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1. Introduction and Motivation

In this note we study the classification of solitons in string theory and M-Theory.

Our starting point is the intersection of two suggestive results. First, as argued by Witten

[1][2] and more extensively by Diaconescu, Moore and Witten [3][4], certain subtle phases

in the M-Theory partition function suggest a connection to an E8 gauge theory over a 12d

manifold Z bounded by Y . This follows from the fact that E8 bundles in 12d are specified

topologically by their Chern-Simons 3-form [5], so that the calculation of these M-Theory

phases as sums over topologically distinct M-Theory 3-form configurations takes a natural

form in terms of the index theory of 12d E8 bundles. That this E8 index theory result

agreed precisely with a very different calculation based on IIA K-Theory led Diaconescu,

Moore and Witten to suggest a deeper connection between the M-Theory 3-form and the

Chern-Simons 3-form of a 12d E8 bundle. Since the index calculation depends only on

∂Z = Y , the physical data lies in the restriction of the 12d bundle to an E8 bundle in 11d.

Secondly, it is commonly believed that the K-Theory of lCP∞ ∼ K(ZZ, 2) bundles

classifies D-Brane configurations in Type IIA string theory, as argued in [6][7] and phrased

in terms of K(ZZ, 2) in [8]. However, the physical connection of the group K(ZZ, 2) to

M-Theory is unclear. Moreover, as fleshed out in a beautiful paper by Maldacena, Moore

and Seiberg [9], the Atiyah-Hirzebruch Spectral Sequence (AHSS) construction of the K-

Theoretic classification of Type II RR solitons involves anomaly cancellation conditions in

an intimate and beautiful way. How this relates to the proposal of [8] is again unclear.

These lines of reasoning beg to be connected. As a first hint, note that K(ZZ, 2) and

LE8 are homotopically identical up to π14. 3,4 Thus the classification of LE8 bundles over

10-manifolds agrees with that of lCP∞ bundles. Further, up to important questions of cen-

tral extension and torsion which we address below, the classification of LE8 bundles over

10-manifolds is precisely the classification of E8 bundles over 11-manifolds with a compat-

ible circle action. Thus the classification of solitons and the cancellation of anomalies in

3 LE8 denotes the loop group of E8, and L̃E8 its centrally extended generalization. We describe

their low-dimensional topology below; for a complete discussion, see eg [10].
4 We are deeply indebted to Petr Hořava for insightful discussions during early stages of this

work suggesting looking at the loop group of E8 as an M -Theoretic alternative to the stringy

picture of K(ZZ, 2) arising from an infinite number of unstable D9-branes [11]. For a discussion of

possible relations between these two pictures and their implications for supersymmetry and 11d

dynamics, see [12].
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M-Theory and IIA (and Heterotic, as we shall see), as well as the relationship between

these as revealed by the AHSS, can all be phrased in terms of a single E8 structure in

11d. That an 11d E8 bundle ties together so many pieces of the M-Theory puzzle strongly

supports the conjecture that an 11d E8 bundle plays a physical role in M-Theory, and

should be reflected in its fundamental degrees of freedom.

Taking this seriously thus leads us to conjecture that the classification of RR and

NSNS solitons in IIA derives from the classification of LE8 bundles over 10-manifolds.

This generalizes the accepted K-Theoretic classification of RR solitons (and adds to grow-

ing evidence that K-Theory at least approximately respects IIB S-duality, suggesting that

K-Theory plays some role even beyond weak coupling) while leading to novel predic-

tions about the complete classification of IIA solitons, including the interpretation of the

cosmological “constant”5 G0 of (massive) IIA as the central charge of L̃E8, and several

constraints relating torsion in M-Theory, L̃E8 and IIA.

In the remainder of this note we present further motivation for these conjectures and

show how such a framework reproduces and extends the familiar classification of solitons in

M-Theory and its 10d descendants6. Of course, 11d SUSY does not to play well with gauge

bundles, and it is difficult to see how a dynamical bundle can coexist with 32 supercharges.

(For further thoughts along these lines see eg [14][12].) However, objects to which the E8

gauge connection couples inM-Theory and the string theory generically violate at least half

of the supercharges, so we might expect to see gauge bundle information only in situations

with reduced supersymmetry. In any case, the resolution is unclear, so we restrict ourselves

in the following to studying the soliton classification, leaving questions of dynamics and

SUSY to future work. We begin by reviewing the topological classification of E8 bundles

over 11-manifolds.

2. The Topological Classification of E8 Bundles in 11d

E8 has exceptionally simple low-dimensional topology. In particular, its only non-

trivial homotopy group below dimension 15 is π3(E8) = ZZ. The basic non-trivial E8

bundle is thus that over an S4 whose transition functions on the S3 equator lie in π3(E8).

