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Abstract

The coherent synchrotron radiation of a bunch in a bunch compressor

may lead to the microwave instability producing longitudinal modulation

of the bunch with wavelengths small compared to the bunch length. It can

also be a source of an undesirable emittance growth in the compressor.

We derive and analyze the equation that describes linear evolution of the

microwave modulation taking into account incoherent energy spread and

�nite emittance of the beam. Numerical solution of this equation for

the LCLS bunch compressor gives the ampli�cation factor for di�erent

wavelengths of the beam microbunching.
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1 Introduction

The design of a magnetic bunch compressor chicane is a key technical challenge
in the development of linac driven x-ray free-electron lasers. Compression is
essential to reduce the length of the electron bunch and correspondingly to
increase its peak current. In order to achieve compression, a relativistic electron
bunch is given an energy chirp while passing through linac sections o�-crest.
Since higher energy electrons follow a shorter trajectory through the chicane,
the high energy electrons at the back of the bunch catch up with the lower energy
electrons in the front. A major concern in the design is to assure that bunch
compression does not degrade the quality of the electron beam. In particular, it
is important not to increase the energy spread or transverse emittance beyond
acceptable tolerances.

The beam in the chicane can radiate coherently if the wavelength of the
radiation exceeds the length of the bunch. This radiation results in an unde-
sirable growth of the beam emittance [1], which can however be cured (at least
partially) by a special design of the compressor [2].

As was pointed out in Ref. [3], the coherent synchrotron radiation (CSR)
can also be a source of modulation of the beam density at wavelengths small
compared to the bunch length. The results of Ref. [3] refer to the microbunching
instability in a ring, however a similar e�ect can also occur in a bunch compressor
where coherent synchrotron radiation often plays a role. Indeed, the e�ect of
microbunching caused by CSR has been observed in computer simulations of
the bunch compressor [4] designed for the Linac Coherent Light Source (LCLS)
at SLAC [5], and also in the simulations of the TESLA Test Facility bunch
compressor [6]. Analytical estimates of the CSR e�ects in bunch compressors
has been published in Ref. [7].

An approach to treat the CSR induced microbunching in the case when
the beam is being compressed in the magnetic chicane has been developed in
[8]. Ref. [8] used an oversimpli�ed one dimensional model which does not take
properly into account the transverse motion of the beam. The importance of the
correct account of this motion has been recently pointed out in Ref. [9], where
the microbunching of the beam is considered as due to the klystron instability
under the inuence of the CSR wake�eld. However, the treatment in Ref. [9]
is valid only in the absence of the energy chirp, and hence neglects the e�ect of
compression on the instability.

In this paper, we discuss the ampli�cation of a high-frequency density mod-
ulation of the electron beam in a bunch compressor. The e�ect of the beam
compression on the microbunching is taken into account. The high frequency
means that the wavelength of the disturbance is short compared to the elec-
tron bunch length. We assume that the shielding e�ect of the conducting walls
on CSR is not important which is usually true when the bunch length is short
enough. We will also neglect the transient e�ects in the CSR wake [10] occurring
in short magnets.

Our analysis is based upon a linearized Vlasov equation that includes longi-
tudinal and radial degrees of freedom. It is necessary to take into account the
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radial degrees of freedom, since the variation of the path length with energy in
the chicane results from the transverse dispersion of the trajectory.

In order to solve the linear Vlasov partial di�erential equation, we use the
method of characteristics to reduce it to a linear Volterra integral equation for
the Fourier component of the density modulation. The integral equation pro-
vides a description of the microwave instability as well as klystron type ampli�-
cation. Landau damping due to the electron beam energy spread and transverse
emittance is included in our analysis.

The paper is organized as follows. In Section 2 we introduce optical functions
in the compressor, solve equations of motion and �nd integrals of motion for
the particle. The equilibrium distribution function of the beam with the energy
chirp is introduced in Section 3 as a solution of Vlasov equation. The CSR wake
term is added to the Vlasov equation in Section 4, and the equation is linearized,
assuming that the perturbation of the equilibrium distribution function is small.
Integrating the linearized Vlasov equation along the unperturbed trajectories
in Section 5, we reduce it to a one dimensional Volterra integral equation. In
Section 6 we present the results of numerical solution of the integral equation
for the LCLS bunch compressor. In the last Section 7 the results of the paper
are summarized.

