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The longitudinal dynamics and its coupling with the transverse dynamics of bunched beams
with strong space charge are analyzed. We introduce a self-consistent Vlasov description for the
longitudinal phase space similar to the familiar description for the transverse phase space using a
Kapchinskij-Vladimirskij (K-V) distribution [1]. A longitudinal beam envelope equation is derived.
An exact solution is then obtained when coupling to the transverse dynamics is ignored. This
longitudinal envelope equation is coupled to the transverse envelope equation to form a set of
coupled dynamical equations, which is then solved numerically.

This analysis is prompted by the surprising results of recent experiments which showed that by
driving an intense laser pulse into matter, which in turn creates a plasma, short bright relativistic
electron bunches are produced, surprisingly narrowly focused. We find that because the space
charge forces weaken with increasing transverse and longitudinal phase space, both the transverse
and longitudinal emittance blowout anticipated of bright compact bunches are mitigated by this
coupling. It should be possible to capture these bunches into an RF cavity to accelerate to higher
energies.

1. INTRODUCTION

The past several years have witnessed an increasing array of experiments in which very short
and bright bunches of electrons have been accelerated to relativistic energies in the MeV range in
plasma and driven out of the plasma by intense short laser pulses [2–6]. Though details vary from
experiment to experiment, the general features of these laser driven beams are the very short bunch
length (100’s of femto seconds) and the relatively large energy spread of the electron beam. The
short bunch length is due to the short pulse length of the laser and, therefore, within reason a
variable parameter of the experiment. The capture of electrons from the plasma bulk through the
plasma wave proceeds through an instability and makes the energy spread substantial.

There are two remarkable properties of the ejected reletivistic electrons: (a) the product of the
bunch length and the energy spread, the longitudinal emittance, is comparable to or smaller than
conventional RF sources (in the range of MeV-ps); (b) the micron-size transverse spot size of the
initial electron bunch corresponds to the laser spot size and may, therefore, lead to a small transverse
emittance. For example in [3], at least 5 × 108 electrons are accelerated and space collimated to
an 5 millirad cone, yielding an average energy of 7 MeV with an “apparent” normalized transverse
emittance possibly as low as a few 10−7 m-rad after 2 m of drift. (See experimental parameters in
Table I.)

The topic of the emittance is a subtle one, so we will define quantities which play a role. These
quantities are a products of a spot size and a divergence, and sometimes loosely are called emittance,
although maybe they shouldn’t. We will denote the location of the plasma exit with subscript 0
(zero) and the place of measurement with subscript 1 (one).

(i) We define an “apparent” emittance ε01. It is derived from the product of the initial spot
size at the plasma channel exit (location 0) and the divergence of the beam measured after a
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certain drift (20 cm and more, location 1), as in ε01=σ0 × σ′
1. This quantity will be an upper

limit on the original plasma exit emittance ε0, because, while we know the size of the plasma
channel quite precisely, the divergence σ′

1 at a distance has been subject to space charge forces
during the drift.

(ii) We define ε0 to be the actual emittance at the exit point.

(iii) The quantity ε11 = σ1 × σ′
1 at the place of measurement is an upper limit on the actual

emittance at location 1 (and might be huge), because correlation between particle displacement
and divergence in phase space is ignored.

But because the initial exit emittance ε0 of the electron beam enters into the calculation of
the asymptotic divergence, at least a value of ε0 can be inferred by determining the asymptotic
divergence σ′

1, as we will see later. In creating a proper description of the process in free space,
therefore, we can judge if the initial inferred exit emittance is self-consistent with the asymptotic
divergence.

All ε0, ε01, ε11 as used here are geometric quantities, not normalized by γ.
Most of these experiments are based on the acceleration mechanism called the Self-Modulated

Laser Wakefield Acceleration (SMLWFA). This mechanism is facilitated by the forward Raman
scattering instability process to induce a wakefield of an accelerating longitudinal plasma oscillation
with phase velocity close to the speed of light [7]. The SMLWFA was first experimentally observed
in 1995 [8, 9]. The observed energy spread in these SMLWFA experiments is large (up to 100%). It
should be noted, however, that although this energy spread is substantial, it is the relative energy
spread ∆E/E which is important for high energy applications, and this spread becomes tolerable
as the beam is accelerated. Meanwhile, there have been several theoretical proposals to increase
the initial energy and to reduce the initial energy spread [10–12]. The SMLWFA experiments so far
[2–6] were first-generation experiments without particular sophistication of the beam handling and
dynamics, so this low transverse emittance has been an exciting surprise as well as a puzzle.

Because of this preliminary nature of experiments, it is highly desirable to measure the beam
properties more precisely.1 Here, however, with this reservation in mind, we take these measured
parameters at face value and try to understand why and how, quite counter-intuitively, such a
narrowly focused beam is preserved in the presence of strong space charge forces. These are highly
nonlinear processes where small changes of plasma densities or laser power can result in very different
regimes of laser-plasma interaction. Despite this sensitivity, several experiments [2, 5] have produced
similar charges, namely in excess of 1010 relativistic electrons, coming from a plasma spot size with
a radius of ≈ 5 µm, within a cone of ≈ 1o, corresponding to a divergence of below 20 millirad.2 One
experiment (see Table I) used collimation and found N = 5 × 108 electrons of 7 ± 3 MeV within a
cone of 5 millirad (corresponding to a σ′ of 2.5 millirad) out of the original N = 2.6× 1011 [3].

In an intuitive way it is understandable that the laser-driven electron source has low emittance
to begin with, as the laser is focused to a small spot and electrons are promptly accelerated to
relativistic energies while their charge is neutralized in the plasma. This raises a great deal of
interest [13] with regard to its application to a bright beam source for X-ray free electron lasers and
future linear colliders. It is still obvious in traditional electron transport (K-V) theory, however, that
during the beam transport, after the electron bunches emerge from the plasma, space charge effects
should blow up the emittance, but the experiments appear to indicate the contrary. For example, it
has been shown repeatedly [14] that the emittance would in fact blow up rapidly due to the space
charge measured in the experimental data. These calculations were based on the transverse envelope
equation, without coupling to the longitudinal dynamics. We recognize that this coupling can be
important. This is because in these experiments (a) the longitudinal bunch length is much shorter

1 A list of parameters, which need to be measured has been posted at the NLC-XFEL web site at http://www-
project.slac.stanford.edu/lc/local/XFEL/GunConcepts.rtf, and will be updated occasionally.