5 Since the dilaton is not constant in the presence of D8-branes, this should properly be called

a cosmological term rather than a cosmological constant.
6 For earlier thoughts on the role of E8 in M -Theory, see eg [13][14][15]. See also [12][16]for

related current work
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Due to the absence of other relevant homotopy classes, E8 bundles over manifolds of

dimension 3 < d < 16 are topologically classified entirely by the transition functions on

the S3 equators of S4’s in the 4-skeleton of the base manifold [5]. These are measured

by the restriction of the first Pontrjagin class p1, which is the exterior derivative of the

Chern-Simons 3-form C3 on each coordinate patch [5], to the given S4. E8 bundles over 11-

manifolds are thus topologically classified by the specification of a 3-form C3, a remarkable

fact that depends crucially on the simple low-dimensional topology of E8.

The basic monopole in such bundles is thus a codimension 5 object supporting 4-form

flux such that the integral of p1 over an S4 linking the defect is the monopole number,

∫

S4

G4

2π
= n ∈ ZZ, (2.1)

where G4 = dC3 = dTr (A ∧ F + 2
3
A ∧ A ∧ A). There is also a codimension 4 instanton

such that the integral of p1 over a transverse 4-plane is non-zero. Such a bundle can be

trivialized inside and outside any 3-sphere in this plane, with the transition functions on

this linking S3 classified by π3(E8). If we restrict to configurations which are compactly

supported in the transverse plane, the integral of p1 over the transverse 4-plane is thus an

integer counting instanton number. Such an instanton can be produced by considering a

monopole-antimonopole pair whose fluxlines run from one to the other; the integral of p1

over a transverse 4-plane between them is thus quantized, with the choice of orientation

specifying whether this plane links the monopole or antimonopole and thus fixing the

sign. If the flux takes delta-function support in the transverse plane, this is a zero-radius

instanton Poincare dual to the first Pontrjagin class of the bundle.

Due to the magic of E8,

p2 = p1 ∧ p1 =
G4 ∧G4

16π2
,

a relation that would not hold had we considered for example U(N) bundles. Thus p2

does not reveal any new topology not already contained in G4. However, since we can

always pull the codimension 5 defects to infinity, p2 can represent a charge in compactly

supported cohomology. For example, consider a bundle such that the integral of p2 over

some 8-plane is non-zero; this reveals the presence of a codimension 8 object Poincare dual

to p2. Since we can express p2 as the exterior derivative of a 7-form G7, we can relate this
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integral over an 8-plane to an integral over its “S7 at infinity” (again, we are looking at

compactly supported cohomology) to get

∫

IR8

p2 =

∫

S7

G7

2π
= k ∈ ZZ,

so the codimension 8 objects are quantized and localized. There is again an associated

codimension 7 “instanton” (properly, this is an intersection of codimension 4 instantons)

such that the integral of G7 over a transverse 7-plane is non-zero. Instanton number is

quantized in a more subtle way here, since there is no homotopy class directly counting

these instantons. However, since these codimension 7 instantons can be constructed as

the flux stretching between a codimension 8 monopole-antimonopole pair, a quantization

condition applies.

The role of these codimension 7 and 8 objects is more transparent when we consider

the first non-trivial AHSS differential for such bundles,

d4 = G4 ∪+[Torsion]. (2.2)

Ignoring torsion for the moment, this differential enforces for example the condition

d ∗G4 = G4 ∧G4.

This reflects the fact that the G7 whose exterior derivative is p2 really is the dual of G4.

Physically, this equation requires a codimension 5 object wrapping a 4-cycle supporting k

units of G4 flux to be the endpoint of k codimension 8 objects.

This classification has an immediate reading in terms of the conjecture discussed

above. The codimension 5 monopole is the M5-brane, the codimension 8 the M2-brane,

while the codimension 4 and 7 instantons are the M-Theory MF6 and MF3 Fluxbranes

discussed by Gutperle and Strominger[17]. Moreover, the AHSS differential precisely effects

the 11d supergravity equation of motion d ∗ G4 = G4 ∧ G4, which implies that an M5

wrapping a 4-cycle supporting k units of G4 flux must be the endpoint of k M2-branes, a

familiar result, and ensures the Dirac quantization of the M2 and MF3 branes.

Returning briefly to (2.2), the torsion terms can be studied by checking when the sign

of the Pfaffian of the Dirac operator can be made well defined for the fermion contribution

to a path integral describing an open M2-brane via the inclusion of some chiral 2-form.

In particular if the M2-brane wraps a circle we recover the familiar obstruction W3 + H
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from [18]. We reserve further discussion of 11d torsion until Section 6; about 10d torsion

we will say more shortly.

At this point it is clear that the soliton spectrum of the various perturbative string

theories should be reproduced by compactifying the base manifolds of our 11d E8 bundles,

since it has precisely reproduced the M-Theory solitons from which they descend. Ex-

plicitly studying the dimensional reduction of the E8 bundle will reveal several interesting

details, including an intrinsically 10d classification of IIA solitons treating NSNS and RR

solitons largely symmetrically, to which we now turn.

