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Abstract
Direct CP violation can exist in untagged, neutral B-meson decays to certain self-conjugate,

hadronic final states. As a necessary condition, the resonances which appear therein must permit
the identification of distinct, CP-conjugate states — in analogy to stereochemistry, we term such
states “CP-enantiomers.” These states permit the construction of CP-even and CP-odd amplitude
combinations and of observables sensitive to their interference, which are non-zero if direct CP
violation is present. The decay B → π+π−π0, containing the distinct CP-conjugate states ρ+π−

and ρ−π+, provides one such example of a CP-enantiomeric pair. We illustrate the possibilities in
various multi-particle final states.
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The measurement of a non-zero value of Re(ε′/ε) in K → ππ decays establishes the ex-
istence of direct CP violation in nature [1], and provides an important first check of the
mechanism of CP violation in the Standard Model (SM). Numerically, however, Re(ε′/ε)
is very small. In the SM, this results, in part, from the weakness of inter-generational
mixing [2]; the associated CP-violating parameter δKM in the Cabibbo-Kobayashi-Maskawa
(CKM) matrix need not be small [3]. Indeed, the measurement of a large CP-asymmetry in
B0(B̄0)→ J/ψKs decay and related modes [4], induced through the interference of B

0 − B̄0

mixing and direct decay, suggests that δKM ∼ O(1) [5]. Nevertheless, the observation of di-
rect CP violation in the B-meson system is needed to clarify the mechanism of CP violation,
to confirm that the Kobayashi-Maskawa (KM) phase drives the CP-violating effects seen.
In the SM, direct CP violation is anticipated to be much larger in B-meson decays than
in K-meson decays [6]. The observation of direct CP violation in B-meson decays would
falsify models in which the CP-violating interactions are “essentially” superweak [7, 8]. In
this paper, we discuss how the presence of direct CP violation can be elucidated in untagged
B-meson decays — the practical advantage of this strategy is the far larger statistical sample
of events available.
The rich resonance structure of the multiparticle (n ≥ 2) final states accessible in heavy

meson decays provides the possibility of observing direct CP violation without tagging the
flavor of the decaying, neutral meson. The familar condition for the presence of direct CP
violation, |Āf̄/Af | �= 1, can be met by a non-zero value of the partial rate asymmetry,
so that, seemingly, one would want to distinguish empirically a decay with amplitude Af

from that of its CP-conjugate mode with amplitude Āf̄ . However, in neutral B, D-meson
decays to self-conjugate final states [9–11], direct CP violation in untagged decays may
nevertheless occur. Let us articulate the conditions. We must be able to separate the self-
conjugate final state, via the resonances which appear, into distinct, CP-conjugate states.
This condition finds it analogue in stereochemistry: we refer to molecules which are non-
superimposable, mirror images of each other as enantiomers [12]. Accordingly, we refer
to non-superimposable, CP-conjugate states as CP enantiomers. In B → π+π−π0 decay,
e.g., the intermediate states ρ+π− and ρ−π+ form CP enantiomers, as they are distinct,
CP-conjugate states. As a result, we can form combinations of amplitudes of either even
or odd character under CP. The resulting interference between the CP-even and CP-odd
amplitudes realized in the overlapping resonance bands of the Dalitz plot can generate an
asymmetry reflective of direct CP violation.
We shall use B → π+π−π0 decay as a paradigm of how direct CP violation can occur

in untagged B-meson decays. In what follows, we shall largely follow the notation and
conventions of Quinn and Silva [13]. Consider the amplitudes for B0(B̄0)→ π+π−π0 decay:

A(B0(pB)→ π+(p+)π
−(p−)π0(p0)) = f+(u) a+− + f−(s) a−+ + f0(t) a00 ,

Ā(B̄0(pB)→ π+(p+)π
−(p−)π0(p0)) = f+(u) ā+− + f−(s) ā−+ + f0(t) ā00 , (1)

where the two-body decay amplitudes are given by a+− = A(B0 → ρ+π−), a−+ = A(B0 →
ρ−π+), and a00 = A(B0 → ρ0π0) and fi is the form factor describing ρi → ππ. We have
used s = (p− + p0)