2 It should be noted that in general it is not known with good precision how many electrons with a determined
energy are in a certain cone, with the exception of the collimation experiment [3]. Neither is the bunchlength of
the emerging beam known from direct measurments.
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FIG. 1: Calculated longitudinal and transverse phase space evolution for coupled (thick line) and uncoupled
(thin line) theory. The parameters were taken from [2, 3] with charge of N = 1 × 1010. All parameters are

shown vs. the drift length s (in µm): (a)
√

〈δ2〉(s), (b) 〈zδ〉(s), (c)
√

〈z2〉(s), (d) σ(s) and (e,f) σ′(s). The
sixth figure (f) is the same σ′ of the fifth (e), except that (f) is plotted for a shorter range in s to emphasize
the initial short range development. Initial condition for σ is σ (0) = 5 µm, as taken from the typical size
of the laser-plasma chanel. We assume σ′(0) = 0, i.e., there is a beam waist at the plasma exit; calculations
with σ′(0) significantly different from 0 do not match the experimental findings. All units for z, σ and s
are in microns, units of divergence σ′(s) are in radian, the unit for energy related parameters is “γ”. For
initial “intrinsic” emittance ε0 we choose 0.01 mm-mrad (geometric emittance) because this was the largest
emittance we could use and still reproduce the experimental results with our theory, see Figure 3, although
the experiments are also reproduced with smaller emittances. Note that the drift is plotted out to 20 cm to
match the experimental set-up of [2], and that acceleration has not been used.

than that of the conventional beams; (b) the longitudinal energy spread is much larger than that of
the conventional ones. These differences to a conventional source may be the reason that apparently
transverse and longitudinal forces have not been treated as coupled analytically, while numerical
programs have done so.

So in summary, these two characteristics of laser driven sources mentioned make the bunch
length change rapidly as soon as the beam emerges out of the plasma wave, in particular at low
relativistic energies (a few MeV) when the space charge forces should be largest. This bunch length-
ening dilutes the space charge force and thus has a sensitive influence on the transverse space charge
effects. On the other hand, the increase in transverse beam spread can also mitigate the longitudinal
bunch lengthening, as it too reduces the space charge effects. It is, therefore, crucial to incorporate
the coupling between the longitudinal and transverse dynamics in order to evaluate the property of
the laser driven bunches and how to control and utilize this potentially important new technology
in high energy accelerators.

As a sneak preview we show in Figure 1 the difference between the coupled and the uncoupled
calculation for data consistent with [3]. Precise definitions of concepts and parameters follow later
in the text. But we should mention here that we assume the experimental data mean a uniform
longitudinal distribution of the charge (FWHM) with a bunchlength equal to the length of the ingoing

3



laser bunch. This distribution we convert into a parabolic distribution (analog to the transverse K-
V distribution) while keeping the rms value constant. The rms bunchlength plotted (subplot c)
corresponds to a HWHM, keeping with standard practice in using rms properties.

The difference between coupled and uncoupled case for the energy of the experiment and the ε0
chosen is most pronounced, beneficial, and immediate for the longitudinal part, but Figure 1 shows
that the asymptotic σ′ is lower in the coupled case as well. Since much of the emittance growth
in low energy electron transport is due to growth in energy spread, reducing this growth might be
important.

In the above discussions of space charge effects, we have ignored the influence of the plasma
and the laser, assuming that the beam has emerged cleanly from the plasma and that the laser
has sufficiently diverged. We can, therefore, concentrate on the dynamics of a naked space charge
dominated beam in free space.

In terms of the application of the laser-driven beams to an injector such as an RF accelerator,
it is important to understand whether the rapid dynamical changes still allow us to properly inject
the bunches into the RF accelerator structure and how to do so in practice. Since the longitudinal
bunch lengthening happens quickly, one has to capture the beam with RF before it becomes too
long. Since the transverse beam spread takes place rapidly as well, one needs to focus the beam
with a magnetic field, particularly to control the apparent emittance growth due to chromatic effects
associated with the large initial energy spread [15].

In what follows, we investigate the self-consistent coupling of the longitudinal and transverse
dynamics under the influence of strong space charge forces. In order to accomplish this, we first
introduce an exact equilibrium distribution to the longitudinal Vlasov equation, analogous to the
Kapchinskij-Vladimirskij (K-V) distribution in the treatment of the transverse dynamics [1]. The
longitudinal dynamics is analyzed based on this distribution, yielding a longitudinal envelope equa-
tion. An exact solution has been obtained assuming there is no RF field and assuming the coupling
to transverse dynamics is ignored, while numerical solutions are presented without these assump-
tions. The familiar transverse dynamics with the K-V distribution is then introduced, and these two
dynamics are coupled self-consistently in our treatment. In this formalism we allow an RF field as
well as a solenoidal magnetic field. In Sec.2 we analyze the longitudinal dynamics with respect to a
reference particle. The self-consistent longitudinal Vlasov description and the longitudinal envelope
equation based on it are introduced in Sec.3. In Sec.4 we solve the longitudinal envelope equation
exactly in the absence of the RF field and transverse-longitudinal coupling. The coupled transverse
and longitudinal envelope equations are derived and solved numerically in Sec.5. Analysis of sample
parameters deduced from plasma experiments (and hoped-for experiments) is presented in Sec.6.
We conclude in Sec.7 as to how this laser-driven plasma source may be employed and its relevance
to future light sources and high energy accelerators.

It is self-evident that immediate acceleration (RF capture, adiabatic damping) and magnetic
focusing will be beneficial to the emittance in the drifting beam. In this paper we stop short of
presenting solutions to the acceleration and focusing problem. We intend to revisit these problems
in the future.

