré invariance with the

metric

ds2 = e−2σ(φ)ηµνdx
µdxν − r2

cdφ
2 , (1)

where the Greek indices extend over ordinary 4-d spacetime and the warp factor is given

by σ(φ) = krc|φ|. Here k is the AdS5 curvature scale which is of order the Planck mass

and is determined by the bulk cosmological constant Λ = −24M3
5k

2, where M5 is the 5-

dimensional Planck mass that appears in the RS action. The 5-d curvature scalar is then

given by R5 = −20k2; the requirement that quantum corrections be small, |R5| < M2
5 ,

implies k/Mpl <∼ 0.1. Examination of the action in the 4-d effective theory yields the relation

M2
pl =

M3
5

k
(1 − e−2krcπ) � M3

5

k
for the reduced 4-d Planck mass. The scale of physical

phenomena as realized by the 4-d flat metric transverse to the 5th dimension y = rcφ is

specified by the exponential warp factor. TeV scales can naturally be attained on the 3-
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brane at φ = π if gravity is localized on the Planck brane at φ = 0 and krc � 11− 12. (We

take krc = 11.27 in our numerical analysis below.) The scale of physical processes on this

SM or TeV-brane is then Λπ ≡ Mple
−krcπ. The observed hierarchy is thus generated by a

geometrical exponential factor and no other additional large hierarchies appear in the model.

That the quantity krc can be stabilized and the above range of values can be made

natural has been demonstrated by a number of authors[3] and leads directly to the existence

of a massive radion(r), which corresponds to a quantum excitation of the brane separation.

In the original RS scenario, SM matter was confined to the TeV brane. In this case it can be

shown that the radion couples to the trace of the stress-energy tensor of the SM wall fields

with a strength Λr =
√
3Λπ which is of order the TeV scale, i.e., Leff = −r T µ

µ /Λr. This leads

to gauge and matter couplings for the radion that are qualitatively similar to those of the

SM Higgs boson. The radion mass (mr), which arises dynamically during the stabilization

procedure, is expected to be significantly below the scale Λr implying that the radion may

be the lightest new field present in the RS model. One may expect on general grounds that

this mass should lie in the range of a few ×10 GeV ≤ mr ≤ Λr. The phenomenology of the

RS radion coupled to SM wall fields on the TeV brane has been examined by a number of

authors[4] and in particular has been recently reviewed by Kribs[5] to which the interested

reader should refer for details.

For model building reasons one may consider placing some if not all of the SM gauge

and fermion fields in the RS bulk; this possibility has been systematically examined by a

number of authors[2, 6] in the non-recoil limit. While it has been shown that it is possible to

consistently place SM gauge bosons and fermions in the bulk, for phenomenological reasons

the Higgs fields which induce SU(2)L × U(1)Y breaking must remain on the TeV brane. In

such a scenario one may wonder how the radion couplings with the zero-modes of the bulk

fields, which we now identify with the observed SM particles, may be modified from those
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which occur when the SM fields are on the TeV brane. The purpose of this paper is to

examine this issue in detail and elucidate the phenomenology of radions coupling to the bulk

SM fields. Since the radion is expected to be the lightest new particle in the RS model, its

couplings to the zero-modes of these fields will be the first probe of the detailed structure of

the model. In order to isolate which new effects are due to ‘bulk versus brane’ couplings, we

will assume that all mixing among the Kaluza-Klein(KK) levels of bulk states is sufficiently

small as to be negligible.

