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Abstract

Starting from a unitary, Lorentz invariant two-particle scattering amplitude , we show how to use
an identification and replacement process to construct a unique, unitary particle-antiparticle amplitude.
This process differs from conventional on-shell Mandelstam st,u crossing in that the input and constructed
amplitudes can be off-diagona and off-energy shell. Further, amplitudes are constructed using the
invariant parameters which are appropriate to use as driving termsin the multi -particle, multichannel non-
perturbative, cluster decomposable, reativistic scattering equations of the Faddeev-type integral equations
recently presented by Alfred, Kwizera, Lindesay and Noyes. It istherefore anticipated that when so
employed, theresulting multi-channel  solutions will also be unitary. The process preserves the usual
particle-antiparticle symmetries. To illugtrate this process, we construct a J=0 scattering length model
chosen for smplicity. We also exhibit a class of physical modelswhich contain afinite quantum mass
parameter and are Lorentz invariant. These are constructed to reduce in the appropriate limits, and with the
proper choice of value and sign of the interaction parameter, to the asymptotic solution of the non-
relativistic Coulomb problem, including the forward scattering singularity , the essential singularity in the
phase, and the Bohr bound-state spectrum.

PACS: 11.80.-m, 11.80.Cr, 11.80.Jy

[. INTRODUCTION

This paper is part of a research program aimed at constructing a general, unitary, non-perturbative
N-particle relativistic scattering theory. The N- particle amplitude must always be decomposable into a
sum over al possible decompositionsinto a spectator cluster containing n particles which only enter this
part of the problem kinematically and a dynamical cluster within which the m=N-n remaining particlesare

described as afully interacting (quantum entangled) m-particle system. Theinput driving thereativistic
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Faddeev-type integral equations are the m-particle unitary amplitudes describing all possible m-particle
directly interacting sub-systems. The basic fact that this theory can be constructed, explicitly formul ated,
and shown to yield calculable amplitudes that are both unitary and Lorentz invariant has aready been
proven [1, 2, 3,4, 5]. It remains to demonstrate that thisfixed particle number formulation of relativistic
scattering theory can be extended to include anti-particles and quanta.

Scattering theory as derived from Hamiltonians has been used as a powerful tool for describing a
variety of physical processes. The formalism describes the eigenstates of a fully interacting system of
particleswith awell defined energy in terms of eigenstates of sol vable systems which have an overlapping
spectrum of eigenvalues. For our purposes, the most convenient eigenstates to use are the boundary states,
which satisfy theincoming or outgoing state asymptatic form, but are otherwise only self-interacting. This
means that their masses, charges, and other parameterswill have physical values, and as such will not
require “renormdization” or “dressing.” Oneis able to appropriately extract bound state systemsin the
fina state directly out of scattering amplitudes from which the cross sectionsfor physical processes can be
calculated, aswell as explore unitarity and transformation behavior analytically in regimes for which
perturbative methods would not be applicable. Since the amplitudes are described in terms of the actua
boundary states, only a finite number of degrees of freedom need to be considered to calculate a given
scattering process.

The introduction of antiparticlesinto thisform of scattering theory has been problematic in severa
ways. Firgt, since particle and antiparticle pairs can annihilate or be created, particle number isno longer
conserved in anaive way, and particle nature can changein away that is not naively consistent with
scattering theoretic approaches. Also, there is no obvious non-relativistic analogue of atransformation or
an annihilation process, which areinherently arelativistic. Typically, on€ sintuition in scattering theoretic
approachesis driven by the non-relativistic scattering theory which works so well in describing many low
energy processes, but always involves a persstence of any constituent particles, even if their clusterings do
change. Condderable effort [ 6, 7] has been put into guaranteeing unitary outcomes from S matrix
approaches to the description of scattering processes. Unitarity is one of the most useful properties of these

approaches, and we do not give up on satisfying this property.



The form of the scattering formalism that the authors have found to be most fruitful in this pursuit
adapts the non-re ativistic framework developed by Faddeev [ 8] into aréeativistically invariant form [1-5].
In this formalism, the scattering amplitude is decomposed into various clusters which are summed over; if
they are properly embedded, the unitarity of the total scattering amplitude is guaranteed from the unitarity
of theinput amplitudes. Using thisformalism, one is able to properly traverse relativistic thresholds and
demonstrably maintain unitarity when examining rearrangement scattering and breakup of relativistic
clusters[2]. Thisincorporation of production thresholds succeeds because of the multi-channel nature of
the few-particle scattering formalism. Antiparticle identifications have yet to beincorporated into such an
approach. The type of two-particle present here an approach that can later be incorporated into a few-
particle formalism which then will include antiparticles and describe pair creation in away that allows
particle number to change, but remain finite.

We show that, given an exactly unitary and Lorentz invariant particle-particle amplitude, we can
always unambiguously construct the corresponding unitary and Lorentz-invariant particle-antiparticle
amplitude with the expected particle-antiparticle symmetries. Our approach achieves cluster
decomposability by requiring that the dynamical cluster and the full system both conserve their individual
Lorentz coordinate frames ; this he psinsure that the spectating cluster coordinates enter the problem
kinematically rather than dynamically. Thisin turn requires us to use 4-velocity rather than 4-momentum
transformations between Faddeev channels. Theresult isthat the natural variablesfor us are not the
familiar Mandelstam invariants (s,t,u) but instead theinvariant energy, angle variables used in [1].

In section 11 take care to showing the relationship between the two descriptionsand in

exhibiting what form “'st, su, and tu crossing” takein our variables. It isparticularly important to realize
that in our formalism we must carefully distinguish between amplitudes which are off-diagonal, in the
sense that they connect 4-momentain theinitia and final statesin a way that does not occur for the values
of these variables that describe the physically observable processes, and amplitudes which are off-shell (i.e.
refer to energy values that cannot be reached from the initial boundary state).

Section 111 then can construct particle-antiparticle amplitudes in two ways starting from aparticle-
particle amplitude (pp channel) by means of an explicit identification of which particle changes to an anti-

particle. Thefirst way, whichisclosdy relatedto  s-u crossing, defines the particle-antiparticle scattering



amplitude (p-pbar channel). The second way, related to s-t crossing, defines the transformation amplitude
(X) channel and has no nonrelativistic analog. Both replacements preserve the appropriate symmetries.
We find that, when expressed in terms of our choice of Lorentz invariant parameters, the three possible
amplitudes exhibit forminvariance. Thisgreatly simplifies subsequent discussion. In particular, this
alows usto start from any one amplitude as given and construct the other two, allowing usto drop the
requirement of starting from the particle-particle amplitude when it comes to creating models.

In the fourth section we prove that the appropriate amplitudes so constructed are, indeed, unitary.
Thisinvolves some interesting subtletieswhen it comes to showingwhy and how the transformation (X)
channel is connected to the particle-antiparticle scattering channel, and how thisin turn relatesto the
problems posed by the coherence of these amplitudesfor identical particles.

Our fifth section presentstwo explicit modelsthat illustrate how the replacement works out and
indeed do produce unitary amplitudes for the two-body particle-antiparticle problem. The first issimply an
s-wave scattering length model, which has the virtue of producing resultsthat can be easily checked
without getting bogged down in the formalism. The second is more physical in that it startsfrom the
solution of the non-relativistic Coulomb problem and produces rel ativistic generalizations using a finite
mass quantum exchange. In the zero quantum mass limit, all these model s preserve the forward scattering
singularity characteristic of Rutherford scattering and the essential singularity of the Coulomb phases.
When the interaction parameter has the appropriate sign and value, they also yield the nonré ativistic Bohr
bound-state spectrum in the appropriate limits. When we replace our model particle-particle amplitude by
atransformation (X) amplitude, we find that this contains an ~“exchanged quantum’’ which indeed has a
deep-lying sngularity (compared to el astic scattering threshold) at arelativistic energy corresponding to the
guantum mass; this singularity also goes to zero massin the same limit that gives Coulomb scattering in
both the particle-particle and particle-antiparticle channels.