2. LONGITUDINAL EQUATION OF MOTION

In a general treatment, consider a beam bunch being accelerated by a traveling wave linac with
phase velocity βw = 1. The beam is under the influence of its own longitudinal and transverse space
charge forces. Its bunch length is much shorter than the RF wavelength and the bunch is injected
close to the crest of the RF acceleration wave. We will also include a solenoidal field for transverse
focusing. The case without acceleration can be obtained by setting the acceleration gradient to zero.

We first need to define a reference particle. Consider a reference particle injected with energy
E0 exactly onto the wave crest where the acceleration electric field is E . Its equation of motion is
[16]

z′r =
1
βw

− 1
βr

= 1 − 1
βr
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P ′
r = − eE

βrc
sin

2πzr

λ
(1)

where the subscript r refers to the reference particle, ( )′ = d
ds ( ) with s the longitudinal coordinate

of the accelerator source, Pr is the longitudinal momentum, λ is the RF wavelength, zr is the
longitudinal position of the reference particle measured relative to the traveling wave (zr > 0 means
the reference particle is ahead of the traveling crest). The initial conditions are zr(0) = −λ/4 and
Er(0) = E0 = γ0mc

2.
In principle, one should be able to solve Eq.(1) and obtain zr(s) and Pr(s). We will not do

so other than estimating how much does the reference particle fall behind the traveling wave crest
asymptotically s→ ∞ as follows:

∆zr

∣∣∣
s→∞

=
∫ ∞

0

ds(1 − 1
βr

) ≈ −
∫ ∞

0

ds

2γ2
r

= − 1
2γ0γ′r

≈ − m2c4

2E0eE (2)

Of course, this phase lag must be much less than the RF wavelength. When this is satisfied, we
have zr ≈ −λ/4 throughout the acceleration process.

From here on, we assume zr(s) and Pr(s) are known and refer the longitudinal position z of all
particles to the reference particle (z > 0 means the particle is ahead of the reference particle) and
no longer to the wave crest. Let

∆P = mcδ where δ = ∆(βγ) (3)

be the momentum deviation of a particle from the reference particle at position s. For relativistic
particles, δ ≈ ∆γ. (Note that δ is not the conventional notation of ∆P/P .) We consider z and δ to
be small, so that all equations of motion can be linearized in these variables. This requires |z| � λ,
and |δ| � βrγr . We have

z′ =
1
β
− 1
βr

≈ δ

β2
r γ

3
r

(4)

We have kept the factor β2
r here so that our analysis can also be applied to nonrelativistic cases.

In the absence of space charge force, the energy equation of motion is

δ′ = − eE
mc2βr

[
sin

2π(zr + z)
λ

− sin
2πzr

λ

]
(5)

Away from the crest, one may linearize Eq.(5) as

δ′ ≈ −
(

2πeE
mc2βrλ

cos
2πzr

λ

)
z (6)

Near the crest, one may still use Eq.(6), which gives δ′ ≈ 0, provided that the phase slippage (2)
can be ignored.

In the following, when we consider an accelerated beam, we shall assume that the beam is near
the crest and that the phase slippage is ignorable. This assumption implies that

γr(s) = γ0 +
eE
mc2

s (7)

and that δ′ = 0 in the absence of the space charge force. As stated earlier, we will carry the
formalism for acceleration and focusing forward as long as practical, up to Eq.(28)), but we will not
numerically solve the differential beam equation with it.

3. LONGITUDINAL ENVELOPE EQUATION

We propose as ansatz the following distribution in phase space (z, δ), normalized by
∫
dz
∫
dδ ψ =

N , the number of charged particles in the bunch:

ψ(z, δ) =
3N

10πA

√
1 −

(〈δ2〉z2 − 2〈zδ〉zδ + 〈z2〉δ2
5A2

)
(8)
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where A =
√〈z2〉〈δ2〉 − 〈zδ〉2 , and 〈δ2〉, 〈zδ〉 and 〈z2〉 will depend on s and are the three dynamical

quantities being studied. We shall examine their time evolution under the influence of longitudinal
space charge force. The overall shape of the distribution is a tilted ellipse. Outside of the ellipse the
distribution vanishes.

The quantity A specifies the phase space area occupied by the beam and is related to the
longitudinal emittance of the beam. This quantity will be conserved even as 〈δ2〉, 〈zδ〉 and 〈z2〉
evolve with time s, as the distribution evolves according to the Vlasov equation in our problem.
This conservation law will be confirmed algebraically later.

This distribution (8) for the longitudinal envelope equation will be shown to be the equivalent
of the K-V distribution for the transverse envelope equation in the sense that it allows an exact
analysis of the longitudinal problem in a self-consistent manner just like the K-V distribution allows
exact analysis of the transverse problem.

The longitudinal beam distribution is obtained by integrating ψ(z, δ) over δ,

ρ(z) =
3N
4ẑ3

(ẑ2 − z2), |z| < ẑ (9)

where the half width at zero height (HWZH) bunch length ẑ =
√

5
√〈z2〉. Note, that the exact

factor of
√

5 is due to the parabolic form of Eq.(9). Any reasonably defined FWHM (full width half
maximum) distribution follows similar laws. For a uniform longitudinal distribution we have a full
bunch length L̂ = 2

√
3
√〈z2〉. A uniform, round, transverse cross section follows r̂ = 6

√〈z2〉/√2π.
This parabolic distribution has normalization

∫
dzρ(z) = N . Parameterization in Eq.(8) is such

that
∫
dδ
∫
dz ψz2 = 〈z2〉, ∫ dδ ∫ dz ψzδ = 〈zδ〉, ∫ dδ ∫ dz ψδ2 = 〈δ2〉 as it should.