2 Optics of Bunch Compressor

Let us consider, �rst, single particle motion in a bunch compressor. We use the
notation x for the horizontal o�set of a particle relative to the nominal orbit,
� = dx=ds is the angular slope of the orbit, p = �E=E is the relative energy
deviation of the particle, z is the longitudinal coordinate of the particle in the
bunch, and s is the path length along the nominal orbit.

Equations for x, �, z and p have the form

dx

ds
= �;

d�

ds
= �k�(s)2x+ p

R(s)
;

dz

ds
= � x

R(s)
;

dp

ds
= 0: (1)

where R(s) is the bending radius in dipole magnets, and k�(s) is the focusing
strength. Typically quadrupole magnets are not used in bunch compressors,
however, for the sake of generality, we include the focusing term in Eqs. (1).
These equations have a formal solution

x = Dp+
p
�

�
x0p
�0

cos + �0
p
�0 sin 

�
;
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� = D0p� �

�
(x �Dp)� 1p

�

�
x0p
�0

sin � �0
p
�0 cos 

�
;

z = z0 +R56p+ x0R51 + �0R52; (2)

where x0, �0, and z0 are constants given by initial conditions, �(s) � w(s)2 is the
beta-function, �0 is the initial value of the beta-function at the entrance to the
compressor, �0 = �(0), �(s) = �(1=2)d�=ds, D(s) is the dispersion function,
D0(s) = dD=ds, and w(s) and D(s) satisfy the following equations

w00 + k2�w =
1

w3
;

D00 + k2�D =
1

R
: (3)

The functions R51, R52, R56, and the betatron phase  can be computed by
integrationy

 (s) =

Z s

0

ds0

�(s0)
;

R56(s) = �
Z s

0

D(s0)

R(s0)
ds0;

R51(s) = � 1p
�0

Z s

0

p
�(s0)

R(s0)
cos (s0)ds0;

R52(s) = �
p
�0

Z s

0

p
�(s0)

R(s0)
sin (s0)ds0: (4)

We assume that the dispersion function and its derivative, by design, have
zero initial values D(0) = D0(0) = 0. In this case, D is given by the following
equation

D(s) =
p
�(s)

Z s

0

ds0

R(s0)

p
�(s0) sin[ (s)�  (s0)]: (5)

The parameters x0, �0 and z0 are the constants of motion. They determine
the amplitude and phase of the betatron oscillations and can be expressed as
functions of current coordinates of the particle x, �, and p at position s

x0(x; �; p; s) =

s
�0
�
(x�Dp) cos �

p
�0�

�
� �D0p+

�

�
(x �Dp)

�
sin ;

�0(x; �; p; s) =
x�Dpp
��0

sin +

s
�

�0

�
� �D0p+

�

�
(x�Dp)

�
cos ;

z0(x; �; p; s) = z �R56p� x0R51 � �0R52: (6)

Note that Eqs. (6) constitute a canonical transformation from the variables
x; �; z; p to x0; �0; z0; p, with the Jacobian of the transformation equal to unity.

yNote, that in the standard notations, the transport elements r51, r52, r56 are de�ned
so that z(s) = z0 + r56(s)p + r51(s)x(0) + r52(s)�(0). Because x0 = x(0) and �0 = �(0) +
x(0)�(0)=�(0), our functions R51, R52, R56 are related to these standard elements of the
transport matrix by the equations R56 = r56, R52 = r52, and R51 = r51 � r52�(0)=�(0).
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3 Distribution Function of the Beam in Bunch
Compressor

We de�ne the distribution function �(x; �; z; p; s) of the beam in a bunch com-
pressor so that the integral

R
dxd�dp� gives the number of particles per unit

length of the beam. Neglecting the wake�eld e�ects, the equilibrium distribu-
tion function �0(x; �; z; p; s) satis�es the Vlasov equation,