2 Bulk Couplings

When the SM fields are constrained to lie on the TeV brane their couplings to the radion only

arise through spontaneous symmetry breaking(SSB), i.e., through the induced masses of the

fermions and gauge bosons. In the absence of such terms the trace of the 4-d stress-energy

tensor would receive zero contribution from these sectors. These Higgs-induced terms can

be generically written as

Swall =
∫
d4x

−r
Λr

[mf f̄ f −M2
V VµV

µ] , (2)

where f is any SM fermion and V =W,Z. In contrast to this situation, when the SM gauge

and fermion fields are placed in the bulk, radion couplings can arise from a number of sources

which we will investigate below. The terms of the stress-energy tensor to which the radion

eventually couples now receive contributions from both bulk and brane terms in the full

action. However, we note that with the Higgs field remaining on the TeV brane the gauge

and fermion mass terms arising from spontaneous symmetry breaking remain wall terms in

the action as they are above. In the case where the SM fields are in the bulk, SSB must

still induce masses for the zero modes of these fields which coincide with their SM values.

This means that Swall will be present in either case and its existence is not sensitive to the
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placement of the fermion and and gauge fields. Similarly, from these arguments it is obvious

that the radion coupling to pairs of Higgs bosons will be left unaltered by the considerations

below since the Higgs remains on the TeV brane. With this in mind we now turn to the pure

bulk terms and ignore those arising from the wall except when they are added to complete

the final coupling expressions. In effect, this implies that we can examine the bulk terms in

the absence of any SSB contributions.

In order to formulate the couplings of the radion to the bulk SM fields we must obtain

expressions for the dynamical components of the metric tensor for the full RS model in 5-

dimensions in terms of physical fields. This has recently been studied in detail in [7] to which

we refer the reader for details. Removing the pure graviton tower excitation pieces from the

dynamical parts of the metric yields the radion contributions. To linear order in the fields,

the µν-components of the relevant terms in the metric are found to be

grµν = −e2krct
[(πε2 + t)ε−1

√
6πMpl

ηµν r +
S̃(t)ε−1

√
24πkrcMpl

∂µ∂νr
]
, (3)

where ε = e−krcπ, t = |φ| and r is the φ-independent radion field. The function S̃(t) is

defined by[7]

S̃(t) =
∑
n=1

κn[χ
(n)(t)− χ(n)(π)] , (4)

where the χ(n)(t) are the familiar wave functions for the RS graviton tower KK excitations[2]:

χ(n)(t) � (
√
krcε

−1)z2J2(xnz)/J2(xn) , (5)

where J2 is a Bessel function, z = ekrc(t−π), with xn being the roots of J1 and the correspond-

ing Y2 terms have been dropped for simplicity of notation. The coefficients κn are then given

by[7]

κn = 2In/m
2
n =

−8krc
(kxnε)2

∫ π

0
dφ e−2krcφ φχ(n)(φ) , (6)
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where mn = kxnε are the graviton KK excitation masses. Note that we have made use

of the gauge freedom discussed in [7] so that S̃(t), and hence the term proportional to

∼ ∂µ∂νr, vanishes on the TeV brane. In this limit the authors of Ref. [7] have shown that

the ‘standard’ radion interactions are recovered when all SM matter lies on the TeV brane.

Correspondingly, the radion-dependent parts of the µ5- and 55-components of the metric are

given to linear order by the much simpler expressions:

gr55 =
ε−1

√
6πkrcMpl

r ,

grµ5 = φ
ε−1

√
24πkrcMpl

∂µr , (7)

What is interesting about the term arising from the µ5-components of the metric is that

it is odd under the Z2 orbifolding while all zero-mode bulk fields are Z2 even. As we will

see below this implies that any radion couplings induced by these terms must vanish unless

accompanied by derivatives of the compactified coordinate. It is clear from the above that

the radion couplings to bulk SM fields can arise from terms in the stress-energy tensor of

four different types: T µ
µ , as above, Tµν contracted with two powers of the radion momenta,

T55, and lastly Tµ5. With the normalization above the radion couplings to matter that we

are interested in are just the product of the grAB contracted with the corresponding terms in

the stress energy tensor produced by the SM KK zero modes. Let us now examine each of

these terms in turn for both massless gauge fields and fermions in the bulk.