The longitudinal space charge force gives (assuming a/γ � ẑ) [17]

δ′ =
eEs(z)
mc2βr

= − 2r0
βrγ2

r

dρ(z)
dz

(
ln
b

a
+

1
2

)
≡ κ2z (10)

where Es is the longitudinal space charge electric field, a is the transverse beam size radius (assumed
uniform disk, as would be the case for a K-V distribution), b is the pipe radius (assumed cylindrical
and perfectly conducting), and we have defined a quantity

κ2 =
3Nr0

53/2βrγ2
r 〈z2〉3/2

(
ln
b

a
+

1
2

)
(11)

Reference energy γr , beam radius a, and pipe radius b are potentially functions of s.
Both Eqs.(4) and (10) are linear in (z, δ). These linearity properties assure that the distribution

(8) will remain elliptical and will maintain the ansatz form. The space charge force being linear in
z is a consequence of the longitudinal beam distribution being parabolic. The motion is of course
unstable, and all single particle trajectories are basically hyperbolic. Evolution of the distribution
function is determined by the Vlasov equation

∂ψ

∂s
+

1
β2

r γ
3
r

δ
∂ψ

∂z
+ κ2z

∂ψ

∂δ
= 0 (12)

Substituting Eq.(8) into (12), keeping in mind the fact that 〈δ2〉, 〈zδ〉, 〈z2〉 are functions of s while
A is a constant of the motion, we obtain

(
〈δ2〉′z2 − 2〈zδ〉′zδ + 〈z2〉′δ2

)
+

1
β2

rγ
3
r

δ
(
2z〈δ2〉 − 2δ〈zδ〉

)
+κ2z

(
− 2z〈zδ〉 + 2δ〈z2〉

)
= 0 (13)

Eq.(13) contains three terms, each proportional to z2, zδ and δ2 respectively. Since Eq.(13)
must be satisfied for all z and δ, each of the coefficients of these three terms must vanish separately.
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Therefore,

〈δ2〉′ = 2κ2〈zδ〉
〈zδ〉′ =

1
β2

rγ
3
r

〈δ2〉 + κ2〈z2〉

〈z2〉′ =
2

β2
rγ

3
r

〈zδ〉 (14)

Note that κ, given by Eq.(11), depends on 〈z2〉 and therefore is a dynamical quantity. Note also
that Eq.(14) can also be obtained by observing

〈δ2〉′ = 2〈δδ′〉 = 2〈δκ2z〉
〈zδ〉′ = 〈z′δ〉 + 〈zδ′〉 = 〈 1

β2
rγ

3
r

δ2〉 + 〈κ2z2〉

〈z2〉′ = 2〈zz′〉 = 2〈z 1
β2

r γ
3
r

δ〉 (15)

The partial differential Vlasov equation (12) is now reduced to three coupled first order ordinary
differential equations (14) by the ansatz distribution (8). Equations (14) will be referred to as the
longitudinal envelope equations.

Eq.(14) can be combined to give (〈z2〉〈δ2〉 − 〈zδ〉2)′ = 0, which means A = constant of the
motion and is determined by the initial conditions of the beam.

As the Vlasov equation conserves the phase space volume, and since our beam has started out
as an ellipse and remained an ellipse, this conservation is reasonable and expected. However, the
issue of emittance preservation, or its blowup, is a subtle and important question.

To begin with, a real system of particle beams is composed of individual particles which can
be represented by delta functions in phase space. This distribution is called the Klimontovich
distribution. The result of averaging the Klimontovich distribution is the Vlasov distribution. The
former distribution obeys the Klimontovich equation [18], whose operational form “appears” to be
identical to the Vlasov equation before one does smoothing and averaging. These two should not
be confused, because the averaged Klimontovich equation no longer appears the same as the Vlasov
equation.

Due to microscopic mixing, the entropy (and emittance) in the Klimontovich system can in-
crease [19]. This first cause of emittance increase is intrinsically due to a “collisional” (of either
single particle nature or collective nature) effect. Particle-in-cell simulations such as PARMELA
[20] follow individual particle dynamics along with their self-consistent fields, which make up the
Klimontovich system.

In addition to this distinction between the Klimontovich’s and Vlasov’s phase space behavioral
differences, there are other causes of emittance increase, even within the Vlasov system. When
there are nonlinear interactions in the Vlasov system, i.e. due to an energy spread, these can give
rise to contorted fine-structured phase space shape of the beam. Even though the Vlasov equation
guarantees that the phase space volume of this contorted beam is unchanged, the smooth envelope
of this contorted distribution may be greater than the original phase space occupation. This is the
second cause of emittance increase due to the nonlinearity.

A third possible emittance increase is due to the projection of higher dimensional emittance (say
6D) onto subspace (say 2D). Even though the 6D phase space volume may be constant, the envelope
of this projected 2D volume may become greater. The emittance increases due to a dependence
of the 2D dynamics on some external parameters, such as a particle’s energy. This parametric
emittance growth can be recovered by appropriately compensating the parametric dependence.

In this article, we are only looking at this last level of emittance increase, if any. The choice of
ellipse and lack of nonlinearity of our analytical distribution allow us to have emittance preserved
as we have seen in the constancy of A above.

Given initial values 〈δ2〉(0), 〈zδ〉(0) and 〈z2〉(0) and the prescribed a(s), b(s) and γr(s), our
task is then to solve for the time evolution of 〈δ2〉(s), 〈zδ〉(s) and 〈z2〉(s) using Eq.(14).
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4. THE CASE WITHOUT ACCELERATION AND WITHOUT COUPLING TO
TRANSVERSE DYNAMICS

When there is no acceleration, all results in the previous sections still apply by setting E = 0.
Appropriate factors of βr have been kept so that the previous analysis, particularly Eq.(14), also
applies to the nonrelativistic case. Without acceleration, βr and γr are constants. In the remainder
of this section, we assume the transverse beam size a and the pipe size b are also constants in s,
or at least if the pipe size is made to scale with the beam size. In this case, we can solve Eq.(14)
analytically as follows.