@�0
@s

� x

R

@�0
@z

+ �
@�0
@x

+ (�k2�x+
p

R
)
@�0
@�

= 0: (7)

Equations (6) are characteristics of Eq. (7). Therefore, the solution of Eq. (7)
is an arbitrary function of the integrals of motion

�0(x; �; z; p; s) = f0 [x0(x; �; z; p; s); �0(x; �; z; p; s); z0(x; �; z; p; s); p] : (8)

For the equilibrium function f0 we choose a model of a coasting beam with
Gaussian distributions over the initial coordinates x0 and �0 as well as over p,

f0 =
nb
2��0

exp

�
�x

2
0 + (�0�0)

2

2�0�0

�
�G(p+ uz0); (9)

where

�G(p) =
1p
2��p

exp

�
� p2

2�2p

�
; (10)

nb is the number of particles per unit length of the beam at the compressor
entrance (s = 0), �0 is the horizontal emittance, and �p is the uncorrelated
energy spread of the beam. The chirp parameter u in this equation accounts for
the correlation between the position of the particle in the bunch and its energy.
This correlation is generated by an acceleration section at the entrance to the
compressor. For negative values of R56, the chirp u < 0 leads to the compression
of the bunch.

Note that in this model the linear density of the beam
R
dxd�dp�0 does not

depend on z, in agreement with the fact the �0 describes a coasting beam.

4 Vlasov Equation with the CSR Wake

Let us now take into account the CSR wake of the beam. It can be described by
the wake function W (z; s) such that W 6= 0 for z > 0 [11, 12]. For our purposes
it is convenient to introduce the CSR impedance Z(k; s),

Z(k; s) =

Z 1

0

d�W (�; s)e�ik� = � ik1=3A

R(s)2=3
; (11)

where

A = 3�1=3�

�
2

3

��p
3i� 1

�
= 1:63i� 0:94; (12)
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with � the complete gamma-function. In Eq. (11) and below we use the CGS
system of units. Using Eq. (11) we assume that the retardation time for the
coherent radiation is small compared to the length of the bend and neglect the
formation length of the radiation in comparison with the length of the magnet
[10].

The Vlasov equation for the distribution function �(x; �; z; p; s) including the
wake takes the form:

@�

@s
� x

R

@�

@z
+ �

@�

@x
+
�
�k2�x+

p

R

� @�
@�

=
re


@�

@p

Z
dz0W (z � z0; s)n(z0; s); (13)

where n(z; s) =
R
dxd�dp �(x; �; z; p; s).

Note that the equilibrium distribution function �0 which we found as a so-
lution of Eq. (7) also satis�es Eq. (13), because the equilibrium beam density
n0(z; s), where

n0(z; s) =

Z
dxd�dp �0 =

Z
dx0d�0dp f0 =

nb
1� uR56

; (14)

is independent of z, and
R
dz0W (z � z0)n0(z

0; s) = 0 (in Eq. (14) we changed
variables using the invariance of the phase volume dxd� = dx0d�0).

Let us consider a small perturbation of the equilibrium distribution function

� = �0 + �1; (15)

where �1 � �0. The linear stability of the beam is de�ned by the linearized
Vlasov equation for �1 which takes the form

@�1
@s

� x

R

@�1
@z

+ �
@�1
@x

+
�
�k2�x+

p

R

� @�1
@�

=
re


@�0
@p

Z
dz0W (z � z0; s)n1(z

0; s);

(16)
where n1(z; s) =

R
dxd�dp �1(x; �; z; p; s).