The fact that the quantum singularity in the transformation (X) channel shares so many
characteristics with a bound state, and that neither can be reached from atwo body input channel without
first embedding our model in athree or more particle space, might lead us to call it a ™ particle-antiparticle
bound state’’. But this would be incorrect if t&en too literally. Embedded in alarger space, the fact that

this quantum carries kinematic variables but need carry no conserved quantum numbers allows it to couple



to any particle-antiparticle pair alowed in thelarger space. In contrast, a composite bound state can only be
taken apart into its constituents. Thusin our ~“finite particle number theory’ the distinction between
“particles” and “"quanta’’ may turn out to be well defined. Nevertheless, aswe discussin the concluding
section, we expect that when our two body model for a particde-antiparticle amplitude is embedded in a
three particle space we will be able to use our formalism totreat either afinite or a zero mass quantum asa
boundary state in that space. Theimplied possibility of using our theory to describe quantum-particle
scattering, pair creation and quantum emission and absorption in a unitary way will be explored el sewhere.
It isthe fact that our formalism and construction isthroughout informed by the necessity (for us) of keeping
this possibility alive that leads to some of the complexity of approach. It isthis goa that allows us to ask

the reader to be patient with what at first sight might appear to be a cumbersome formalism.

. DESCRIPTION OF VARIABLES AND PARAMETERS

We begin this section by describing therelevant 2-particle parameters we use in the description of
the scattering amplitudes. For present purposes, scattering processes are assumed to involve scalar
(spinless) particles. The most general form for the scattering transition amplitude T satisfiesintegral
equation relationsin several variables, representing the interacting system in terms of the kinematic
parameters (for ingance, invariant energy and orientation angles) corresponding to a complete set of
boundary states (which are defined to satisfy the boundary conditions of the asymptotic form of the system.
Typically, theintegral equations satisfied by the amplitudesinvolve termswhich are off -diagona in the
kinematics of the boundary state expansion (M’#M), aswell as generally being off-shell in the (sometimes
complex) system energy parameter Z, where M’ and M are Lorentz-invariant center-of-momentum energy

parametersfor the boundary states, and Z isthe same parameter for the overall system. Describing the

invariant direction unit vectors of the internal pair momenta in the center-of-momentum system by f] and
q, thisgeneral off-diagonal, off-shell transition amplitude is symbolized by

T(M".qIM.4;2).



If one examines the analytic behavior of this amplitude in the complex Z plane, there will be distinct poles
in the Z dependence of the amplitude corresponding to any bound states which the system might have, as
well as aforward scattering cut guaranteeing a discontinuity which distinguishesincoming statesfrom
outgoing states (necessary for the unitarity prescription). The scattering cut results from the region of
kinematic overlap in the eigenval ue spectra of the boundary states and the fully dynamica interacting
system. In what follows, we will be careful to distinguish between the off-diagona behavior of the matrix
elements of the scattering amplitudes, the off-shell behavior with regardsto the eigenval ue parameter Z,

and the analytic behavior of the fully on-shell amplitude T(M,§'| M, §; M) in terms of the parameter M,

which clearly will mix up these analytic behaviors.

Our goal will be to describe Lorentz invariant amplitudes for various physical scattering processes
which have relationships between them that will guarantee unitarity. We will attempt to describe scattering
processes between particles that have conserved particle quantum numbers, and as such cannot be singly
produced in any physical process. Quantaas such would only medi ate the interaction between these
particles, although generally one can describe interactions without the necessity of introducing quanta. The
problem then becomes one of defining the interactions of the antiparticles that will be introduced in a way
that is consistent with the particle-particle interactions from which they are derived. The parameterization
of the problem has considerable influence on our intuitive feel for the descriptions, asis demongrated by
the fact that we found it necessary to choose certain parameterizations in order to properly embed
interactions in a cluster decomposable way [1-5]. Thisiswhy we choose a parameterizationin terms of

invariant energy (M) and angular orientation parameters (& = §-§ ) in the standard state reference system

(rest frame) for the scattering particles.

The fact that we need an off-diagonal and off-shell description of theinput transition matrix f or the
general formulation of Faddeev-type integral equationsin the relativistic problem means that our variables
can only be required to reduce to the usual Mandelstam parameters on-diagona and on-shell. Thisis
straightforward to accomplish. What gives us more concern isto demonstrate that oneis compelled to go

off-diagonal using a particular prescription, which will be presented in the following sections.



A. Invariant energy-angle parameters and their relationships to Mandel stam variables

We begin by considering a general two particle in —two particle out process, wherethein

parameterswill be on theright (R), and the out parameterson theleft (L). Diagrammatically, thisparticle-

particle channel (or pp channel) will be represented as follows:

le \‘\ klR

KoL T kor
The following parameters are defined in terms of the four-momenta of the particles

s, =(k, +k,)?
ta = (lzaR - lzaL)2

u, = (lzaR - lz—.aL)2

where ac 1,2 and the symbol —a means the particle other than particle a. Generdly, the scattering

2.1

amplitude need not be on-diagond; therefore the left-right distinction will be maintained for the present.

Thiswill allow the definition of genera off-diagona parametersfor the scattering theory. We maintain the

following conventions when changing the overall sign of a particle' s four-momentum:

a'lza _maz\/_Ea'_Ea
-k —Kkq -k

aL 5 Uy aR —aL

oy

m, =
S, =

~>

aR

In terms of the energies and momenta of the total system, the four-momenta of each particle can be

expressed for either L or R case as

2.2



K, = le(M,m,,m_),q(M?,m,,m_)k,)

where

1
g(M,ml,mz)Em(M2+mf—m§)

[M?—(m +m,)?][M?—(m —m,)?]
4M ?

q*(M?,m,m,) =

For brevity of notation , we will sometimes write these energies and momenta of the particles as
€. =e(M a’mah’mﬁa;)

g, =qM,*,m,.,m,)

2.3

2.4

2.5

Thisallows usto write the general off-diagona forms of the parameters given in equation 2. 1 in terms of

the physical invariant energy and angle parameters.

s, =M,?

t, = ij + mjL —2e.:8, t ZqRqLéta

2 2
Uy = Mg + My — 26085 — ZqRqLéta

2.6

In particular, one can examine these variables when al (energy) parameters are on diagona, which will be

the case for the physical amplitudes. These parameterstake on the following formin this limit:

s, =sx=S t,=t u,=u

a

S+t+u=m +m. +me, +mi

which definesthe usual on-diagonal Mandelstam variables s, t, and u.

2.7



Wewill be particularly interested in the particle-antiparticle symmetry properties of scattering
amplitudes. For the problemswhich will be considered here, there will be conserved particle quantum
numbers, and in particular my =mgg, i.€., the antiparticles generated from the identifications of the

symmetry transformation will have the same mass as the corresponding particles.

s=M?
t=-29*(M?,m,m,)1-¢)
u= M) o0z M2 m,m, )1+ €)

M2
2.8

These Mandel stam variables have the following threshold behaviorsin the pp channd, assuming equality

of theright and left masses of a given particle:

s> (m +m,)?
t<0
us<(m-m,)°

2.9



B. Diagrammatic identifications of natural parameters

Next we introduce antiparticlesinto the two-particle scattering theory by identifying an outgoing
positive four-momentum particle with an incoming antiparticle corresponding to identifying the negative of
the particle€ s four-momentum (and vice versa). In particular, we will exchange incoming particle 2 with
outgoing particle 2. Diagrammatically, this particle-antiparticle scattering channel (p-pbar or bar channdl)

is represented below:

Ka \‘\U/ Kir Kyl \)‘\g/ Kir

KoL = — Kor -kor T KoL
In each diagram, the particles on the left are considered to be kinematically outgoing, and those on theright
areincoming. One needs to be able to uniquely define kinematic parameterswhich map into the physical
invariant energies and angles, snce the identification shown will map into different reference framesin the

pp channel versus the bar channd. However, one can use the momenta of particle 1 which appearsin

BOTH identificationsto uniquely define these parameters:

— ~

lle = (£1R1QRl21R) k = (§1R1qR _1R)
Q1|_ = (£1L1QLl21L) 1|_ = (81|_1Q|_lz )

_ 1

gkzzmk (M ( rnZ))
L, M= (m-my)?IIML T - (my+ my) ]
T 4M,?