Transform the quantities from 〈δ2〉, 〈zδ〉, 〈z2〉 and s to dimensionless u, v, w and t, where

〈δ2〉 = β4
rγ

4
ru, 〈zδ〉 = β2

rγ
2
r Γv, 〈z2〉 = Γ2w, t =

s

γrΓ
(16)

and where

Γ =
3Nr0(ln b

a
+ 1

2
)

53/2β3
rγ

3
r

(17)

Eq.(14) then becomes

du

dt
=

2v
w3/2

dv

dt
= u+

1
w1/2

dw

dt
= 2v (18)

Given initial conditions u(0), v(0), w(0), Eq.(18) can be solved for v(t) to yield

u∞t = v − v(0) +
1√
u∞

ln

[
v +

√
v2 +C

v(0) +
√
v2(0) + C

]
(19)

where we have defined

u∞ = u(0) +
2√
w(0)

(20)

C = u(0)w(0) +
1
u∞

− v2(0) (21)

Once v(t) is obtained from Eq.(19), w(t) and u(t) are found by

w =
1
u2∞

(
1 +

√
u∞
√
v2 +C

)2

(22)

u = u∞ − 2√
w

(23)

As t → ∞, the asymptotic behavior is such that 〈δ2〉 → constant, i.e. the beam energy spread
saturates and reaches a plateau. This is because as the beam bunch lengthens, the space charge force
weakens, and the beam energy spread saturates. Beyond that point, the bunch lengthens linearly
with time and one expects 〈z2〉 to be quadratic in time and 〈zδ〉 to be linear in time. The quantity
u∞ is the saturation value of u. The asymptotic expressions are

u → u∞, v → u∞t, w → u∞t2 (24)
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or, in terms of the physical quantities,

〈δ2〉(s→ ∞) = 〈δ2〉(0) +
2β4

rγ
4
r Γ

〈z2〉1/2(0)

〈zδ〉(s → ∞) =
s

β2
rγ

3
r

〈δ2〉(s→ ∞)

〈z2〉(s→ ∞) =
s2

β4
rγ

6
r

〈δ2〉(s→ ∞) (25)

The distance S the beam has to travel before its bunch length doubles and energy spread
approaches saturation can be estimated by

T ∼ 2

√
w(0)
u∞

or S ∼ 2β2
rγ

3
r 〈z2〉1/2(0)√

〈δ2〉(0) + 2β4
rγ4

rΓ

〈z2〉1/2(0)

(26)

5. COUPLED TRANSVERSE AND LONGITUDINAL ENVELOPE EQUATIONS

So far we have ignored the transverse dynamics. If we assume the transverse beam distribution
is that of a K-V distribution, the transverse dynamics can be described by a transverse envelope
equation. In our study, we consider a round beam. The K-V distribution in the transverse phase
space is

ψ(x, px, y, py) =
eλ

π2ε2
δ

(
x2 + y2

a2
+
a2(p2

x + p2
y)

ε2
− 1

)
(27)

where δ(x) is the delta-function, ε is the transverse emittance of the beam. The RMS emittance
is given by εrms,x = εrms,y = 1

4ε. The RMS beam size σ is given by σ = 1
2a. Normalization is∫

dxdpxdydpyψ = eλ. We also define normalized emittance by εN = βrγrε and εN,rms = βrγrεrms.
Including the effects of transverse focusing by a solenoidal field Bs, and a constant acceleration

(βγ)′ = α, the transverse envelope equation is given by [1, 17]

A′′ +KA − ε2N
A3

=
βrγrξ

2A
(28)

where

A = a
√
βrγr (29)

ξ =
4r0λ
β2

rγ
3
r

(30)

K =
(
eBs

2E

)2

+
α2

4β2
rγ

2
r

(31)

At the center of the longitudinal bunch distribution (9), the line charge density is

λ =
3N
4ẑ

=
3N

4
√

5 〈z2〉1/2
(32)

This gives

ξ =
3Nr0√

5β2
r γ

3
r 〈z2〉1/2

(33)

Note, that by taking for λ its peak value, i.e. at the bunch center, we are considering the dynamics
of a central slice of the beam, a choice which will somewhat overestimate the space charge effect for
the whole beam bunch.
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Once Eq.(28) is solved for A, the RMS transverse beam size is given by σ = A/(2
√
βrγr). In

the absence of acceleration and solenoidal field, Eq.(28) becomes

σ′′ − ε2N,RMS

β2
rγ

2
rσ

3
=

ξ

8σ
(34)

Coupling of transverse dynamics to the longitudinal dynamics is contained in the parameter
ξ. To see the coupling of longitudinal dynamics to the transverse dynamics, we go back to Eq.(14).
The longitudinal envelope equation in free space is still given by Eq.(14), except that this time κ2

of Eq.(11) is rewritten as

κ2 =
3Nr0

53/2βrγ2
r

1
〈z2〉3/2

[
ln

(√
γ2

r 〈z2〉 + 4σ2

2σ

)
+

1
2

]
(35)

Coupling of longitudinal dynamics to the transverse dynamics is described by the relatively weak
dependence of σ in the logarithmic term in κ2. In Eq.(35), the vacuum chamber pipe radius b has
been taken to be

√
γ2

r 〈z2〉 + a2 because we assume the beam is propagating in free space without a
pipe, to reflect the actual experimental setup. If there is a metallic beam pipe, then we should keep
b and not make this replacement.

Equations (14) and (28) are coupled envelope equations for round beams. The longitudinal
and transverse emittances

√〈δ2〉〈z2〉 − 〈zδ〉2 and εrms are constants of the motion even with the
coupling. It should be emphasized that there is no intrinsic emittance growth in the present model,
as mentioned earlier due to the Vlasov dynamics. Any emittance growths will have to result from
nonlinearities in the space charge force or the motion kinematics, neither of which are included in
the present analysis.

It is instructive to solve Eq.(34) in an iterative fashion. As is clear from Figure 1, the growth
of σ′ = dσ/ds appears to saturate in time. After its initial rapid increase the asymptotic behavior
of σ′ is dictated by the term on the right hand side of Eq.(34) only. A closer look at its asymptotic
behavior indicates that σ′ slowly increases in s as a function of the square root of a logarithm of s.
Since the logarithmic dependence is weak, we can iteratively solve this by integrating over s to yield

σ1 ≈ s

2

√
ξ ln(

s
√
ξ

2σ0
)

σ′
1 ≈ 1

2

√
ξ ln(

s
√
ξ

2σ0
) (36)

where subscripts 1 refer to the quantities evaluated at the position of the measurement.
An estimate of an “apparent” exit emittance, ε01, is therefore

ε01 ∼ σ0 × σ′
1 = G

σ2
0

βλp
(37)

where G =

√
3 ln( s

√
ξ

2σ0
)/16π

√
5 is a numerical quantity nearly equal to unity, λp = c/ωp is the

collisionless skin depth of the source plasma, and ωp =
√

4πne2/mγ3 is the longitudinal plasma
frequency of the emerging beam with Lorentz factor γ and beam electron density n = N/σ2

0σz0.
Eq.(37) indicates that the beta-function at the plasma source is given by the plasma collisionless
skin depth λp times β. The smaller the laser spot size, the smaller the values of ε01 (∝ σ2

0). The
greater the skin depth, either by a lower plasma density or by higher electron energy, the smaller
the value of ε01. Note, as before, that the apparent emittance ε01 is not to be confused with the
actual beam emittance at either the source or the position of measurement.