2.1 Bulk Gauge Fields

Here we are interested in the decay to and the couplings of on-shell radions to SM gauge

bosons. We recall that in the RS model all gauge fields begin as massless in 5-d with

spontaneous symmetry breaking taking place on the TeV brane. The latter contributions to
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the radion couplings have already been discussed above so here we concentrate solely on the

new 5-d pieces ignoring the contributions from SSB. Suppressing possible gauge group indices

the general form of the 5-d stress-energy tensor for on-shell (or unitary gauge) massless bulk

gauge fields is given by[8]

TG
AB =

1

4
gABF

MNFMN − FC
A FBC , (8)

where Roman letters run over all 5-dimensions. Here, we are only interested in determining

the contributions to TG
AB made by the lowest gauge KK mode in the tower since it is this

field that we identify with the usual SM gauge boson. To do this end we insert the full KK

expansion into the above expression and concentrate on the lowest mode. Besides the usual

4-d pieces, the field strengths FCD in the above expressions involve 4-d derivatives of A5 as

well as φ derivatives of Aµ. Now we recall that (i) the fifth component of the gauge field, A5,

is absent for the zero mode due to the orbifold symmetry and (ii) that the zero mode gauge

field has a corresponding φ-independent bulk wave function. Employing these conditions it

is easy to see that the new bulk contributions to both TG µ
µ and TG

µ5 must vanish for these

zero-modes. Of course it is clear that neither TG
µν nor T

G
55 will in general vanish. What about

these contributions? Again, using (i) and (ii) above, all terms proportional to either A5 or

∂yAµ can be dropped; the resulting action induced by the latter term for the KK zero mode

is then given by

SG
55 =

∫
d4xdy

√−g −r
Λrπkrc

−1
4
ηµνηλτe4σFντFµλ

1

2πrc
, (9)

where the fields strengths are now only those of the zero mode. Here we have made use of

the notation above and we will further note that in the RS model g = det(gAB) = −e−8σ.
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Upon y integration this term in the action leads to a 4-d interaction of the generic form

S
(1)
4 =

∫
d4x

r

Λr

1

4πkrc
F µνFµν (10)

with the indices now contracted by the flat space metric; we will return to the implications

of this term later.

What about the TG
µν term? Using the definitions above, the corresponding dimension-

7 interaction term arising from TG
µν and the ∂µ∂νr piece of grµν can be symbolically written

(after integration over y) as

S
(2)
4 =

∫
d4x

1

π2
√
krcΛr

(k/Mpl)
−2

krcΛ2
π

∑
n

In
x2
n

∫ 1

ε

ε2dz

z3

(z2J2(xnz)

J2(xn)
− 1

)
[∂µ∂νrη

µσηνλTG
σλ] , (11)

where pr is the radion momentum and we have extracted out only the zero-mode contri-

butions to the stress-energy tensor. Performing the necessary integrations and sums, this

reduces to 4-d interaction

S
(2)
4 =

∫
d4x

1

Λr

( k

0.1Mpl

)−2 0.344

Λ2
π

[∂µ∂νη
µσηνλTG

σλ] . (12)

Note that we expect k/Mpl <∼ 0.1 as discussed above so we have scaled the overall numerical

factor accordingly. Though the above sum extends over an infinite number of terms we

have only included the first two hundred due to its rapid convergence; we have checked

that including more terms does not modify our numerical results. We will return to the

phenomenological implications of the actions S
(1)
4 + S

(2)
4 below.

2.2 Bulk Fermions

Here we are particularly interested in the decay of radions to SM fermions, i.e., the three-

point function for all particles on-shell. Bulk fermions differ from bulk gauge bosons in
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that a bulk mass term is generally present. SU(2) doublet (D) and singlet (S) SM fields

correspond to different states in 5-d with the orbifold symmetry enforcing the correct chirality

for the corresponding zero modes. The bulk mass terms for these fields have the form

sign(φ)MDD̄D + (D → S) where the sign(φ) factor assures that this term in the action is

Z2-even. (This factor will be suppressed in the discussion that follows.) The fermion tower

KK expansions can be written quite generally as D =
∑
D

(n)
L (x)ρ(n)(φ) + D

(n)
R (x)τ (n)(φ)

and S =
∑
S

(n)
L (x)τ (n)(φ) + S

(n)
R (x)ρ(n)(φ) where the φ-dependent ρ(τ) functions are Z2

even(odd). We now see that the bulk mass terms connect the left- and right-handed states

with the same value of n of the form, e.g., mnD̄
(n)
L D

(n)
R + h.c. (and similarly for D → S)

where mn is the KK mass. (Note that bulk masses do not connect the S and D towers.)