R

2.10

Thisallows usto write well defined off-diagonal formsfor the invariant energies and angles involved using

the two following equations:



(glR _glL)z - (qule - QlelL)z = (§1R _§1L)2 _(qule - quzlL)z
M=oy —ey)" (A ky —agky)® = (kg —kye)”

2.11
The parameters describing the physical amplitudes on-diagonal (M. =Mg=M, etc) will satisfy
- 2q2(M 21ml1m2)(1_§) = —2q2(|\72,ml,—m2)(1—§_)
2 2 )2
MZ(MZ”:):[%J ~ 207 (M?,my, m,)(1+¢)
2.12
For general masses m;#m,, the kinematic ranges of the on-diagonal variables are given by
-1<é<+1 (M +m)<M?<eo
1< <+l (M -m,)?>=2M? 2 —eo
2.13
In terms of the usual Mandel stam variables, the following identifications can be made:
s=M?
t=-29°(M* m,-m,)1-¢&)
0=2(m?+m?)—M?2—f
o1y Am; +mp)-s+(E-0) _  (m-mp)* . f-0
49°(s,m,—m,) 4sg°(s,m,~m,) 49°(s,m,-m,)
2.14

Thefinal identification will be made by exchanging the outgoing particle 1 with the incoming
particle 2. The physical transformation channel (X channd) represents a process which is fundamentaly
distinct from the prior physical processes, since particle quantum numbers are pairwise annihilated and

created. Thisisrepresented in the following diagram:



k k
L— 1R Ko ks

KoL e T kor a T

Again, one needsto be able to uniquely define kinematic parameters which map into the physical invariant
energies and angles, since the identification shown will map into different reference framesin the pp
channd versusthe X channel. However, one can use the incoming momentum of particle 1 and outgoing

momentum of particle 2 which appearsin BOTH identifications to uniquely define these parameters:

—

IZlR = (£1R1QR|21R) Kirx = (E1rx 1qul21Rx)
Koo = (€5 -0, Ky,) Kox = (€20 —Uix Kix )

M,
gakx 2
2 2
2_[MLX _4ma ]
anX 4

2.15

Thisagain alows usto write well defined off-diagonal formsfor theinvariant energies and anglesinvolved

using the two equations

(81R _£2L)2 _(QRlle "'QlelL)2 = (81Rx _£2LX)2 _(qulleX +qLX|21LX)2
fo :(glaR_gaL)z_(quaR_quaL)z =(kaR_kaL)2

2.16
The parameters describing the physical amplitudes on-diagonal (M. =Mg=M, etc) will satisfy
me —m? ) m —m; |
[TJ - Zqz(M zymumz)(l"'é) = [M—ZJ - (Q12x + q;x + 2C]1x %xéx )
X
M3 (M%&) =-2g°(M?*,m,m,)(1-&)
2.17

For general masses my=m,, the kinematic ranges of the on-diagonal variables which connect the pp

channel tothe X channel are given by



—12&, >
2.18

In terms of the usual Mandel stam variabl es, the following identifications can be made:

Sx

2.19

s, =M?
Uy :(M—J _(Q12x +Q22x +2q1Xq2X§X)
X
ty =2(mlz+mzz)_M>2( — Uy
— (mlz _mzz)z + tx — Uy
29(Sy » My, =M, )q(Sx My, —M,)M & 4q(s,, my,—my)d(Sy , m,,—m,)

The various forms for the Mandel stam parameters can immediately be seen to correspond to the

usual interpretationsin the so-called “s, t, and u channels’. The identifications are made when the invariant

energy and angle parameters M? and & are obtained by inverting the functional forms specified in the

previous equations:
s=M?  t=M2(M?%&)  u=M?*MZ%¢E)
s=M? t=MZ(M?¢) u=M?*(M?%¢&)
SX=M)2( tszz(M>2<1 x) uxzmz(M>2<1§x)
2.20

The key result of this section has been the demonstration of well defined parameterizations of
invariant physical variablesin totally disparate physical channels by identifying those particles which

appear in both channd descriptions. Off-diagonal identificationsfor scattering amplitudes can then be
made in a compelling way using the forms presented.
C. Equa mass parameterizations

The analytic relationships between the invariant energy-angle parameters are qualitatively

different for the special casein which the massesareequal m;=m,=m. Sincethis case will be of particular



interest in the development of what follows, we will examine the behavior of these parametersin some
detail in thissection. In this case the momentum parametersin the various channelshave the same
functional form

M 2 —4m?

HUBEE

2.21

This means that the form of the connection between parametersin the pp channel and the p-pbar channdl is
given by
9*(M*)(1-&)=q*(M*)(1-&)
M? =-29*(M *)(1+¢)
E= M?(3-&)-4m*(1-¢)
0

M2+ &) +4m*(1-&)
>MZ22—0 w0>=& 21

2.22

Similarly, the form of the connection between parametersin the pp channel and the annihilation (X)
channdl isgiven by
a*(M*)A+8)=a* (M, )A+&,)
M, " =-2q°(M *)(1-¢)

£, = M?(3+&)—4m*(1+&)
T M2@-&) + AP (L+E)

02M,*2—0  —12& 2-w

2.23

Finally, one can explicitly represent the connection between the parametersin the p-pbar channd and the X

channel given by



*(M?)(1+&) = g* (M *)(1-&x)
M, * =-2¢*(M?)(1-£)
e :+(M2(3+§‘)—4m2(1+5))

MZ2(1-E)+4m?(1+&)

0=2M,* >0  1<E, <oo

2.24

All relationships are invertible, and the inversions give those relationships that would be expected from just
reassigning which initial channel would be associated with particle-particle scattering.

For afixed invariant energy M, asthe angular parameter & varies over all physical values, the
other channel parameters vary as demonstrated bel ow

Ei-1-5+1
M?:0— -4g°(M?)

— (M?=-2m?
—1>1

MZ:-49°(M?) =0

M2 —2m?
S B L
& ( 2m? J

Alternatively, if one expresses the parametersin terms of p-pbar channel variables, the other channel

2.25

parametersvary as

Ei-1-+1
MZ2:0—-4g*(M ?)

M2 —2m?
|—|>1
MZ:-49°(M?%) =0
WA 2
éx +1— _{MJ

2m?

2.26



These relationshipswill be useful when determining the constraintson the form of amplitudeswhich can

describe scatterings within the various sectors.

II. DESCRIPTION OF SCATTERING AMPLITUDESAND THE IDENTIFICATION OF

ANTIPARTICLES

The rel ationships between the unitary scattering amplitudes which describe particle-particle
scattering and particle-antiparticle scattering are the primary issue to be explored. In the present context,
the particle-particle scattering amplitudes will be used to define the properties of the antiparticle through its
scatterings with particles and other antiparticles. We will not attempt to use analyticity requirementson the
on-shell (though perhaps off-diagonal) scattering amplitudes, especially since some of the physically
relevant operations (like complex conjugation or absolute value) cannot be represented as analytic
functions. Sincethereisaconsiderable literature on the analytic S matrix and crossing symmetries[6,7], to
avoid confusion, we will specify the form of the symmetric identification of scattering amplitudes to define
antiparticle properties presented here as a symmetric-bar identification, or symbar for short. Inorder to
correctly prescribe the properties of the scattering amplitudes, close attention will be paid to the crossing
properties of the highly successful model of quantum electrodynamics, aswell asunitarity conditionsin

fixed particle number scattering theory.

A. Cross sections and Bound states

The normalization conventions used here will be chosen for close identification to fixed particle
number relativistic scattering theory which directly correspond to non-relativistic scattering amplitudesin
the appropriate limits. The on-shell scattering operator is connected to the scattering amplitude through the

formal relationship:



S(P,,)) =1+27i8*(P-P,) A(P,,)

3.1
The scattering amplitude A is generated from the transition matrix operator T which describesthe

scattering process, or from a fully renormalized physically unitary amplitude obtained by summing over all
(or appropriate) diagramsin a perturbative approach. For the two-particle scattering being considered here

the amplitude A is essentidly the same as the on-shdll trangtion matrix.
S(M=M)T (K, K, 1Ky K sM =g, +e, +i07) =8 (k' +k',—k, —k;) AMM, §-G)

3.2
where the parameters M and f] aretheinvariant energy and direction parameters previously defined.
Examining the dimensons of the basis sates, this amplitude has dimensions of inverse mass squared =
length squared.