Nevertheless, ε01 is a quantity which impacts on the results of our calculations. In turn this
makes it an experimentally accessible quantity useful to compare with experimental observations
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FIG. 2: Calculated longitudinal and transverse phase space evolution for 3 different charges N = 0, N =
5× 108 and N = 1× 1010, resp., in the order of the lines shown, all for an assumed bunchlength (FWHM) of
120 µm. The latter two charges are within the range reported from the experiments [2, 3, 5], and N = 5×108

is precisely the value reported in [3] for the collimated beam with collimation angle ±2.5 millirad. Shown

are, as in Figure 1, the phase space parameters vs. the drift lengths (in µm): (a)
√

〈δ2〉(s), (b) 〈zδ〉(s), (c)√
〈z2〉(s), (d) σ(s) and (e,f) σ′(s). The sixth figure (f) is the same σ′ of the fifth (e), except that it is plotted

for a shorter range in s to emphasize the initial short range development. The calculations were extended
to a length of 2 m, because the experiment [3] collimated and measured the beam at this distance. Initial
conditions for σ is σ (0) = 8.5 µm, the radius of the laser-plasma channel in this case [3]. Assumption of
σ′(0) = 0 was found to be compatible for agreement between calculations and experiments, σ′(0) �= 0 was
not. All units for z,σ and s are in microns, divergences σ′(s) are given in radian. And finally, assuming
ε0 = 0.01 mm-mrad seems to be in better agreement with the experiment than a substantially larger value,
while a substantially smaller value had no effect on the calculation (see Figure 3).

through Eq.(34) without acceleration and focusing, and Eq.(28) in the general case. Since nearly
all SMLWFA experiments operate with laser channels in the 5-8 µm radius range, it might not be
surprising that all our results are compatible with ε0 ≈ 0.01 mm-mrad (or lower, something we can
not test with just analyzing the divergence).

6. APPLICATION TO PLASMA BEAM SOURCES

In this section, we will apply the analysis to a sample set of parameters, as shown in Table I.
In this example application, there is no solenoidal field and the electron motion is relativistic. The
first group of numbers in Table I are input numbers. The second group are derived ones. The third

11



group applies only if transverse-longitudinal coupling is ignored.
If we ignore the transverse-longitudinal coupling, we may replace the quantity

√
γ2

r 〈z2〉 + 4σ2

in Eq.(35) by
√
γ2

r 〈z2〉(0) + 4σ2(0) and replace 〈z2〉 in Eq.(33) somewhat arbitrarily by 〈z2〉(0).
Under these approximations, the bunch length doubles and the energy spread approaches saturation
in about a distance S, and the asymptotic energy spread is 〈δ2〉(s→ ∞) = β4

r γ
4
ru∞. Values of these

quantities in the absence of transverse-longitudinal coupling have been listed in Table I. It must
be emphasized that ignoring the coupling, as is customary, requires the choice of arbitrarily fixed
longitudinal and transverse parameters.

If we retain the transverse – longitudinal coupling, as we should, we must apply Eqs.(14) and
(28) and solve them numerically. Our calculations here are based on experimental results of Ref.
[2, 3, 5]. Parameters collected in Table I are based on a reasonable interpretation and interpolation
of the results. In what follows, we assume there is no acceleration. We have tested the effect of an
acceleration of 100 MeV/m on the longitudinal phase space (not shown here): it basically stops both
the bunch lengthening and the energy spread increase. The exact value of acceleration gradient was
not critical, but was a good indication of the effect of capturing by RF acceleration and adiabatic
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FIG. 3: Calculated divergence after 200 cm drift for charges N = 0 (green), N = 5 × 108 (red) and
N = 10 × 1010 (blue) at an energy of 7 ± 3 MeV as a function of the plasma exit emittance ε0. This
calculation assumes a 400 fsec long laser pulse (FWHM, 120 µm) creating a 8.5 µm radius plasma channel.
Below an emittance of ≈ 10−8 m-rad the dependence is flat. That is to say, that even if ε0 would be smaller
than 0.01 mm-mrad (which is possible, but which we can neither prove nor disprove) it would have no easily
discernable impact on the divergence. In turn, the divergence at the high charge case, the observed beam
divergence of 17 millirad [2, 5] does not allow to conclude, nor does it refute, that the emittance is smaller
than 0.01 mm-mrad; in this sense the measurements establish an upper bound on ε0. Since the N = 5× 108

case was due to collimation, the initial beam of 2.6×1011 did undergo more rapid expansion. We do not find
a self-consistent solution with a bunchlength equal to the laser pulse length of 120 µm, a length of 175 µm
gives better agreement, and a bunchlength of 250 µm would yield a value of σ′ consistent with the collimator
parameters. And finally, ε0 ≈ 0.01 mm-mrad seems to be in better agreement with the experiments than a
substantially larger value. These are not universal curves, they depend on the parameters used.
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TABLE I: Example parameters in a plasma electron source, taken as typical from recent experiments [2, 3, 5].