We will seek solution of Eq. (16) as a function of the invariants x0, �0, z0
and also p and s

�1(x; �; z; p; s) = f1(x0; �0; z0; p; s); (17)

where x0, �0, z0 are the functions given by Eqs. (6). The function f1 satis�es
the following equation:

@f1
@s

=
re


@�0
@p

Z
dz0W (z0 + pR56 + x0R51 + �0R52 � z0; s)n1(z

0; s): (18)

Here the derivative @�0=@p is understood as a function of variables x0, �0, z0
and s, and can be calculated using Eqs. (8) and (9)

@�0
@p

= �f0
�
x0
�0�0

@x0
@p

+
�0�0
�0

@�0
@p

+
p+ uz0
�2p

�
1 + u

@z0
@p

��
: (19)
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where the derivatives

@x0
@p

= �
s
�0
�
D cos +

p
��0

�
D0 +

�

�
D

�
sin ;

@�0
@p

= � Dp
��0

sin �
s

�

�0

�
D0 +

�

�
D

�
cos ;

@z0
@p

= �R56 �R51
@x0
@p

�R52
@�0
@p

; (20)

are functions of s only.
The density perturbation n1 can be calculated by changing the integration

variables and introducing an additional Æ-function in the integrand

n1(z; s) =

Z
dxd�dp �1

=

Z
dx0d�0dz0dpf1(x0; �0; z0; p; s)Æ(z0 +R56p+ x0R51 + �0R52 � z):

(21)

Substituting Eqs. (19), (21) into Eq. (18) we obtain the following equation for
f1

@f1
@s

= �re

f0

�
x0
�0�0

@x0
@p

+
�0�0
�0

@�0
@p

+
p+ uz0
�2p

�
1 + u

@z0
@p

��

�
Z
dx00d�

0
0dz

0
0dp

0f1(x
0
0; �

0
0; z

0
0; p

0; s)

� W [(z0 � z00 + (p� p0)R56 + (x0 � x00)R51 + (�0 � �00)R52; s] :(22)

It is convenient to use a new variable p0 = p+uz0, instead of p and consider
f0 as a function of x0, �0, and p0, f0 = f0(x0; �0; p0), and f1 as a function of
variables x0, �0, z0, p0, and s, f1 = f1(x0; �0; z0; p0; s). Note that the transfor-
mation from x, �, z, p to x0, �0, z0, p0 is canonical and has a unit Jacobian.
Then, Eq. (22) takes the form

@f1
@s

= �re

f0

�
x0
�0�0

@x0
@p

+
�0�0
�0

@�0
@p

+
p0
�2p

�
1 + u

@z0
@p

��

�
Z
dx00d�

0
0dz

0
0dp

0
0f1(x

0
0; �

0
0; z

0
0; p

0
0; s)

� W [(z0 � z00)(1� uR56) + (p0 � p00)R56 + (x0 � x00)R51 + (�0 � �00)R52; s] :

(23)

5 Solution of the linearized Vlasov Equation

Now, we will assume a sinusoidal dependence of f1 versus z0,

f1(x0; �0; z0; p0; s) = fk(x0; �0; p0; s)e
ikz0 : (24)
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Substituting Eq. (24) into Eq. (23) and using de�nition of the impedance Eq.
(11) casts the integral in the left hand side to the followingZ

dx00d�
0
0dp

0
0fk(x

0
0; �

0
0; p

0
0; s)

Z
dz00e

ikz0

0

� W [(z0 � z00)(1� uR56) + (p0 � p00)R56 + (x0 � x00)R51 + (�0 � �00)R52; s] :

= C(s)Z(kC(s); s)

Z
dx00d�

0
0dp

0
0fk(x

0
0; �

0
0; p

0
0; s)

� exp [ikC(s) (z0(1� uR56) + (p0 � p00)R56 + (x0 � x00)R51 + (�0 � �00)R52)] :

(25)

where we introduced the compression factor C(s)

C(s) =
1

1� uR56(s)
: (26)

It is easy to see that the factor exp(ikz0) will cancel out in the left and right
hand sides of Eq. (23) and the resulting equation can be written as follows

@fk
@s

= �re

f0C(s)Z(kC(s); s)

�
�
x0
�0�0

@x0
@p

+
�0�0
�0

@�0
@p

+
p+ uz0
�2p

�
1 + u

@z0
@p

������
s

� gk(s) exp [ikC(s) (p0R56(s) + x0R51(s) + �0R52(s))] ; (27)

where

gk(s) =

Z
dx0d�0dp0fk(x0; �0; p0; s)