The unitarity condition for scattering using our normalization is expressed asfollows:

T(k11k2 |k Z ) T(k11k2 |k101 20;22) =

lor 2> 201

(Z, Z)f O ra ik, Tz L (K, K Ky ki Z,)
/mle /m, M-Z, | M=z, | 2=

3.3
or in terms of on-shell amplitudes
A(Mo1q'QO)_A*(M01q'QO):
31,0 31,0 N N
2 [ DK x5 (KK, -M LG A, 646,)
g /m e, /m,
3.4

The differential cross section is directly expressed in terms of this Lorentz invariant amplitude

Aok, (21)°8°(3 Ky — Ky —Koo)| Ag I
do =
I m, (J(km Kpo)? — )/(mm)

3.5



where theincident flux factor is defined in terms of theinitia state kinematics

\/(Izlo ’ lz20)2 _rnlszZ — Moq(Mo21rnl1m2)
mm, mm,

Defining the phase space factor dIT given by

ar= 9K OKe go@ ko Mgey < MMM mm) oo,
g /m g, lm, v ° M
=p.(M,m,m,)d*q

3.6
one can immediately express a relationship for the forward scattering unitarity condition
+1
IMAM, & =1) = - p, (M,m;,m,) [ | AM,&) [ 2rdé
-1
3.7
and thetotal cross section satisfies the optical theoremin the form
(2r)* mm
Oroa (M) == 22— IMAM & =1)
\/(klo ’ k20) -mm,
3.8

Care has been taken to explicitly display the parametric dependenciesin terms of initid sateor final state
variables.

Much of theintuitive appeal of thistype of approach to examining scattering processesis due to
itsdirect connection to non-relativistic scattering ideas. For completeness, the connection of these
amplitudes to the outgoing wave function scattering amplitude f(M,0) and phase shift parameters §°(M) will
be demonstrated. The differential cross section is represented as the modulus squared of the wave

amplitude f, which can be expressed in terms of the invariant amplitude A by

f(M ,9)=(2ﬁ)2%A(M,cose)

3.9



The dimensional factorsin thisreationship arise from the (on-shell) ratio of the outgoing phase space to
the incident flux factors. Similarly, since the invariant amplitude depends only upon therelative angle

between incident and final direction parameters, it can be expanded in partial waves

A A 2J+1 A n «d, A
AM,G-6,) = 3= A (M)P, (@-6,) = 3 Y5 (A" (M)Y'¥ (@)
J J.J,
3.10
which can be used to define phase shifts and absorption parameters for the elastic amplitude
n’e”’ =1+27i p, (M)A’ (M)
3.11

These various forms of the on-shell amplitude will all satisfy appropriate unitarity conditions aslong as the
transition amplitude satisfies a unitarity condition.

One can formally examine the bound states of a system directly from the behavior of thetransition
amplitude off-shell in terms of the Z parameter. On very genera grounds, one can expand the eigenstates
in the discrete spectrum of an interacting system in terms of the complete set of (usualy continuous) states
of another system, here chosen to be the asymptotic forms of the (non) scattering states. In the standard
state of the pair, the useful result connecting representations of the off-shell T(Z) to sums over eigenstates

can be obtained from the formal equation (the Lippman-Schwinger equation [9, 10] or other approaches)

T(@)=(H-H,)~(H=H,) = (H-H,)

3.12

By expanding using the basis of eigenstates of the system to be solved, the transition amplitude is seen to
have poles at the appropriate discrete eigenvalues of the energy. Theinvariant transition amplitudes are
best examined using aform of the quantum mechanics which preserves the L orentz frame of the initial and
fina state off-diagonal, which guaranteesthat the invariant wave-functions are generated in the same

Lorentz system [1]. The Jacobian which transformsthe rel ativistic system to these coordinates is given by



d*k, d’,

g/me,/m,
d’u ,.

=p,(M,m,m,) Mdeu—odqu053(!—!o)

The off-shell trandtion amplitudeis seen to always have the following form near abound state:

Z'—i[ln[(z—/in)T(KyKMk k 'Zl)]:

—lo'220?

(M —g)¥, . (MY, (6) Y (6)F, .. (M) (M, — i)

3
W05 (U U, )=mm,g(M 2, m, m,)M 2dM %dzau(’as(g—uo)

u063(g_g0) 3 3
JM3p (M, m,m,) IM2p. (M, m,m,)

where the wave functions are assumed to be normalized according to the condition

JI¥, .. (M)FdM =1

3.13

3.14

Thus, the off-shell behavior of the trangtion amplitude near a particular bound state pole factorizesinto a

form which is determined by the (energy-momentum space) wave function of that bound state.



B. Identification of amplitudesin particle-particle, particle-antiparticle, and annihilation-re-

creation channels

The primary purpose of the work presented here will be to utilize the properties of one's
understanding of formal scattering theory that are applicable when particle type is conserved in cases for
which pair creation or annihilation occurs. We are motivated to use the physical restriction that particles
and antiparticles can be created or annihilated ONLY pair-wise to define the corresponding properties of
antiparticles (or conversdly of the particles) through the particle-particle scattering amplitudes. The
relationships between the scattering amplitudes of different physical properties between the involved
particles and their corresponding antiparticlesis typically expressed through the behavior of the amplitude

under crossing. Theusua identificationsin terms of a Lorentz invariant amplitude of the form M are made

asfollows:
Ky Kir
M’=M M < — M(S:Mz,t,U)
KoL ¥~k
ki o Kir B
W= v = M(U,t,5=M?)
ka 4T TG

C o 4= M(1,5M3U)

2 Mx,:Mx Mx

The dashed linesindicate physical antiparticles, and the parameter M isthe on-diagonal invariant physical
energy for the scattering. We therefore make the following identifications for our (on-diagonal)
amplitudes:
AM.E)=M(s=M>t=M}(M*&),u=M?*(M*¢))
AM.E)=M@=M*(M2&),f=M2(M?&),5=M?)
AcMy &) =Mt = M2 (M7,E,),5, =M} U, = M*(M &)

3.15



The primary task isto identify these amplitudes as defined with physical two-particle scattering processes

in a physically meaningful manner. These amplitudes will be used to define the antiparticle relative to the

scattering behavior of its corresponding particle. Note that equation 3. 15 establishes for us the form
invariance of our amplitudes under our anti-particleidentification and replacement, thus performing for us
the same function that “st u crossing” doesin the conventional approach. The unitarity properties of the

scattering processes so defined by our symbar identifications will be explored shortly.

C. Rdationshipsto QED crossing properties

For completeness, the corresponding lowest order behavior in QED scattering of two charged
particlesis presented so that the connections are made clearer. For scattering between leptons of massesm;
and m,, the pol arization averaged Lorentz invariant matrix element squared in QED is of the following
form for the displayed processes, particle-particle scattering, particle-antiparticle scattering, and particle-

antiparticle annihilation and creation:

2_47[9221 2 2 P 2 2 P 2 2
Mt = mm P 5| o e o e 2o )

2_ 47[9221—_ 2 2V (2 2 P 2 2\+
IM(mwgﬁm”s)l—((zﬁ)gJ L5 e P - -+ o+ e

2_47[9221 22 P 22 P 2 2
i — ) = G | o e e 2 )

For scalar particle scattering through exchange of a single photon, the form isgiven by

2 471792 zi Y
IM(mm, - mm,) | —((Zﬁ)sJ 4t2[(s uy]

2_ 4me’ zi AR
IM(mm, - mm,)| —((Zﬁ)sJ e (@-sy]

2 4e? zi 3 2
IM(mwﬁ%%)l—((zﬁ)s) P Ity —uy F]
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These amplitudes would clearly represent the lowest order behavior of unitary amplitudes as defined by
equation [3. 15]. Higher order terms, when properly renormalized and written in terms of physical

parameters, are expected to satisfy the same behaviorsin terms of the external kinematic variables.

V. GENERAL DEMONSTRATION OF NON-PERTURBATIVE UNITARITY

A. Unitarity requirements

The physical unitarity of the scattering amplitudes guarantees probability conservation for
kinematically relevant regimes within the elastic two-particle sector, and non-trivially connects the
amplitudesfor scatterings which couple to indastic channels. Thereislittle hope of generating a unitary
scheme which can include pair creation if the amplitudes which generate these processes are not of
themselves unitary below production threshold. Our approach will be guided by noting the complete
unitarity maintained by the coupled few-particle channel approach [8,1] as production thresholds are
traversed. For instance, in arelativistic three-particle system for which theinitid sateisabound pair
scattering with a third particle, the elastic scattering amplitude for the initid state smoothly maintains the
correct unitary relationship to thetotal cross section asthe available invariant energy beginsto alow pair
rearrangement and breakup [2]. This unitarity is maintained because theinput (2particle) scattering
amplitudes are unitary for al energies, and the coherent coupling of the channelsis donein away which
uses the unitarity of the input amplitudes to guarantee the unitarity of the amplitude from which al physical
processes can be extracted. The extraction of physically meaningful amplitudesis straightforward and
well-defined in that formalism.