central mom. [MeV/c] 7

±(full mom. range) [MeV/c] ±3

±(full bunch length) [µm]a ±120

σ(0) [µm] 5

σ′(0) 0

N 0.5 × 109 - 1 × 1010

〈zδ〉(0) [µm] 0

ε0rms [µm] 0.01

γr 13.7

βr 0.9973

〈δ2〉(0) 6.86

〈z2〉(0) [µm2] b 4800

Γ(0) [µm] 0.00070 - 0.014

u(0) 0.000195

v(0) 0

w(0) 5.9 × 109 - 1.47 × 107

u∞ 0.000221 - 0.000716

S [mm] 96 - 55

〈δ2〉(s → ∞) 7.78 - 25.2

aExperiments generally give distributions as FWHM-values (Full Width Half Maximum). We have converted these
values into the equivalent parabolic distributions with the same RMS-value by using the relations given after Eq.(9).
bcorresponding to FWHM

damping.
Earlier we compared in Figure 1 some parameters for the coupled and uncoupled cases for a

charge of N = 1 × 1010 (1.7 nC). The thin curves were the results when transverse-longitudinal
coupling is ignored. Now in Figure 2 we compare 3 different charges N = 0, N = 5 × 108 and
N = 1 × 1010 extracted from the experiments, all with coupling.
We see that,

(i) by comparing the two curves in Figure 1 the transverse-longitudinal coupling is significant
with N = 1010, and affects the longitudinal dynamics more than it affects the transverse
dynamics.

(ii) by comparing Figure 1 and Figure 2 at 7 MeV the transverse space charge force has a large
effect on the divergence, while the effect of the longitudinal space charge force on the energy
spread is relatively small even for N = 1 × 1010, very small when N = 5 × 108, and zero for
N = 0;

(iii) the bunch length grows even without a charge due to the velocity spread at the beginning;

(iv) by comparing the three curves in Figure 2, the longitudinal space charge forces have some
effect on the energy spread and the transverse space charge forces have a strong effect on the
divergence when N = 1010;

The analysis can also be applied to proton beams emerging from a plasma source [21]. The
kinematics are derived in such a way that the analysis still applies when the beam is nonrelativistic.
In this case, we go back to Eq.(1) and choose the wave velocity and the reference particle velocity
in such a way that βw = βr . Then Eq.(7) and the numerical scheme still apply.
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7. CONCLUSION AND DISCUSSION

We have carried out an investigation of the effects of space charge on bright electron beam
sources. In particular we are interested in understanding the series of recent experiments in which
laser driven electron beams are generated in a plasma medium with evidence that these beams may
possess interesting properties including an emittance perhaps an order of magnitude lower than
the RF-based electron beam sources. It may defy our intuition that space charge effects did not
degrade the emittance in these cases. In order to understand this, we have developed an analysis of
the longitudinal dynamics based on a model that allows the development of a longitudinal envelope
equation. The model assumes a phase space distribution which, when projected onto the longitudinal
coordinate space, results in the parabolic form of Eq.(9). Its role in longitudinal dynamics is similar
to the role played by the K-V distribution in transverse dynamics. Analytic as well as numerical
characterization of this longitudinal dynamics has been derived. We have further developed a theory
of coupled longitudinal and transverse dynamics, in which the transverse dynamics is based on the
exact treatment of the K-V distribution. It is this coupled equations that indicates an important
mitigating effect of space charge on the transverse emittance increase during the early phase of
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FIG. 4: Longitudinal and transverse phase space dynamics for an example of bunches produced by “colliding”
lasers [22] for three charges of 0, 0.43, and 2.53 pC per micro (plasma) bucket. The curves are calculated
for general electron bunch parameters of E0 = 40 MeV , ∆E = 80 keV , bunch length τ = 1 fsec (0.3 µm)
per 3 fsec plasma bucket, and initial divergence σ′(0) = 0. For ease of comparison we used an initial spot
size of σ(0) = 5 µm, although the simulations had to use a larger σ(0) = 15 µm for the “high” charge case
to get sufficient charge. The curves are for charges of 0, 0.43 and 2.53 pC, respectively, and show marked
differences only for the longitudinal phase space. Because of the detrimental effect of energy spread on the
emittance early RF-capture might be important for a practical injector.
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the beam dynamics shortly after the beam emergence from the source. The relatively large energy
spread characteristic of the laser experiments based on the mechanism of the SMLWFA causes a
rapid longitudinal beam lengthening, which dilutes the space charge effects and in turn reduces the
increase of transverse emittance (or more precisely: the transverse beam divergence). The prompt
acceleration of electrons in the laser source to relativistic energies (beyond γ = 10) also helps reducing
this emittance increase.

One of the experiments [3] measured quantities that may be related to the emittance of the
beam. For this reason, we have singled it out for our analysis, though this experiment may benefit
from additional more definitive measurements and also other experiments may hold similar parame-
ters. For now, for lack of better or more definitive measurements, we take this experimental obser-
vation at face value. The experiment showed a surprisingly small apparent emittance ε01 ≡ σ0σ

′
1 [as

defined in Eq.(37)] with 5× 108 electrons, in the ball park of 0.01 mm-mrad, an order of magnitude
smaller than a typical high-performance RF-source. Our theory described above helps determining
the emittance ε0 at the plasma exit at, or less than, 0.01 mm-mrad for the same parameter regime.
Without the longitudinal-transverse coupling, the transverse apparent emittance (or more precisely
the beam divergence) would rise quicker. In this way, our theory provides a possible avenue of
understanding the experimental findings.

A more complete analysis should include the nonlinear effects of more realistic distributions.
Note that the currently adopted distribution does not have nonlinearities by its very nature. We
have begun investigating the development of the intrinsic emittance using a 2.5 dimensional particle
acceleration code, PARMELA [20]. So far our starting distribution is flat in the configuration
space density. The code can also follow nonlinearity as well as individual particle effects; in our
operational regime, the former is more important. In these first PARMELA runs we observe that
the transverse beam size and the angular divergence are in good agreement with the experimentally
derived values described in the previous section 6. It means that as far as the quantity ε01,rms = σ0σ

′
1

is concerned, the experimentally derived quantity and the PARMELA result both can be understood
with our theory, thus supporting the possibility that the (intrinsic) emittance at the plasma exit
is ε0 = 0.01 mm-mrad or possibly even smaller at the source, as indicated by the results shown in
Figure 3.