Since for the D(S) zero mode only a left-(right-)handed state exists, there is effectively no

bulk mass term for this state; hence the bulk mass term will not contribute to the stress-

energy tensor for zero modes. By similar arguments it is also clear that all terms containing

a γ5, the additional gamma matrix in 5-d, must also be absent for zero modes since it too

connects terms of opposite helicity but with the same KK number, n. All terms containing

γ5 in the action are of the form D̄
(n)
L D

(n)
R + (D → S) + h.c., but only D

(0)
L and S

(0)
R exist

for zero modes. Thus terms containing both zero modes and γ5 are absent. As discussed

above, the usual zero mode masses are generated on the TeV brane through a coupling of

the form ∼ λD̄SHδ(φ−π) via SSB; this wall term then provides the ‘usual’ radion coupling

to fermions in the RS model. As before, we ignore the effects of SSB when determining the

new bulk contributions to the radion couplings. Let us see how these arguments help us to

reduce the complexity of the potential bulk-induced fermion couplings to radions.

The general form of the stress-energy tensor for a free massive bulk fermion field can
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be written as[8]

T f
AB = −gAB[ψ̄iΓC∂Cψ − 1

2
∂C(ψ̄iΓCψ) +mψ̄ψ] +

1

2
[ψ̄iΓA∂Bψ − 1

2
∂B(ψ̄iΓAψ) + (A ↔ B)] ,

(13)

where ΓA contains the vielbein and ψ = D,S. We now inset the full KK expansion into the

equation above and concentrate only on those terms involving the zero mode. The first thing

to note is that the terms in the first bracket vanish for zero modes for all values of A,B.

This happens for three reasons: (i) when C = 5, a γ5 is present which connects ψ
(0)
L to ψ

(0)
R -

but only one of these is actually present in the theory due to the orbifold conditions. (ii) A

similar argument applies to the contribution from the bulk mass term as it connect left- and

right-handed chiral modes. These two contributions are thus zero. (iii) When C = µ we

again get zero by using the bulk equations of motion for the massless zero mode: iγµ∂µψ = 0.

Another way to see the vanishing of the first bracket is the use of current conservation for

on-shell fields and the full 5-d equations of motion.

The terms in the second bracket remain as potential coupling sources; let us first

consider forming T f µ
µ = 0 from it. We see immediately that for A,B = µ, ν the second

bracket vanishes for zero modes when contracted with the 4-d metric due to the bulk equation

of motion. Thus we see that the bulk contribution yields T f µ
µ = 0 for the zero modes. Next

we consider T f
55; we see however that when A,B = 5 the second bracket vanishes due to the

presence of the γ5 as discussed above. There remains only the case T f
µ5 which is somewhat

more subtle. In this case A = µ,B = 5, two terms immediately vanish due the presence of

a γ5 as before. A third term vanishes by using the equations of motion. The last remaining

term is then found to be proportional to ∼ ψ̄γµ∂yψ which doesn’t immediately vanish.