� exp [�ikC(s) (p0R56(s) + x0R51(s) + �0R52(s))] : (28)

From Eqs. (21), (24) and (26), we see that gk(s) is related to the amplitude of
the density perturbation with the wave number k,

n1;k(z; s) = C(s)gk(s)e
ikC(s)z : (29)

Solution of Eq. (27) can be written as an integral of the right hand side with
an initial condition fk(x0; �0; p0; 0). Substituting this solution in Eq. (28) we
obtain the integral equation

gk(s) = g
(0)
k (s) +

Z s

0

K(s; s0)gk(s
0)ds0; (30)

where the kernel K is

K(s; s0) = �re

C(s0)Z(kC(s0); s0)

Z
dx0d�0dp0f0(x0; �0; p0)

�
�
x0
�0�0

@x0
@p

+
�0�0
�0

@�0
@p

+
p+ uz0
�2p

�
1 + u

@z0
@p

������
s0

� exp [�ik (p0R56(s; s
0) + x0R51(s; s

0) + �0R52(s; s
0))] : (31)
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and

R51(s; s
0) = C(s)R51(s)� C(s0)R51(s

0);

R52(s; s
0) = C(s)R52(s)� C(s0)R52(s

0);

R56(s; s
0) = C(s)R56(s)� C(s0)R56(s

0): (32)

The function g
(0)
k (s) is related to the initial value of fk:

g
(0)
k (s) =

Z
dx0d�0dp0fk(x0; �0; p0; 0)e

�ikC(s)(p0R56(s)+x0R51(s)+�0R52(s)): (33)

The integrals over x0 and �0 in Eq. (31) can be calculated explicitly,Z
dx0d�0f0(x0; �0; p0)

�
x0
�0�0

@x0
@p

+
�0�0
�0

@�0
@p

+
p+ uz0
�2p

�
1 + u

@z0
@p

������
s0

� exp [�ik (x0R51(s; s
0) + �0R52(s; s

0))]

= nb�G(p0)

"
�ikR51(s; s

0)
@x0
@p

����
s0
� ikR52(s; s

0)
@�0
@p

����
s0
+
p0
�2p

�
1 + u

@z0
@p

�����
s0

#

� e�(k2�0=2�0)[�
2

0
R2

51
(s;s0)+R2

52
(s;s0)]: (34)

This simpli�es the kernel Eq. (31):

K(s; s0) =
ikrenb


C(s0)Z(kC(s0); s0)

Z
dp0�G(p0)

�
"
R51(s; s

0)
@x0
@p

����
s0
+R52(s; s

0)
@�0
@p

����
s0
+

ip0
k�2p

�
1 + u

@z0
@p

�����
s0

#

� e�(k2�0=2�0)[�
2

0
R2

51
(s;s0)+R2

52
(s;s0)]: (35)

Integration over dp0 gives �nally

K(s; s0) =
ikrenb


C(s0)Z(kC(s0); s0)

�
�
R51(s; s

0)
@x0
@p

����
s0
+R52(s; s

0)
@�0
@p

����
s0
+ R56(s; s

0)

�
1 + u

@z0
@p

�����
s0

�

� e�(k2�0=2�0)[�
2

0
R2

51
(s;s0)+R2

52
(s;s0)]�(k2�2

p
=2)R2

56
(s;s0): (36)

It is shown in Appendix A that the factor

R51(s; s
0)
@x0
@p

����
s0
+R52(s; s

0)
@�0
@p

����
s0
+ R56(s; s

0)

�
1 + u

@z0
@p

�����
s0

(37)

can be written as C(s)R56(s
0 ! s) where

R56(s
0 ! s) = �

Z s

s0

ds1
R(s1)

Z s1

s0

ds2
R(s2)

�
p
�(s1)�(s2) sin[ (s1)�  (s2)];

= �
Z s

s0
ds1

D(s0; s1)