We have a preliminary finding from PARMELA, however, that the emittance increase continues
even after the angular divergence σ′ saturates, when the space charge effect is sufficiently diluted
in the expanding beam. The origin of this emittance increase is the dependence of the transverse
dynamics (with and without the space charge force) on particle energy (∝ 1/γ3), together with a
large energy spread of the beam. Because of this nonlinearity, low energy beam particles rotate faster
than more energetic ones in the phase space of x-x′, giving rise to the so-called bow-tie diagram.

The above analysis has ignored one unique aspect of plasma-generated bright electron beams,
i.e. its substructure of femto second length bunches. Ignoring the sub-structure was justified here
because the observed rapid bunch lengthening of SMLWFA produced bunches will wash out the
bunching, before RF acceleration. Nevertheless it is appropriate to investigate sub-bunched beams
in the framework presented here because of the following reason. As mentioned before, a new
type of laser wake field acceleration using 2 or more lasers, beyond the self-modulated case, has been
investigated in simulations [10–12]. These simulations calculate expressively the charge, bunchlength,
and emittance for one fs-type sub-bunch. These beams are predicted to have a very small energy
spread so they may behave differently from the broad energy spectrum of the SMLWFA. First
experimental results are just forthcoming [23]. The basic idea is to give the electrons an additional
push to be trapped in the plasma wave [10–12].

The numerical simulations from [22] result in a charge per plasma bucket between N = 2.5×106

and N = 1.5× 107, depending on the size of the laser focus. The electron bunch length is 1 fsec, in
the plasma wave bucket of a few fsec. Reference [22] calculates an energy of 40 MeV at the plasma
exit and an energy spread of 80 keV. Simulations by others [10–12] show similar results. Figure 4
shows the longitudinal and transverse phase space development for three values of charge, using the
formalism of this paper. The longitudinal phase space is noticeably impacted, while the impact on
the transverse phase space is minor.

If one keeps the charge constant and changes the initial emittance by an order of magnitude,
the role of transverse and longitudinal phase space is reversed. The total charge of O(nC) needed
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FIG. 5: The curves show that with a pulse length of 2400 fsec (730 µm = 10o X-band) a regime has been
reached, which is very insensitive to charges of 1 nC and below. The curves are calculated for general electron
bunch parameters of E0=7 MeV, ∆E = 3 MeV , bunch length τ = 3000 fsec (1000 µm), an initial spot size
of σ(0) = 5 µm, initial emittance 0.01 mm-mrad and initial divergence σ′(0) = 0. The two curves are for
charges of 0.1 and 0.624 1010 e−, respectively, and show that the impact of the space charge forces on such
long pulses is minor (note the suppressed zeros for the longitudinal graphs), even so the differences in σ
and σ′ for the two different charges are considerable.

for some applications is thought to be created by using many plasma buckets. If further studies
hold that in fact these electron sources driven by multiple lasers can provide a large number of
electrons (> 5 × 108, up to 1010) with normalized rms transverse emittance of 0.1 - 0.01 mm-mrad,
their application to the future X-ray light sources such as LCLS and beam sources for future linear
colliders is promising.

Ironically enough, in contrast to classical (photo)cathode guns, the problem of plasma guns
might be in producing too short a bunch, with too high a charge. However, longer laser pulses with
enough power are in the realm of the possible. For future linear colliders [24–26], in addition to the
cases already shown, we might consider a long beam case: N ≈ 1010, εx,N = εy,N ≈ 10−7 m-rad, and
z(FWHM) = 730 µm. We further assume that after 2 cm of drift we would be able to capture the
beam in an RF acceleration field (RF-capture, adiabatic damping). Using PARMELA simulations
we have found that for a bunch with an initial FWHM length of 730 µ (10o X-band), N = 1010 e−,
ε0,rms = 1 10−8 m-rad and energy of 7± 3 MeV , after the 2 cm drift the emittance grows to 3 10−8

m-rad (44 10−8 m-rad normalized). If we reduce the charge to 1 nC (0.624 1010e−), for comparison
to the ”standard” charge quoted for RF-guns, we find for the same parameters that the normalized
emittance after 2 cm drift is 32 10−8 m-rad, a factor of 4 improvement from what is expected from
conventional RF guns.
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One should be aware of the asymmetric emittance requirements of linear colliders, where εNx =
3 × 10−6 m-rad, but εNy = 3 × 10−8 m-rad. Figure 5 shows that by stretching the beam, the space
charge effect on the energy spread is mitigated (note the suppressed zeros in some graph) so that
the low emittance at the source can be maintained during drift. We note that such a beam source
may be attractive for future collider applications.

On the other hand, the beam source requirements for X-ray Free Electron Lasers are different.
It prefers shorter bunch length, while the transverse emittance requirement in the vertical can be
relaxed since beams have to be round. The present requirements for a coherent light source in the
1 − 2 Å region are εNx = εNy ≈ 10−6 m-rad [27]. In this case, we could use a beam source with a
long laser, followed by bunch compression if necessary, or we might adopt even higher plasma density
with shorter laser pulse length, while still using the SMLWFA scheme. Under either scenario, with a
normalized emittance in the ≈ 10−7 m-rad range the FEL saturation gain length can be substantially
reduced by a factor of a few [28]. This is primarily due to the higher beam density achievable by laser
driven beam sources over the more conventional methods. In any case, to go beyond the 1 Å-limit
to 0.1 Å one needs an emittance of εNx = εNy ≈ 10−7 m-rad [29].

In conclusion, we have shed light on some of the puzzling aspects of space charge effects asso-
ciated with the laser driven bright beam sources by analytically solving the longitudinal dynamics
and its coupling to the transverse dynamics when the space charge effects are severe. If the size
and angular spread of the laser driven beam sources can properly be used with further studies,
these beam sources may portend a promising exploration of a new kind of bright sources for the
applications to future colliders and X-ray light sources.

Note added in proof: when we were ready to publish, we learned that Gerry Dugan from
Cornell, with LBL collaborators, was working on the same topic, but using a different approach: 6-
dimensional elliptical distributions. The Cornell-LBL work will be reported on at the 10th Advanced
Accelerator Concepts Workshop 2002, Oxnard California, as will be this paper. Gerry kindly ran
our examples with his code, which showed that the two model agreed well when the proper scalings
and approximations were used.
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