2, t = (p+ + p−)2, and u = (p+ + p0)
2 [? ]. For clarity, note that

ā+− = Ā(B̄0 → ρ+π−) and ā−+ = Ā(B̄0 → ρ−π+). Since ρ+π− and ρ−π+ are distinct, CP-
conjugate states, we can form amplitudes of definite CP-even and CP-odd character, namely
ag = a+−+ a−+ and au = a+− − a−+, respectively. That is, if we define āg = ā+−+ ā−+ and
āu = ā+− − ā−+, we see that the CP conjugate of ag is āg, whereas the CP conjugate of au
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is −āu. With an = 2a00 we have

A3π ≡ A(B0 → π+π−π0) = fg(u, s) ag + fu(u, s) au + fn(t) an

Ā3π ≡ Ā(B̄0 → π+π−π0) = fg(u, s) āg + fu(u, s) āu + fn(t) ān , (2)

where fg(u, s) = (f+(u) + f−(s))/2, fu(u, s) = (f+(u) − f−(s))/2, and fn(t) = f0(t)/2.
Neglecting the width difference of the B-meson mass eigenstates, as ∆Γ ≡ ΓH − ΓL and
|∆Γ| 	 Γ ≡ (ΓH +ΓL)/2, the decay rate into π

+π−π0 for a B0 meson at time t = 0 is given
by [15]

Γ(B0(t)→ π+π−π0) = |A3π|2e−Γt

[
1 + |λ3π|2

2
+
1− |λ3π|2

2
cos(∆mt)− Imλ3π sin(∆mt)

]
,

(3)
whereas the analogous decay rate for a B̄0 meson at time t = 0 is given by

Γ(B̄0(t)→ π+π−π0) = |A3π|2e−Γt

[
1 + |λ3π|2

2
− 1− |λ3π|2

2
cos(∆mt) + Imλ3π sin(∆mt)

]
.

(4)
Note that λ3π ≡ qĀ3π/pA3π and ∆m ≡ MH − ML. We neglect ∆Γ, so that |q/p| = 1.
Untagged observables, for which the identity of the B meson at t = 0 is unimportant,
correspond to Γ(B0(t)→ π+π−π0) + Γ(B̄0(t)→ π+π−π0) ∝ |A3π|2 + |Ā3π|2. We have

|A3π|2 + |Ā3π|2 =
∑

i

(|ai|+ |āi|2)|fi|2

+ 2
∑
i<j

[
Re(fif

∗
j ) Re(aia

∗
j + āiā

∗
j )− Im(fif

∗
j ) Im(aia

∗
j + āiā

∗
j )

]
, (5)

where i, j ∈ g, u, n, noting that i, j labels are not repeated in the sum labelled “i < j”.
The different products fif

∗
j are distinguishable through the Dalitz plot of this decay, so that

the coefficients of these functions are empirically distinct [13]. For our purposes the crucial
point is that these observables, as first noted by Quinn and Silva [13], can be of CP-odd
character. In particular, the presence of

aga
∗
u + āgā

∗
u and/or ana

∗
u + ānā

∗
u (6)

is reflective of direct CP violation. Physically these observables correspond to a population
asymmetry under the exchange of u and s (or of p+ and p−) across the Dalitz plot in the
regions where the ρi bands overlap. To make the geometric sense of this construction clear,
consider a Dalitz plot in u versus s, that is, in the invariant masses of the π+π0 and π−π0

pairs, respectively — such a plot is shown in Fig. 1 of Ref. [16]. We wish to consider the
population asymmetry about the u = s “mirror line” in the regions where the ρi bands
overlap. In B → ρπ decay, the ρi bands overlap in the corners of the Dalitz plot, so that
we wish to consider the asymmetry about the u = s line for i) the overlapping ρ+ and
ρ− bands and ii) for the overlaps of the ρ± bands with the ρ0 band. The first asymmetry
determines the first amplitude combination in Eq. (6), whereas the second determines the
second amplitude combination. A population asymmetry about the u = s line is also a
signature of direct CP violation. However, non-zero values of the amplitude combinations
of Eq. (6) do not guarantee its existence as cancellations, though likely incomplete, can
occur. The direct CP-violating observables of Eq. (6) can persist even if the strong phases
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of the ai amplitudes were zero. To illustrate, we parametrize aj = Tj exp(−iα) + Pj and
Pj/Tj = rj exp(iδj), where rj > 0 and δi is the strong phase of interest. Thus

aga
∗
u + āgā

∗
u = −2T gT u ∗ sinα [rg sin δg + ru sin δu − i(rg cos δg − ru cos δu)] . (7)