What form of radion interaction can be obtained from this term? After integration over

y and contraction with grµ5, the resulting radion interaction is found to be proportional to
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∼ ηµν∂νrD̄
(0)
L iγµD

(0)
L +DL → SR. Due to 4-momentum conservation this vanishes for zero

mode fermions using the equations of motion as above. In a similar fashion one can analyze

the dimension-7 interaction term ∼ ∂µ∂νrη
µσηνλT f

σλ which can also be shown to vanish using

the Feynman rules in [8] for on-shell radions and massless zero modes. This removes all four

potential sources for radion on-shell couplings to zero mode bulk fermions. This implies that

the only couplings of radions to fermions arise from the SSB Higgs interaction on the TeV

brane. Thus we conclude that, unlike the case of gauge bosons, on-shell zero mode fermions

from the RS bulk KK expansion and fermions on the TeV brane have identical interactions

with radions. The coupling of the radion to SM fermions is insensitive to their location.

3 Phenomenology

In the last section we obtained the new couplings of the radion to gauge bosons in the

RS bulk and demonstrated that the corresponding terms for fermions are absent. The

gauge boson couplings are found to be controlled by the two actions S
(1)
4 + S

(2)
4 above, in

addition to the brane term for generating masses of the fermions, as well as W and Z

bosons, through the Higgs mechanism. The latter brane interaction is the only one present

for fermions. To begin, it is instructive to examine the form of momentum space coupling

implied by the ∂µ∂νrη
µσηνλTG

σλ term in S
(2)
4 . Labelling the momentum space vertex as

r(pr)V (k1, ε
ρ
1)V (k2, ε

σ
2 ) for generic vector bosons V with all momenta flowing into the vertex

and using momentum conservation we arrive at the following tensor structure for this piece

of the action

−prµprνηµσηνλTG
σλ = ηρσ[p

2
rk1 · k2 − 2pr · k1p

r · k2] + k1σk2ρ[p
2
r − 2k1 · k2] , (14)

where we have used the Feynman rules in [8]. Here we have dropped terms proportional to

k1ρ, k2σ since we are interested in cases with on-shell gauge bosons or where one of the gauge
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bosons is virtual and couples to massless fermion pairs. In the case of on-shell radion decay

to pairs of gauge bosons the tensor structure for this vertex simplifies to

−M2
Vm

2
rηρσ + 2M2

V k1σk2ρ , (15)

where MV is the gauge boson mass. (Here we have used the fact that SSB has occurred and

set k2
1,2 = M2

V .) Notice that this part of the decay amplitude vanishes when we consider

decays to massless gauge bosons. This suggests we examine the massive and massless gauge

boson radion decays separately.

Figure 1: The ratios for the partial widths of the radion into SM fields when they are bulk
states versus the corresponding case when they are wall states as a function of the radion
mass. The solid(dashed-dotted, dashed,dotted) curve is for the gg(γγ,W+W−, 2Z) final
state. Λr, whose value only influences the radion decays to massive gauge bosons, has been
taken to be 1.5 TeV along with k/Mpl = 0.1. No alteration occurs in the case of f̄ f or two
Higgs boson final states, i.e., RΓ(f̄ f, hh) = 1.
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3.1 Massive Gauge Bosons

Combining the terms that arise from S
(1)
4 +S

(2)
4 with the usual wall term above[4] we obtain

the full rV V coupling; the matrix element for radion decay to massive gauge bosons can be

written as

M =
M2

V

Λr
εσ2ε

ρ
1[Aηρσ +

B

M2
V

k1σk2ρ] , (16)

which leads to the partial decay width

ΓV =
M4

V

16π mrΛ2
r

(1− 4M2
V /m

2
r)

1/2G(x) , (17)

where x = k1 · k2/M
2
V = m2

r/2M
2
V − 1 and the function G is given by

G(x) = A2(2 + x2) +B2(1− x2)2 − 2ABx(1− x2) . (18)