R(s1)
; (38)
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which depends only on the phase advance between radiation and observation
points. The dispersion D(s0; s) in Eq. (38) satis�es the second of Eqs. (3)
with the initial conditions D(s0; s0) = 0 and dD(s0; s)=dsjs=s0 = 0. Using this
representation, the kernel can be rewritten in the following form

K(s; s0) =
ikrenb


C(s0)C(s)Z(kC(s0); s0)R56(s
0 ! s)

� e�(k2�0=2�0)[�
2

0
R2

51
(s;s0)+R2

52
(s;s0)]�(k2�2

p
=2)R2

56
(s;s0): (39)

For the initial distribution function of the perturbation we choose fk(x0; �0; p0; 0) =

(n
(0)
1;k=nb)f0(x0; �0; p0), where n

(0)
1;k is the amplitude of the initial density pertur-

bation with the wavenumber k. Then

g
(0)
k (s) = n

(0)
1;ke

�(C(s)2k2�0=2�0)[�
2

0
R2

51
(s)+R2

52
(s)]�C(s)2k2�2

p
R2

56
(s)=2: (40)

Eqs. (30), (40), and Eq. (35) describe beam stability for an arbitrary optics
and initial longitudinal and transverse emittances, and form the basis for the
numerical calculations described in the next section.

6 Numerical Solution of the Integral Equation

We applied the theory developed above to the analysis of stability in the latest
design of the second LCLS compressor [13]. The bunch compressor consists of
four dipole magnets of length 0.4 m with the bending radius of 12.2 meters.
It is located at the point in the linac where the beam energy is equal to 4.54
GeV, and compresses the rms bunch length �l from 195 microns down to 23
microns. Other relevant parameters of the bunch compressor are: uncorrelated
rms relative energy spread at the entrance to the compressor �p = 3 � 10�5,
number of particles in the bunch N = 6:5 � 109, the normalized beam emittance
� = 1 �m, the energy chirp parameter u in Eq. (2) is �39:83 m�1. The
calculated R56 as a function of s is shown in Fig. 1 and the plot of the dispersion
function D(s) is shown in Fig. 2.

We calculated the microbunching e�ect in the bunch compressor by numer-
ically solving Eq. (30) with the kernel given by Eq. (39). The numerical
method used discretization of the Volterra equation on a mesh, typically with
400-600 points, and approximation of an integral by a sum using a trapezoidal
quadrature rule [14].

We assumed that the initial distribution function is given by Eq. (9) and
the initial perturbation is de�ned by Eq. (40). The linear bunch density nb
was calculated based on the beam current of I = 4 kA after compression. The
current I is related to nb at the entrance to the chicane by the following formula

nb =
1

Cre

I

IA
; (41)

where C is the compression factor for the chicane, and IA is the Alfven current,
IA = mc3=e = 17 kA. For C = 8:33 we �nd nb = 1011 cm�1.
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Figure 1: Plot of R56 for the LCLS bunch compressor.
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Figure 2: Plot of the dispersion function for the LCLS bunch compressor.
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At the entrance to the compressor, an initial density perturbation n
(0)
1;k with

the wavelength � = 2�=k has been speci�ed and the ratio jn1;k(z; s)j=n(s) has
been calculated throughout the compressor, where n1;k is given by Eq. (29)
(note, that the absolute value jn1;k(s; z)j is a function of s only). The ampli�-
cation factor G(s) for the density perturbations is de�ned as

G(s) =
jn1;k(s; z)j
C(s)n

(0)
1;k

; (42)

which characterizes the growth of the relative density perturbation of the beam
(the linear beam density n(s) increases by a factor of 8:3 at the end of the
compressor).

To illustrate the dependence of the ampli�cation factor on the energy spread
and the beam emittance, in addition to the nominal LCLS beam parameters
listed above, we performed calculations for ten times smaller energy spread
�p = 3:0 � 10�6 and zero beam emittance. The ampli�cation factor at the
end of the chicane Gf as function of the initial wavelength of the modulation
is shown in Figs. 3 and 4 for four cases of various beam emittance and energy
spread. We see that both a larger energy spread and the �nite beam emittance

0 25 50 75 100
Λ, Μm

0

1

2

G
f

1

2

3

Figure 3: Ampli�cation factor Gf as a function of wavelength � of the perturba-
tion at the compressor entrance for various beam emittance and energy spread:
1 { �p = 3:0� 10�5, � = 1 �m, 2 { �p = 3:0� 10�5, � = 0, 3 { �p = 3:0� 10�6,
� = 1 �m.

in Fig. 3 result in the strong suppression of the growth relative to the case
�p = 3:0� 10�6, � = 0 shown in Fig. 4.