We will therefore require that the appropriate amplitudes for distinguishable particle-particle and
particle-antiparticle scattering that are obtained from our formulations should maintain unitarity for all
energies, and that the unitarity of physical amplitudes which will involve a changein particle number
should follow from the unitarity of the amplitudes devel oped here. Since thetwo particles for the present

are considered to be distinguishable (even for equal masses), one would expect the particle-particle (pp)



amplitude to be unitary, aswell asthe particle-antiparticle (bar) amplitude. However, the transformation
(X) amplitude couples differing channels, and isnot expected to be unitary of itself, sinceit representsan

off-diagonal element in the overall amplitude. For instance, for two non-identical particlesaand b, our

identification and replacement construction produces the transformation (X) amplitude aa <> bt_), aswe
discussin more detail below. Thisisclear from the lack of an identity term in any sensein the
transformation amplitude. However, it is clear that the transformation amplitude CAN couple amplitudes
between differing particle typesin particle-antiparticle scattering, if oneis above production threshold for
the more massive pair. Therefore, this amplitude will be incorporated by identifying it as the coupling
between channels of a multi-channel scattering amplitude.

The forward scattering unitarity condition on the pp and bar amplitudesis given in equation [ 3. 7],

and is here displayed in terms of the explicit variables involved:

M
rryrrgq(Wm,mz)T
M

-1

IMAM, & =1) = — MaMedM z’ml’mz)ﬁ AM, &) |2 2ndE

IMAM,E =1)=—x | A(M,E) P 2rdE

4.1
From eguation 3. 15 which relates each of these amplitudesto that in the annihilation amplitude, and by

examining the equation 2. 20 which relate the parametersin terms of each other, each of these expressions
is seen to be equivalent to a single connection to the transformation amplitude of the form

AM 15) = A (Mx (M 215)’§x (M 215))
AM,E)=A (M, (M?,8).5 (M%&)

4.2

The unitarity conditions place constraints on the functional form of the transformation amplitude. The

form of the constraints can be seen by examining the forward unitarity condition expressed in the form

IMAM,&=1)= -1 ”Hmzq(MMz’m“m?) [TAM.2) P 5(M2-M?)aM 2 2xde

4.3
By direct substitution of the functional forms, this means that



ImA, (M, =0,&, (M21)) =

o mma(M®,my, m,)

v JIACMELFSM? (M 2,6 )~ M ?)dM 2?2 dE

4.4
Oneistherefore motivated to eval uate the variable change that will result in afinal integration over the

parameter My. The phase space factor makes this convenient if one wishes to perform this variable change
in terms of the momentum states. However, we will evaluate variables in the chosen representation by

evaluating

J(MZ):rnlmzq(M 1rnl1m2)J'6(M|2(MX|21§X|)_M )a(MI 5) éx

M IM2 £
_ mm,g(M?,m, m,) [aM 2<Mx'2,5x>r (M2,
M 9E IM 5 &)
_ mm,
2Mqg(M*,m;,m,)
4.5
Then the transformation amplitude must satisfy
Im A, (Mx = 01§x M 211)) =
0 _~
—IMH2n? AL E (MG MP) P dM s
~49?(M?,my,my)
4.6

where

2 22 2 2\
m; Imz) _(mlez)+4q2(M2,m,m2>—(qfx<M'x)+q§x<M'x>)

- ( M
(M2 M?)= X
5 ( ) 2C]lX (M IX )qZX (M IX )

4.7
Because of the direct symmetry in the connections between the parameters defined in the transformation

channel with those defined in the particle-particle and particle-antiparticle channds, if thisrelation is



satisfied, both the pp and the bar channel will satisfy the optical theorem. A similar set of steps can be
followed to establish the unitarity for al angles.

The general form of the constraint equation for arbitrary angles can be expressed using equation 3.
4 and the form invariance guaranteed by equation 3. 15. Theinvariant functional form is required to satisfy

a unitarity condition for the pp or the ppbar channel given by

2
AM.G-6,)~ A (M,§-G,) = -2ri AT [ geqpl v, Gra)AM, &4,

A A — A A

ES — ES . m. mz, ) A ok g AL A LSS
(V.G-8,)- A (M,§-G,) = —2ri AT [ 26 (W, - A(, )

4.8
Asfor the forward scattering case, the integral can be expressed in terms of an integration over the

parameter My? using the Jacobian which will properly transform the parameters between the channels given
in section 1. Substitution of the forms given in equation 4. 2 alows usto formally represent these unitarity
conditions by rewriting the above equations in the following form:
AcMy(M%,8:G,),6x(M?,G-6,)) ~ Ac(Mx(M?,G-4,),6, (M*,§- ;) =

] m M 21 1m a M 12 A

de 2 42§, ®
X X

A; (M X (M 21ql'6])’€x (M 21qI'Q))Ax (M X (M 21ql'qo)a§x (M 216]"6]0))

4.9
Alternatively, this expression can be written in terms of the bar channd kinematic parameters,

demonstrating the form invariance of the unitarity constraint under our replacement and substitution
process (symbar). This isthe general forma result we wish to demonstrate for the pp and p-pbar unitarity
condition needed for the construction of afinite particle number scattering formalism.
A generd property of the Jacobian of transformation between independent variablesisthe chain
rule
oM?,d)_ a(M*.g) oM. G)
om*,a) oM%.a) o(M*,4)

which connects one coordinate transformation to ancther. This meansthe one can directly relate the

unitarity conditions of the pp channel and the p-pbar channel without expressing the amplitudes in terms of



the X channd if desired. The form of the kinematic transformation between the variables representing the
different channds as defined in section |1 can be seen to be symmetrical in form (up to sign differencesin
the angular parameters) in the relationship of the pp channel and the p-pbar channel to the X channel
variables. Although in practice, for unequal masses and arbitrary angles it might be difficult to obtain
explicit functiona formsfor the relations between the energy and angular parameters of the different
channels, in principle this allows us again to generaly expressthe form of the unitarity condition for either
pp channel or p-pbar channel in terms of a single constraint equation on the form of the X channel

amplitude.

B. Multichannd identifications

The most complicated aspect of the unitarity relationshipsinvolvestheinclusion of particle
annihilation in a consistent way. As has been mentioned, the transformation channel isuniquein that
particle quantum numbers can be pairwise created and annihilated. This meansthat in order to properly
include annihilation in a unitary formulation of scattering theory, this particular channel servesasa
coupling into different particle sectors. A unitary coupled channel formulation is particularly well suited
for thisendeavor. In fixed particle number relativistic few particle dynamics, the unitarity of the full
scattering system is guaranteed because of the complete unitarity of the input channels, which couplein a
well defined manner [1]. Thisremains true even when traversing kinematic threshol ds which fragment or
rearrange the various clusters. We will utilize this method to include mixing between elastic channels
which are themselves unitary at all energiesin the absence of the couplings.

For the purpose of clarity of presentation, we will presume that an angular momentum
decomposition has been done in theinvariant center of momentum reference system, which will expand the
amplitudes as partial waves, and allows algebraic demongtrations of the unitarity relationships. The

particle-particle scattering amplitude will be represented by the diagram



Similarly, the particle-antiparticle (bar channel) amplitude will be represented by the diagram

and the transformation (X) channd amplitude will be represented by the diagram

b-. a

b /Z Qj a
These diagrams are assumed to be directly related to the Lorentz invariant scattering amplitude for a given
partial wave, which will have unit modulus when probability flux conservation applies. One would thus
expect the pp channd and p-pbar channd amplitudesto individually be unitary, regardiess of the presence
of other kinematically accessible channels. Theissue then becomes one of preserving thisform of unitarity
when the coupling to other channels coherently interferes with the direct scattering process. For the present
purposes, thiswill only concern us when examining particle-antiparticle scattering, since then the
transformation channed will serve as a coupling to other particle states. In what followswe will identify the
physical parameterization that will connect the amplitudes generated by particle-antiparticle symmetry
operations to the observabl e scattering processes.

The unitarity condition for multi-channedl few particle scattering takes the form

m, maq(l\Wz,md ,my)

Im'Abe(IW):Z” M IAde(IW) |2
=Y, (M, my,m,)| Ay (M) |?