The dimensionless coefficients A,B are given by

A = 1− x

πkrc
− a

m2
r

Λ2
π

,

B =
1

πkrc
+ 2a

M2
V

Λ2
π

, (19)

with a = 0.344[ 0.1
k/Mpl

]2 from above. (In our numerical examples below we will assume that

k/Mpl = 0.1.) We note that in the case of wall gauge fields, A = 1 and B = 0. From

the above expression for G it would at first appear that for arbitrary values of A,B this

radion partial width will grow very rapidly as a high power of mr/MV as mr gets large. This

is however not the case in reality as these potentially large terms cancel with the specific

values for A and B that we obtained above; this provides a test of our results. In fact the

growth of this partial width with mr is found to be no greater than that for the case of wall
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fields. Taking the ratio of the above partial width to that obtained in the case of gauge fields

confined to the TeV brane, RΓ, we obtain the results in Fig.1. Here we see that this ratio is

almost flat as a function of mr with a value near ∼ 0.95 and is found to be quite insensitive

to Λr. For the entire mass and parameter range examined, for both the W+W− and ZZ

final states, this ratio lies well within ∼ 5 − 10% of unity. Clearly these modes alone will

not help us test whether or not the SM gauge fields lie in the bulk as these partial widths

are essentially unaltered.

3.2 Massless Gauge Bosons

In this case the only new terms arise from S
(1)
4 and take the same form as those obtained from

SM loops and the trace anomaly when the SM fields lie on the TeV brane[4]. These latter

terms will still be present as will those which arise from loops involving the KK excitations

of the SM fields. Based on the lower bounds on the KK mass spectrum obtained earlier by

Hewett, Petriello and Rizzo[6] and the analysis presented in [9] by Petriello we expect these

additional KK loops to give only a very small correction to the usual SM contribution and

will be subsequently neglected.

The effective vertex for gluon pairs coupling to the radion is found to be

1

Λr
(b3 +

2

αskrc
− Fg

2
)
αs

8π
GµνG

µνr , (20)

where b3 = 7 is the SU(3) β-function, Gµν is the gluon field strength and Fg is the well-known

complex kinematic function of the ratio of masses of the top quark to the radion found in

the case of the analogous Higgs boson decay arising from the usual one loop triangle graph.

Similarly, the radion coupling to two photons is now given by

1

Λr
(b2 + bY +

2

αkrc
− Fγ)

α

8π
FµνF

µνr , (21)
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where b2 = 19/6 and bY = −41/6 are the SU(2)× U(1) β-functions and Fγ is another well-

known complex kinematic function of the ratios of theW and top masses to the radion mass

arising from the one loop triangle graphs. In both cases the new terms inversely proportional

to krc arise from the action S
(1)
4 and can be numerically quite large since they occur at the

tree level. In the case of gluon pairs, the new bulk term increases the b3 contribution by

20 − 25%. In the case of photon pairs the new contribution is � 6 times larger and of the

opposite sign than that arising from the beta functions. These new contributions may thus

lead to drastic changes in the radion partial widths. Fig.1 shows the ratio of the partial

widths for r → γγ and r → gg for the case of bulk gauge fields to the corresponding ones

obtained when these fields are forced to lie on the TeV brane. As expected we see that the

width r → gg receives a 40 − 50% increase over the entire radion mass range. The change

in the width for r → γγ is much more dramatic, is quite sensitive to the value of mr, and

can vary by roughly two orders of magnitude over the relevant mass range.

3.3 Collider Signatures

The results of Fig.1 summarize the differences between radion decays to SM fields when they

are in the bulk or on the TeV brane for various radion partial widths. As far as the f̄ f, hh

and, essentially, W+W− and ZZ final states are concerned there are no differences. Only

the gg and γγ modes have partial widths which are significantly altered from the TeV brane

case. These changes in the widths directly led to variations in the various branching fractions

for decays to bulk fields in comparison to those for wall fields as shown in Fig.2. Here we

show the deviation of the ratio RB = B(r → bulk)/B(r → brane) from unity for the various

final states. Except for the γγ case these ratios of branching fractions remain rather flat with

increasing mr above � 200 GeV. In the case of the γγ final state RB reaches a maximum of

� 40 for radion masses of order 500 GeV. Knowing both the width and branching fraction
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changes for all of the decay modes allows one to assess the impact of the ‘brane vs. bulk’

choice for SM matter at colliders. For example, for light radions in the 100 GeV or so range,

the production and decay signature at the LHC would be identical to that for a light Higgs,

i.e., production by gg fusion followed by decay to two photons. From Figs.1 and 2 we see

that for radions in this mass range the rate for this process is more that twice as large in

the case where the SM fields are in the bulk than when they are on the TeV brane. On the

other hand the production of a radion in association with a SM gauge boson followed by

radion decay to b̄b would have a rate at the LHC or Linear Collider which is smaller in the

case of bulk SM states by ∼ 30−35% in comparison to the case when the SM is on the wall.