The pro�le of the ampli�cation factor G(s) for several di�erent wavelengths
inside the bunch compressor is shown in Figs. 5, 6, and 7.
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Figure 4: Ampli�cation factor Gf as a function of wavelength for the zero beam
emittance and �p = 3:0� 10�6.
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Figure 5: Ampli�cation factor G(s) for � = 1 �m, �p = 3:0 � 10�5 for three
values of �: 1 { � = 50�m, 2 { � = 20�m, 3 { � = 5�m.
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Figure 6: Ampli�cation factor G(s) for � = 0, �p = 3:0� 10�5 for three values
of �: 1 { � = 50�m, 2 { � = 20�m, 3 { � = 5�m.
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Figure 7: Ampli�cation factor G(s) for � = 0, �p = 3:0� 10�6 for three values
of �: 1 { � = 50�m, 2 { � = 20�m, 3 { � = 5�m.
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7 Conclusion

In this paper, we developed a linear theory describing self-induced microbunch-
ing of a beam in a magnetic bunch compressor. The microbunching results from
the microwave instability driven in a self-consistent way by the coherent syn-
chrotron radiation of the short-wavelength modulation. Solving the linearized
Vlasov equation with longitudinal and radial degrees of freedom has provided
a new description of the e�ect of CSR in bunch compressors. Including the
transverse motion has facilitated a proper description of the bunching resulting
from the CSR produced energy deviations. Also, the Landau damping due to
the transverse emittance has proved to be an important stabilizing inuence.
The approach we have presented here is complementary to numerical simulation
of the problem since the approximations made are di�erent as are the sources
of numerical error.

The techniques developed in this paper are also applicable to investigation of
CSR induced instabilities in storage rings. A dispersion relation describing the
growth rate of the microwave instability in a storage ring is derived in Appendix
B, using the smooth approximation for the transverse optics. A detailed analysis
of the microwave instability driven by CSR in storage rings will be given in a
separate paper.

Numerical calculation for the latest design of the LCLS bunch compressor
shows that an initial density perturbation with a wavelength in the range 30{100
microns is slightly ampli�ed by a factor less than 2.

We would like to emphasize here that the wake Eq. (11) used in this paper
may not be applicable for very short wavelength. Indeed, this wake was derived
for a bunch that is in�nitely thin in the transverse direction and assumes that
all particle in the cross section of the bunch radiate coherently. However, the
transverse coherence length l? � �2=3R1=3 decreases with the wavelength and
at some point becomes smaller than the transverse dimension of the beam. For
such wavelength, one has to use a wake that takes into account the transverse
dimension of the beam.
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Appendix A. Discussion of Eq. (37)

Let us consider the factor

F � R51(s; s
0)
@x0
@p

����
s0
+R52(s; s

0)
@�0
@p

����
s0
+ R56(s; s

0)

�
1 + u

@z0
@p

�����
s0
; (A1)

appearing in Eq. (36), and rewrite it in a form that clari�es its physical meaning.
The dispersion speci�ed in Eq. (5) can be written as

D(s) =
p
�(s)

�
�
p
�0R51(s) sin (s) +

1p
�0
R52(s) sin (s)

�
: (A2)

Substituting Eq. (A2) into Eq. (20), we �nd

@x0
@p

����
s0

= �R52(s
0);

@�0
@p

����
s0

= R51(s
0);

@z0
@p

����
s0

= �R56(s
0): (A3)

Now, using Eqs. (A3) in Eq. (A1), the factor F can be rewritten in the form

F = C(s)R56(s
0 ! s); (A4)

where the compression factor C(s) was de�ned earlier in Eq. (26) and

R56(s
0 ! s) = �

Z s

s0

ds1
R(s1)

p
�(s1)

Z s1

s0

ds2
R(s2)

p
�(s2) sin[ (s1)�  (s2)]: (A5)

The physical meaning of the quantity de�ned in Eq. (A5) is clear. If, at position
s0 the energy is changed by �p, then the increment in path length from s0 to s
is R56(s

0 ! s)�p.