4,10
The phase shift §, inelasticity parameter 1), and elastic cross section G agic get introduced in the eastic

channdl with the identification



I (N \a2i85 (M) _ —
nb(M)eZI lzﬁpn(M,n‘\),n"ﬁ)A\i(M)

o-elastic(m) EZZJ +1(27) T

T 4 T

— - 7o (M, my, m)| Ay (M) [°
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= 3 (20 + Ao | AL (V) P

J
4,11
Then the unitarity condition definesthe inelagticity parameter in terms of the couplingsto other channds

given by

1-(n (M) = Y 2zp, (M, m,,m.)| AL (M) 27p, (M, m,, m; )

d(#b)

4,12
Therefore, the transformation (X) channels which will  define the inelastic coupling amplitudes changes the
normalization of the uncoupled eastic (but unitary) amplitudes through contributions to the inelasticity

parameter as given in thisequation. Using our normalizations, thetotal cross sectionwill satisy the optical

theorem given in the form

2J +1(2r)* m,m,
O-TotaJ (M):Z 47[ ( 7[) L 1 ImA(;JO(M)
J (K, - K,)? - mem |

4.13
where“0” representstheinitial (original) particle-antiparticle pair.

To gain insight into how the “symbar” generated amplitudes will be unitary, we will consider a
specific kinematic regime for which the scattering will allow only two particle channelsto couple. We will

represent the form of the scattering amplitude as




where y, isan overall phase parameter. The diagram of theform

will be assumed to be independently unitary in the absence of the coupling. Later, it will be indentified
with all coherent amplitudesthat contribute to the elastic channel. We parameterize any particular partia
wave in terms of the Stapp parameters[11]

: oS . . A S S
cos2w, e?%  jsin2w,e %)
— b b

. . (SS S - oS
isn2w,e %) cos2w, e?%
b b

4.14
The identifications of the Stapp parameterswith the general coupled channel parameters can be made
immediately
n3 (M) = cos2w, =n; (M)
sn2w, =2rp, (M,m,,m) | AL (M) jrp, (M, m,,m,)
8y =6, (M) 8y =6y (M)
which demondtrates that the phase parameter defined by Stapp is always identified with the phase shift

parameter for coupled channels. In this parameterization, the phase of the transformation amplitudeis

given in terms of the phase parameters, and its amplitude directly defines the degree of the coupling. If

thereis zero coupling (SN 2w, = 0), the two channels are independently unitary and scatter as defined by
b

their elastic phase shifts.

C. Identical particles and channel interference

For identical particle-antiparticle scattering, we expect coherent interference between the
scattering channel and the annihilation channel; for instance, in lowest order QED the e ectron —positron
amplitude generated by single photon exchange interferes with the Bhabha term. To gain indgght into how

thiswill affect the amplitudes which are cal culated without coherent interference, we will examine first the



behavior of theidentical channel behavior of the two-channd unitary representation. Diagrammatically

this should represent itself asfollows:

Wewill writethetotal amplitude using the Stapp parameterization given by

s [ cos2w; e’ isn2w.e®™ ),
isin2w,e”’  cos2w, e’
We expect the particle-antiparticle scattering channd to itself be unitary. Thuswe can write

Té — 2
LA

which alows usto identify the parametersfor the scattering amplitude

e”’ +isin2w, e*’ = cos2w, e’
4.15
Therefore the total phase parameter isgiven by
O; =0 +W,

which defines coherent, unitary particle-antiparticle scattering amplitudes in terms of the p-pbar channe
and the transformation (X) channd. One canimmediately derive these resultsas the identical particle limit
of the distinguishable phase and coupling parameters previoudly derived
=26°=250=26,+y
Thisdiscussion illustrates some interesting points. First, if the S matrix given for the
indistinguishable limit of the coupled channd representation is to have the same phase as the S matrix
which isdirectly calculated from the amplitudes, the overall phase for the coupled channed representation
must satisfy
X =20
This phase corrects the double counting of the particle transformation processesin thislimiting form of the

coupled channel S matrix. Thisresult can be obtained directly by noting that for indistinguishable



channels, the two-channel elgenstate must not distinguish between the two-channels, which isinsured by

using an overall 2-channel wave function of the form

It isalso interesting to note that the phase shift for the elagtic channel adds coherently with the coupling
parameter which is determined by the amplitude of the annihilation channel. This matches the predictions
of lowest order perturbative expansions, but is obtained non-perturbatively. Finally, a renormalization of
the aready unitary amplitude for elastic p-pbar scattering occurs due to the coupling. The renormaization
isdueto the use of distinguishable channel particle wave functionsto cal culate the original amplitudes,
which result in an overall modulus renormalization for the identical channels. The coherent amplitude

satisfies the form given in equation 4. 15 which can be expressed using the diagram

Tirs=t
- S - 8T
= =e® = T

==t

where the equality holdsin the absence of coupling to other particle-antiparticle pairs. This

renormalization clearly becomes unity when the coupling due to annihilation vanishes.
We can therefore expect a generalization of this behavior for the multichannel description to take

theform

1+2zip, (M, m, m)(Z\J (M)+ A (M, = m)): N’ (M)ezus}

4.16
If we define the phase shift amplitudes t by the formula
s’(M)=1+2zip, (M,mm)A’ (M) = e**
T (M) =mp, (M,,mm)A; (M) =73 (M) [e**
4. 17

then the coherent phase shift and renormalization parameters are given by



§n26,+| 2ty |cos2y,
c0s26,—| 213 |sin2y,

(N? ) =1+ 203 [+2] 203 |60 2(8, — 1)

tan 26

4,18
These parameters will give results which are consistent with an order by order expansion of the amplitudes,

aswell asfor theanalytically complete results of perturbative sums.

We can also expect to be able to express the coherent amplitude for identica particle-antiparticle
scattering to be given in terms of arenormalized sum of the properly symmeterized angular represented
amplitudes previoudly obtained. For the case of scalar particles, thetotal scattering amplitude will be given

by the coherent sum of the symmetric amplitudes

A (M,E) = N(M)AS (M, (M,E),&E, (M, EN+AS (M, E)]

4.19
The firg term isthe contribution from the pp-bar amplitude, and the second is the contribution from the
transformation (X) amplitude. Therenormalization constant is calculated directly from the optical theorem
N(M) =
ImAS (0,&, (M, ))+ImAS (M ,E)

IMAS (0.8, (M )+ 27 p, (V) [AE ] AS (V,E) F-+2Relad (M (V. 8),2, (W, ENAS (VM) ]

4.20

Thisform will give results which are consistent with an order by order expansion of the amplitudes, as
well asfor theanalytically completeresultsof perturbative sums. The renormalization constant can be
reexpressed in terms of partial wave amplitudes which satisfy equation 3. 10 by the equation

2(2‘] +1}|mKJ(|\W)+ ImA (M)]
N(M) = 2\ 4%

2(2‘”1)|KJ<IW>+A;<M> P

3 4rr

4.21



This gives relationships between theindividual partiad wave amplitudes and the overall normalization

constant for the coherent combination of particle-antiparticle physical scattering amplitudes.

V. EXPLICIT MODELS

We present here two explicit amplitudes which exhibit Lorentz invariance and unitarity, with
antiparticles appropriately introduced in the way described in previous sections. Thefirgt isascattering
length model acting only in sswaves, chosen for smplicity. To motivate the form of the second model, and
make a direct connection to physics familiar to most, the construction will begin from the solution of the
non-relativistic Coulomb problem; this example isrelevant in many quantum mechanica systems. We will
make the model both Lorentz invariant and finite, and then use the model to demonstrate the unitary

behavior of the derived amplitudes.