If light radions are observed at future colliders these small rate differences may help one to

determine the locations of the various SM fields in the RS model.

Figure 2: The ratios for the branching ratios of the radion into bulk states versus the
corresponding wall states as a function of the radion mass. The approximately horizontal
curves are, from top to bottom on the left-hand side of the figure, for the total width(solid),
and the gg(dash-dotted), b̄b(dots) andW+W−/ZZ(dashes) final states. The V-shaped curve
is for the γγ final state. Radion decay to Higgs boson pairs has been neglected. The values
of Λr and k/Mpl are as in the previous figure.
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3.4 Radion-Higgs Mixing

As a last possibility we consider how the mixing of the radion and Higgs field may alter the

Higgs boson’s couplings in the case when the SM fields are in the bulk. As is well-known,

on general grounds of covariance, the radion may mix with the SM Higgs field that remains

on the TeV brane through a wall term in the action of the form

SrH = −ξ
∫
d4x

√−gwR(4)[gw]H
†H , (22)

where H is the Higgs doublet field, R(4)[gw] is the Ricci scalar constructed out of the induced

metric gw on the SM brane, and ξ is a dimensionless mixing parameter assumed to be of

order unity and with unknown sign. The above action induces kinetic mixing between the

‘weak eigenstate’ r0 and h0 fields which can be removed through a set of field redefinitions

and rotations. This mixing itself is, of course, not directly influenced by whether or not the

SM fermion and gauge fields remain on the TeV brane. Clearly, since the radion and Higgs

boson couplings to SM fields differ and the radion couplings depend on the location of the

SM fields this mixing will induce modifications in the usual SM expectations for the Higgs

decay widths and branching fractions which are sensitive to these various locations.

In earlier work by Hewett and Rizzo[6] the influence of radion-Higgs mixing on the

properties of the Higgs were examined in the case where the SM fields were confined to the

TeV brane. Those results will be somewhat modified if instead the SM fields are now placed

in the bulk particularly in the case of the gg and γγ final states. While a detailed study of

this phenomenon is beyond the scope of the present paper we can get an idea of the size of

this effect by examining the shifts in the Higgs bosons partial widths in these circumstances.

These are shown in Fig.3 for a typical set of parameter values. Note that these shifts can be

significant for values of ξ of order unity or less. Comparison with the results of Hewett and

Rizzo, however, show little qualitative difference between the two possible locations of the
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SM fields. A detailed analysis of these effects will be presented elsewhere.

Figure 3: The effect of mixing on the partial widths of a 125 GeV Higgs boson, described
by the parameter ξ, assuming v/Λr = 0.2 and a radion mass of 300 GeV as discussed in
the text. The solid(dash-dotted, dashed, dotted) corresponds to the W+W−/2Z(gg, γγ, f̄f)
final states.

4 Conclusions

In this paper we have examined the couplings of the RS radion to the gauge and fermion

fields of the SM when these fields lie in the bulk. These results were then contrasted to the

more conventional case where the SM fields are constrained to the TeV brane. Significant

differences in decay widths were found in the case of the gg and γγ final states due to the

existence of new tree-level terms in the induced 4-d action. Minor differences were also found

for the W+W−/ZZ final states; the corresponding widths for decays into fermion or Higgs

boson pairs were found to be unchanged. These width differences were then shown to lead

to relatively large shifts in the overall radion branching fractions.
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