The real and imaginary parts of this relation are each observable, as they correspond to
distinct fi-dependent terms in Eq. (5). The combination T

gT u ∗ can be complex, though we
assume it to be real for crispness of discussion. In the imaginary part, we see that direct CP
violation can exist if the strong phases vanish, i.e., if δu = δg = 0. Indeed, merely rg or ru

must be non-zero to realize direct CP violation were sinα �= 0. Theoretical estimates suggest
that rg and ru are both non-zero and unequal [17]. In constrast, a partial rate asymmetry
can be written as

|ag|2 − |āg|2 = −4|T g|2rg sin δg sinα , (8)

yielding the familiar result that both rg and δg must be non-zero to yield direct CP violation
were sinα �= 0. Such conditions are realized in the real part of Eq. (7) as well, so that
the direct CP-violating observables we propose can be manifest irrespective of the strong
phases, as they can be non-zero were the strong phases either zero or 90 degrees. This
greater flexibility arises as the combination P g/T g − P u ∗/T u ∗ appears in Eq. (7), whereas
P g/T g − P g ∗/T g ∗, e.g., appears in the partial rate asymmetry.
Interestingly, similar considerations arise in the angular analysis of B → V1V2 decays:

there, too, the interference of CP-even and CP-odd amplitudes can beget direct CP violation
in untagged decays [18]. There are three helicity amplitudes, labelled by the helicity λ ∈
(0,±1) of either vector meson in B → V1V2 decay. Working in a transversity basis [19], we
can define the amplitudes A‖ ≡ (A+1 + A−1)/

√
2 and A⊥ ≡ (A+1 −A−1)/

√
2 [20] to realize

definite CP-even and CP-odd combinations, respectively, of these amplitudes. The full
angular distribution of the summed amplitudes for B0 and B̄0 decay permits the extraction
of the imaginary part of the amplitude combinations of Eq. (6), under the identification
ag → A‖, au → A⊥, and an → A0. Moreover, these untagged contributions are insensitive
to the strong phase [21].
The conditions which permit the realization of direct CP violation in untagged modes

are quite general. We need only consider self-conjugate final states whose resonances encode
enantiomeric pair correlations. Self-conjugate final states can be realized through the b →
dqq̄ decays of Bd mesons and b→ sqq̄ decays of Bs mesons, where q ∈ u, d, s, c quarks. The
KM picture of CP violation suggests that direct CP-violating effects ought be enhanced by
a factor of O(1/λ2) ∼ 20 in Bd meson decays. Thus the goals of direct CP violation searches
in Bd and Bs meson decays are quite distinct. The appearance of direct CP violation in Bd-
meson decays would substantiate the KM picture of CP violation, whereas its appearance
in Bs decays would signal the presence of new physics. Physics with Bs mesons is important
to the future B-physics programs at the Tevatron [22] and at the LHC [23]. The effective
tagging efficiency εeff is significantly smaller in a hadronic environment, cf. εeff ∼ 7% [24] with
εeff ∼ 27% [25, 26] at the B-factories, so that the untagged studies we propose significantly
enable direct CP violation searches at these facilities [? ].
Let us enumerate three-, four-, and five-particle final states in Bd decay which could yield

direct CP violation in the KM picture. We thus focus on b → duū and b → dcc̄ decays,
and some possibilities are given in Table I — we do not attempt to be exhaustive. The
CP-enantiomers are useful in the sense we have illustrated in B → ρπ decay: they permit
the formation of manifestly CP-odd amplitude combinations which can be probed through
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asymmetries in the population of events in the regions where the resonances of the CP-
enantiomeric pair overlap. We expect the CP-violating effects to be much larger for broad
resonances such as the ρ and K∗(892). Note that the final states K+K−π0 and K+K−π+π−,
with the CP enantiomers indicated, also lend themselves to direct CP violation searches in
Bs decay. Multiparticle final states can support more than one CP-enantiomeric pair, as
illustrated in Bd → π+π−π+π−π0 decay. In the case of CP enantiomers with more than one
spin one particle, as in (a1(1260)