Appendix B. Dispersion relation for storage ring

For a storage ring, the chirp u vanishes and the compression factor is equal to
unity, C(s) � 1. The dispersion function D(s) is de�ned as a periodic function
of s, and is given by the following equation,

D(s) =

p
�(s)

2 sin(��)

Z s+L

s

ds0

R(s0)

p
�(s0) cos[ (s)�  (s0) + ��]; (B1)

where L is the ring circumference, and � is the horizontal tune.
Our derivation of the integral equation Eq. (30) remains valid for the storage

ring, with the kernel given by either Eq. (35) or Eq. (36), if the matrix element
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R56 in Eq. (4) is calculated using expression Eq. (B1). Notice that since u = 0,
Eqs. (32) take the form

R51(s; s
0) = R51(s)�R51(s

0);

R52(s; s
0) = R52(s)�R52(s

0);

R56(s; s
0) = R56(s)�R56(s

0): (B2)

Using Eqs. (4) it easy to show that R51(s; s
0), R52(s; s

0), R56(s; s
0), and hence

the kernel K(s; s0) do not depend on the choice of the initial position s = 0 in
the ring.

Speci�cally, for the ring, the kernel Eq. (36) takes the form

K(s; s0) =
ikrenb


Z(k; s0)R56(s
0 ! s)

� e�(k2�0=2�0)[�
2

0
R2

51
(s;s0)+R2

52
(s;s0)]�(k2�2

p
=2)R2

56
(s;s0): (B3)

The integral equation for the ring can be simpli�ed if one uses a smooth
approximation for the ring lattice with a tune �. In this approximation, the
bending radius R is constant, � = R=�,  = �s=R, D = R=�2, � = 0, D0 = 0,
and �0 = �2x�=R, where �x is the horizontal rms size of the beam. Note also,
that in this approximation the slip factor for the lattice � is equal to 1=�2. One
can show that,

�R2
51(s; s

0) +
1

�
R2
52(s; s

0) =
2R

�3

�
1� cos

�
�(s� s0)

R

��
;

R56(s; s
0) = � 1

�2
(s� s0);

R56(s
0 ! s) = � 1

�2

�
(s� s0)� R

�
sin

�
�(s� s0)

R

��
: (B4)

The kernel Eq. (B3) takes the form:

K(s; s0) = K1(s� s0) � �i renb
�2

kZ(k)

�
�R
�
sin

�
�(s� s0)

R

�
+ s� s0

�

e�(k�x=�)
2[1�cos(�(s�s0)=R)]� 1

2 (k�p=�
2)

2
(s�s0)2 : (B5)

This kernel depends only on the di�erence s � s0 and one can use the Laplace
transform to cast it into an algebraic for the Laplace image ĝk(�)

ĝk(�) =

Z 1

0

dsgk(s)e
��s; (B6)

of the function gk(s). Applying the Laplace transform to Eq. (30) yields

ĝk(�) =
ĝ
(0)
k (�)

1� K̂(�)
; (B7)
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where K̂(�) is the Laplace transform of the kernel K1(s),

K̂(�) =

Z 1

0

dse��sK1(s); (B8)

and

ĝ
(0)
k (�) =

Z 1

0

dsg
(0)
k (s)e��s: (B9)

The dispersion relation is de�ned by the zeros of the denominator, K̂(�) = 1.
For the kernel given by Eq. (B5) this equation gives

1 = � irenb
�2

kZ(k)

Z 1

0

dse��s
�
s� R

�
sin

�s

R

�

�e�(k�x=�)
2[1�cos(�s=R)]�(k�p=�

2)2s2=2: (B10)
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