A. An S-wave scattering model for scalar particles

The primary purpose of our presentation has been to demongtrate the particle-antiparticle
properties of a unitary fixed particle number scattering formalism. Wewill therefore construct aminimal
model to directly demonstrate the unitarity of all derived amplitudes. Inorder to utilize the results of the
previous sections, the kinematic parameters of the defining amplitude must be expressed in one particular
channdl. Wewill choose to express the kinematic content in the parameters of the annihilation channel in
order to take advantage of relationships such asequation 4. 2. One only needs to express the momentum q
that appearsin equation 4. 8 in terms of the parameters My and & . There are several model dependent
ways for which this can be done. An obvious identification would be to use the relationship generated by
the invariant energy on-diagonal delta function which resultsin the rdationship (for equal masses)

49° =295 (M)A+&,) -M
49° =205 (M)(A-&x) - M
Such an identification will result in many termsin the multipole expansions in the angular dependence of

the amplitude in the annihilation channe which will coherently interfere with corresponding termsin the p-



pbar channdl. Instead, for the first example, we will construct a modd that consists of a single scalar (J=0)
guantum exchange, so that only one term of the multipole expansion of the particle-antiparticle scattering
amplitude will have coherent interference. If thereisno angular dependence in the transformation
amplitude, it can only depend upon the tota integration range over itsangle. By examining the range of the

parameter £y as given by equations 2. 22, 2. 23, and 2. 24, we can obtain the following for the various

channels
pp channe!:
M2 —2m?
éx :—1—)—(TJ 5:—1—)4'1
m
q2
6€x (M 15) = _ZF
p-pbar channel:

N 2 2 _
Ey :+1—>+(%) Ei-1-+1

_ q2
6€x (M 15 ) = ZF
Transformation (X) channd:

Ei-1-+1
0&y =2

It is convenient to definethe particle type parameter ;, for theincoming (or equivalently, outgoing)

particles by

é' — mm, _{"—1 pP-
? Imm,| -1 p-

ol ©

Defining & 5 « tobetheintegration range of the parameter & in terms of the appropriate channel

variables, theinvariant momentum and energy parameters can be defined by

Q:(8,) =- S2 m

M?(8x) = 4(m* +°(6E,))

Therefore, we will model an s-wave zero range scattering length amplitude using the form



mz—é
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5.1
The corresponding pp channel, p-pbar, and X channel amplitudes will then be given by
M - mZJf
AM, &) = >
2z m) q(M? 2
(2zm)a(M?) M?) i~ Fe
_ :_Mo
- M 4
AM )=
DV ermrann| L
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4
2
2_Ho
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(27 m) N
m-I1,/m ———-
4
52

The chosen form has the following characterigtics:
a. The scattering goesonly through swavesin any of the channels
b. Thereisasnglebound state of mass i in the p-pbar channd
¢. Thetransformation amplitude is energy independent. However, the transformation coupling will
be energy dependent due to the phase space factor.
The unitarity of the pp and p-pbar channel amplitudes can be immediately demonstrated from equation 4.

10



ImA’(M) =7

m?g(M %, m,m

ImA’ (M) =7 mZQ('WM_Z’m’m) | AT (M) ]

where only the J=0 term is nonvanishing.

We finally demonstrate a unitary form for the coherent amplitude resulting from identical particle-
antiparticle elastic scattering and annihilation. An s-wave scattering correspondsto an overall symmetric
scattering state. The form demongrated for the bar amplitude is explicitly unitary in the s-wave, and the
transformation channel amplitude has been chosen to only contribute to the swave scattering. The

coherent superposition of amplitudes will therefore have a unitary form from equation 4. 18 with

(k)
tan(2y,) =,/1 [ZmJ

1_[“@
VE 2m
o 1= o2

parameters given by

2

N——
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These parameters then define the overall phase shift 50T for theidentical particle-antiparticle scattering

channel which then can couple to other pairs above the appropriate production thresholds.



§in26,+]| 2 {|cos2y,
c0s28,— | 2t %|sin 2y,

(NOY =1+12r2 1%+ 2] 22 [§in2(5, - x,)

tan 25,

5.5
Because of the phase space factors, thereisno coupling to these channel s below the kinematic thresholds

for pair production, although the amplitudes can exhibit any appropriately unitary behaviors near the
thresholds, and the transformation channel amplitudeis energy independent. The factor |T§ | isseento

vanish near production threshold, which decouples the X channel from the eastic channdl.

B. Non-rdativistic Coulomb scattering of scalar particles

A form of the solution for the non-relativistic scattering of scalar particles derived from the
Shrodinger equation has been given by Mott and Massey [12,13]. For completeness, some aspects of the
result is given here, primarily to demonstrate the form utilized by the authorswhich will be explicitly
unitary. For the scattering of a particle of reduced massu and charge Z ;e from a Coulomb field generated

by afixed charge Z,e, the wave function takesthe form

v, (r,9) = N, &% F,(-iz,Z,0 L 2ik(r - 2))
k k 1" 1 12 k

56

in terms of a confluent hypergeometric function and the fine structure constant o.. The normalization N
chosen by Mott and Massey was such that the solutionyi elded the classical result for Rutherford scattering,
and the incoming asymptotic wave form has unit flux near the z-axis. However, due to the long range
nature of the Coulomb field, the asymptotic waveforms are considerably distorted, and since thereisa
forward scattering sngularity in the amplitude, the flux normalization cannot be easily checked. In our
approach, we will choose thisnormalization to give unitary resultsin the outgoing flux, which, since the
scattering is astic, will guarantee unitarity in the incoming flux when integrated over the entire incoming

distorted hyperbolic wave form.



The asymptotic form of the wave function is most directly obtained by examining an integral
representation of the confluent hypergeometric function obtained by taking a closed contour integral over a
curve y which includes the point z and the point t=0 (usually chosen to be a circle around the origin) in the

form given by (see [12] for details)
B o [N 2
Fi@b2) =" ll—? e'tdt

The parts of the contour around the two aforementioned points give a convenient decompoasition of the

solution into parts which have direct representation for outgoing and incoming asymptotic waveforms:
F(a,b;2) =W, (a,b; 2) + W, (a,b; 2)
5.7

The form W, has an asymptotic form which represents and incoming waveform, and W, represents and

outgoing waveform

. ['(b) —a 1
W, (a,b;2) —— Fb-a )( 2)7g(a,a—b+21-2)
Wz(a,b;z)ﬁ—)%ezza‘ gl-a,b-3a;2)
where
o, B:2) = 1+0¢B oc(oc+1),8(,8 +1)

2z
Wewill require that the outgoing flux from the wave function should satisfy a unitarity condition. The

function W, satisfies

1-iz,Z,0 M 1+ ileZOC K
] 12200 k

ik(r - 2)

eik(r—z) [lk(r _ Z)
- u
I-iz,Z,a K)

r—oco

W, (—izlzza%;x ik(r — 2))

We will therefore choose the normali zation constant to satisfy

I
Z\Z0 -

iz,Z,0  log(2kr)
ke K iv

N, =sinA, (K)2i0(Z, Zza“)e 2
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Thiswill then insure that the outgoing waveform is given by

eikr
v, (r’ﬁ)TT f ()
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where
i 1+i21220¢ﬁ r(lzlzza E)
 (0)= sn Ao(k)( 2 ) k k 0]
k (1-cost r(-iz,2,0 t(‘)
5.10

We will shortly explore the unitarity behavior of thisfunction in the model to be constructed. Thisformis
seen to have bound state singul arities due to the gamma function in the numerator if the signsof Z; and Z,
differ, and the argument goes off-shell in such away that the argument of the gamma function is anegative

integer. These singularities are found to exactly correspond to the Bohr spectrum for hydrogenic atoms:

k—iy2uEP

EB — 1(2,Z,a) uc’
"2 n’

Off-shell extensions of thisamplitude will NOT give bound statesfor charges of the same sign, aswould
be expected for repulsive interactions.

The incoming waveform will be distorted (hyperbolic) plane waves due to the long range behavior
of the Coulomb field. However, if the outgoing flux satisfies a unitarity condition, since the scattering is
eadtic, theintegrated incoming flux will be of aform that will necessarily conserve probability flux. For

completeness, the asymptotic form of thisincoming waveform is exhibited below:



2sn A, (k) eizlzzaﬁlog[zmr—z)]

v, (19) —= U ' ®
Z,7Z,00—
172 k
2
ilezoc%
e 1+ — 4o
ik(r —2)
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To construct a demonstrably unitary amplitude for the outgoing flux, we will include afinite
quantum mass mq in away which resultsin the required Coulomb form when mg—0. Thefinite quantum

mass will then provide a cutoff in the range of the Coulomb interaction of the order of the Compton

h
wavelength of the quantum —— . If one utilizesthe form of theinvariant energy in the transformation
Cc

channd
M2 =-2g°(1- cos®)

then the following form for the amplitude f, can be directly shown to be satisfy the optical theorem:

oo _SnA(q=0)( M +49° ) .
q( )_ 2 2
a | me-M
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Note that the form in the parenthesi s has been specifically chosen sincein the zero quantum masslimit it
behaves as follows:
mg + 49’ 2
mg — My fro 2ol 1—cost
Therefore, we model the Coulomb interaction in a form which makes use of this result.
In the Born limit, one expectsto recover the Rutherford scattering result. This constrainsthe form

of the factor A, in equation 5. 12 to satisfy



. 1
sSnA,(q) — Ezlzza%

BornLimit
5.13
A direct examination of the previously demonstrated incoming form for the wave function in equation 5. 11
will then have the correct angular dependence to give an appropriate unitary outgoing form, and in the Born
limit appear as an incoming plane wave. The overall phase must then be chosen to match the Coulomb

form. Thisphaseisgiven by

A(q,9) = Z,Z,x %'%(m )+ 2n(Z,Z,0 %) +v(q)
5.14
where
Q2i(a) _ I'(ia)
I'(-ia)
5.15

and the extra phase factor v will be chosen to have correspondence with Rutherford scattering. A form

which will insurethisis given by

50 q 1-cos?