+ρ− , a1(1260)
−ρ+), a caution is in order. The presence

of two spin-one particles in the final state implies that partial waves with L = 0, 1, or 2
can occur; the factor (−1)L impacts the CP of the state. The sum and difference of the
amplitudes associated with B0 → a1(1260)

+ρ− and B̄0 → a1(1260)
−ρ+ decay still yield

states of definite CP for any particular L, but for L = 0, 2 the sum of amplitudes is CP-
even, whereas for L = 1 the sum of amplitudes is CP-odd. In either event for fixed L the
amplitude combination of Eq. (7) appears in the interference of the resonance contributions
and drives a population asymmetry under the exchange of the momentum of a π+ emerging
from the a1(1260)

+ and of the π− from the ρ− in the region over which the resonances of the
CP-enantiomeric pair overlap. States of fixed L can be realized through a helicity analysis;
the formation of the A⊥ amplitude, e.g., selects the L = 1 state [19]. In the absence of a
helicity analysis, both CP-even and CP-odd contributions are subsumed in “ag” and “au,”
so that a population asymmetry in this case can exist without direct CP violation. Thus
for pairs with two spin one particles, a helicity analysis is required; otherwise, for pairs with
multiple spinned particles, the construction is not useful.
The observation of direct CP violation in B-meson decays in itself is crucial to establishing

the mechanism of CP violation. Nevertheless, we would also like to interpret such results in
terms of the parameters of the CKM matrix. An assumption of isospin symmetry can codify
and potentially determine the hadronic parameters needed to interpret the mixing-induced
CP-asymmetry in b → dqq̄ transitions to charmless final states. Relevant to the modes
we discuss are the isospin-based analyses which yield sin(2α) in B → ρπ [13, 27, 28] and
B → a1π [29] decays. These analyses, however, do not determine the parameters necessary
to interpret direct CP violation; the terms containing sinα and cosα are multiplied by un-
known hadronic parameters. Nevertheless, were sin(2α) determined and direct CP violation
observed, the SM value of sinα could be inferred, modulo discrete ambiguities. Interpreting
direct CP-violating observables directly in terms of the underlying weak parameters may
not prove possible. Theoretical progress has been made, however, in the computation of
partial-rate asymetries in some two-body decays, see, e.g., Refs. [30, 31]. Alternatively,
more phenomenological treatments indicate that the presence of resonances in certain chan-
nels can enhance the associated partial rate asymmetry [32, 33] and aid in the extraction of
weak phase information [34].
We have discussed the conditions under which the rich resonance structure of hadronic B

decays can be exploited to search for direct CP violation in untagged decays. Our method
is sufficiently general to enable direct CP violation searches in Bs and D meson decays as
well. In some channels the untagged search we propose complements tagged, time-dependent
analyses in B → ρπ and B → a1π decays. Nevertheless, the gain in statistical power realized
in untagged versus tagged searches, i.e., roughly a factor of 2 at the B-factories and of 4 in
a hadronic environment such as at CDF, argues for a more comprehensive program.
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TABLE I: Bd decays to certain three-, four-, and five-particle, self-conjugate final-states
and some of the CP-enantiomers they contain.

3-particles CP-enantiomers

π+π−π0 (ρ+π− , ρ−π+)

K+K−π0 (K∗(892)+K− , K∗(892)−K+)

D+D−π0 (D∗(2010)+D− , D∗(2010)−D+)

D0D̄0π0 (D∗(2007)0D̄0 , D̄∗(2007)0D0)

4-particles CP-enantiomers

π+π−π0π0 (ρ+π−π0 , ρ−π+π0)

π+π−π+π− (a1(1260)+π− , a1(1260)−π+)

K+K−π+π− (K∗(892)0K−π+ , K̄∗(892)0K+π−)

D0D̄0π+π− (D∗(2010)+D̄0π− , D∗(2010)−D0π+)

D+D−π0π0 (D∗(2010)+D−π0 , D∗(2010)−D+π0)

5-particles CP-enantiomers

π+π−π+π−π0 (ρ+π−π+π− , ρ−π−π+π+)

(ρ+ρ0π− , ρ−ρ0π+)a

(a1(1260)+π−π0 , a1(1260)−π+π0)

(a1(1260)+ρ− , a1(1260)−ρ+)a

(a0(980)+π− , a0(980)−π+)

(b1(1235)+π− , b1(1235)−π+)

aA helicity analysis is required; see text.
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