1 u . u 2
v(g) = TR a(1+ Ay — 27 - | imZ.Z, —Iog(—
Born
where the factor y=0.577216... is Euler’ snumber which results from the Born limit form of theratio of the
gamma functions. For zero quantum mass, we see that this gives an infinite phase correction due to the

forward scattering singularity of the Coulomb problem. It istherefore convenient at this point to regularize

the problem using a finite quantum mass model

2
=
(l— COSﬁ)

such that the phase is chosen to be given by

1 u mg
==ZZ o= (1+4y)-2I
v(a) 541 L q ( + 7) 0og e



Therefore, a set of unitary models can be constructed which will give the Coulomb scattering behavior and
reproduce the Rutherford scattering behavior in the Born limit for any functional form which satisfies

A(Z,Z,0,q, u, mQ) AV S0 £
mg—0 q

5.16
by using the form of equation 5. 12 and choosing the phase to be given by

A(60) = 2 AZ,Z,01,0,41,my)| L+ 4y - 2+ 2log ﬁ 2 (AZ,Z,00, G, 11,M))

5.17
Any such model will exhibit all of the usua singular behaviors of Coulomb scattering in the zero quantum

mass limit, including a forward scattering singularity and an essentia singularity at zero momentum.
However, any model of thisform will satisfy the optical relationships for elastic scattering amplitudes
given in Chapter 111 through equation 3. 7and 3. 9. Inthe next section we construct a particular Lorentz

invariant moddl which isused to illustrate the rel ationships of the previous chapter.

C. A relativistic finite quantum mass model
1 Single quantum type
We identify a momentum sguared parameter in an anal ogous way with the previous example, but
thistime alow angular dependence in the transformation channel. We construct amodel that consists of
guantum exchange which generates the expected kinematic dependencies in the pp and pp-bar channds, but
due to the summations over intermediate sates, contributes many terms to the multipole expanson of the
transformation (X) amplitude. The invariant momentum and energy parameters can be defined by

4Q*(M,§x) =295 (M )AL+, E )~ M5
MZ(MX Ex) 54(m2 +Q2(Mx £x))

5.18



Such an identification will result in many partial waves from the transformation channel which will
coherently interfere with corresponding termsin the p-pbar channd. Therefore, we mode a finite quantum
mass unitary Coulombic amplitude using the form

_ MMy ,&,) SnA©E,)( M6 +4Q° My £x) | i )
(271'm)2 Q(Mx1§x)L mé_Mf(

AX (MX 1€x)

5.19
where we can choose the phase factor A appropriately. Correspondence with Coulomb scattering places the

following conditions on the parameters

m
A(Q(M >2< 1§x )’lez(X’mQ) - Z,Z,00—
m,—0 q

2

1 _
A(Mi,éx)/i:»OEA (1+ 4y —27)+ 2log méLM +27(A)

2
X

5.20
We want the partial wavesto satisfy unitary relationships, which need not be guaranteed by forward

scattering only, and we will assume that the phase factor has been chosen to makethistrue. Asin the non-
relativistic case, the form of this phase factor will have an off-shell extension that contains any bound state
poles, and can be chosen to give a correspondence limit. Using the identification of equation 4. 2, either

the particle-particle channe or the particle-antiparticle channel isimmediately seen to be unitary, differing

only in therelative signs of the two (distinguishable) charges.

M SjnA(Qfx(MZ,f))(méJf“qz(Mz) AME(M2E)Ex (M2.E))

AM,8) =
rmf A’ (mg-ME(M*.Q)
5.21
The optical theorem can be directly checked in theform
m’q(M 2, mm) ¢ )
IMAM,§ =) =-7 === [ AMLE) | 2
-1
5.22

with the particle-antiparticle channel satisfying the analogous form (with Z,Z,<0)



M sin A(O,éX_(I\WZ,E))( me +4q2(_l\72)_ AME (M2 E)Ex (M2 )
(27 m)y aM?) [ mg-ME(M%E)

AM )=

IMAM,E =1) = -1 mZQ('WM_Z’m’m) T| AM &) |2 2ndE

5.23

One thus observes that the constraint on one functiona form written in terms of parametersin the
transformation channel gives unitarity constraintsin the two other channels. Particularly noteworthy isthe
observation that the identifications obtained give the expected form for the Coulomb scattering amplitudes
for same charge and opposite charge scattering obtained using the nonrelativistic form, which gives adirect
connection to actual physical interpretations of the derived amplitudes.

To obtain a unitary amplitude for identical particle-antiparticle eastic scattering and annihilation,
one utilizes the results of the end of chapter 4 given by equations 4. 19-4. 21 to appropriately symmetrize
and coherently add the p-pbar and X channel amplitudes to obtain the normalization constant and total
amplitudes. The formulation insures that the result of these calculations will give the same results as an

appropriately renormalized perturbative approach for the corresponding particles.
2. Two coupled quantum types

The previous'y demonstrated single quantum exchange model can be extended in numerous ways.
We demonstrate an extension which will unitarily exchange two arbitrary mass quanta. This can be done
using the 2-coupled channel parameterization of Stapp [11] by identifying theindividual channelswith the
unitary scattering due to single quantum exchange. The overall scattering will then be unitary in atwo-
channel space, but the eigenvalues of that scattering matrix will themselves be individualy unitary. Those

eigenvalues satisfy

g2id: _ %[COSZV\I(eMl + 2% ) + \/ 00s? Z\N(eZi(Sl 4 2% )2 _ 42 (51+52):|

524



Therefore, given unitary amplitudes for quantum masses mq; and mqy, this formula gives an overall
amplitude which will be unitary for a model which has two quantum masses and corresponding coupling
constants. The phase shifts are those corresponding to any unitary exchange of the n™ quantum, where the

amplitude for a given partia wave isgiven by
e =1+ 2ixp, (M, m,m)A (M)

5.25

This defines two possible unitary amplitudes for a system which interacts via the exchange of 2 distinct

guanta. The amplitudes are then givenby the relationship
e =1+ 2imp, (M, m, m,) A (M)

5.26

This type of formulation alows us to construct models with finite mass quanta which will be unitary, and

thus not require renormalizability as atenet of the model.

V1. CONCLUSIONS

We have now accomplished our immediate goal of constructing a set of three Lorentz invariant
amplitudes which preserve physical unitarity when used in the two-particle and particle-antiparticle sectors

of a multi-body, multichannel formalism. In particular, we have found that the particle-particle, particle

anti-particle, and transformation (e.g. a 5 «—— b 5 ) channd amplitudes when written in terms of our
invariant mass, angle parameters (i.e. M ,5 ) satisfy forminvariance. Consequently, if the appropriate
unitarity constraint holds for one of them, the constraint which insures physical unitarity appliesto the
appropriate channels. Thusin mode building, we can start from a model assumption for any one of the
three amplitudes which we trust, and expl ore what the consequences of imposing particle-antiparticle
symmetry (symbar) on that particular example will be. We have followed this though for avery simple
model which may have little application, and for a class of models which arerich enough to give

appropriate behavior for the scattering of charged particles and anti-particles, at least at low energy.



Clearly, our main goal of congtructing afully Lorentz invariant, unitary and cluster decomposable
theory for afinite number of particles and quanta still remainsto be accomplished. Out next paper will
explore what happens when the type of amplitude constructed here is embedded in a three (or more) body
space, and whether we can indeed describe quantum-particle scattering and particle-antiparticle pair

production starting in that space.
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