3. Type IIA and K-Theory from LE8

Consider an E8 bundle F over an 11-manifold Y with a circle action that commutes

with the transition functions. Let X be the 10d space of orbits of the circle action. Sections

of F thus define sections of an LE8 bundle E → X.

Let’s pause to review the topology7 of LE8. By the canonical homotopy-lowering map,

πp(LE8) = ZZ for p = 2, 14, 22, ..., and trivial otherwise. The low-dimensional cohomology

is similarly simple,

Heven(LE8) = ZZ Hodd = 0.

Since H2(LE8) = ZZ, LE8 admits a central extension given by a single positive integer.

This centrally extended Kac-Moody algebra has a canonically associated group manifold,

both of which we shall denote by L̃E8 in a heinous abuse of notation. The topology of

L̃E8 differs from that of LE8 in several important ways. In particular, π2(L̃E8) is trivial8,

and its low-dimensional cohomology is consequently different from that of LE8.

We now return to our 10d and 11d bundles. For every soliton or defect in F there

is a soliton or defect in E. However, the 10d bundle has a generalization which does not

lift, measured by the integer central extension of L̃E8. Since π3(E8) = ZZ 6= π∗(π2(L̃E8)),

where π∗ is the pullback along the circle fibration projection map, the central extension

of L̃E8 obstructs a lift to 11d. Correspondingly, Type IIA string theory has a single

7 For a more extensive discussion of such (possibly centrally extended) loop algebras and the

topology of their canonically associated group manifolds, see [10].
8 The triviality of π2(L̃G) depends only on G being simple and simply connected. This is

essentially the statement that LG admits a single universal central extension of which all others

are cosets; see [10] for an extensive discussion of the topology of centrally extended algebras.
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integer, the 0-form field strength G0, which is the obstruction to lifting to M-Theory.

Domain walls over which this integer jumps, D8−branes, similarly cannot be lifted. We

thus conjecture that the central extension k of this L̃E8 bundle over 10d measures the

cosmological “constant” of (massive) IIA, G0, as

G0 = k. (3.1)

That a lift is indeed possible when G0 = 0 fixes a possible additive constant to zero9.

The distinct topology of the centrally extended L̃E8 implies that the spectrum of

stable, consistent D-branes is altered in the presence of D8-branes. In particular, charac-

teristic classes which are torsion when the central extension is non-vanishing will reveal

instabilities of various brane configurations in the presence of G0 which may be stable in

the absence thereof, or vice-versa. We are thus led to study the complete topology of L̃E8,

including torsion, which will provide explicit, testable predictions about the (in)stability

of brane configurations in massive IIA[19].

Since the homotopy and cohomology groups of LE8 agree with those of PU(∞) =

lCP∞ = K(ZZ, 2) up to10 dimension 14, the classification of RR solitons via LE8 bundles

differs from that of Bouwknegt and Mathai [8] only in phenomena related to high (greater

than 14) dimensional topology11. Remarkably, the same L̃E8 structure also serves to

classify the NS-NS solitons, as we now discuss.

3.1. NS-NS Solitons from LE8

Since π2(LE8) = ZZ, the primary 10d LE8 defect is codimension 4, i.e. (5 + 1) di-

mensional as in 11d. An S3 linking k such defects, or more generally any S3 supporting k

units of H-flux as in the SU(2) WZW model, has LE8 instanton number equal to k. By

9 Notice that this proposal is reminiscent to the situation in AdS/CFT, and particularlyAdS3×
S3 × T 4 in which the cosomological constant on the AdS3 is determined by the central charge of

the ŝl2 affine Lie algebra of the boundary WZW model. We thank Liat Maoz for reminding us of

this relationship.
10 K(ZZ, 2) is by definition the space whose homotopy classes are all trivial except for

π2(K(ZZ, 2)) = ZZ. It is realized for example by lCP∞ which appears in the consideration a la

Sen of D-brane classification via non-trivial tachyon bundles associated with the gauge bundles

over D-D̄ pairs.
11 Bouwknegt and Mathai [8] argue that IIA D-branes are classified by the K-Theory of the

algebra of sections of a vector bundle associated to a PU(∞) = K(ZZ, 2) principal bundle, roughly.
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this we mean that the bundle can be trivialized on the northern and southern hemispheres

and the transition function is the element k of π2(LE8). The defect is characterized by the

fact that, at the defect itself, the LE8 picture breaks down because the circle orbits are

not closed. This 10d defect is the reduction of an 11d defect transverse to the S1. This is

precisely the IIA NS5-brane arising from a transverse M5-brane.

Similarly, a fundamental IIA string is an 11d codimension 8 soliton whose embedding

is invariant with respect to the circle action. In particular, the 11d bundle is then invariant

with respect to the circle action, so transition functions of the 10d bundle consist of zero-

modes in LE8, that is, they inhabit an E8 subgroup. In fact the transition functions in

10d are just the embedding of those in 11d into LE8, and so the fundamental string is,

like the M2-brane, Poincare dual to the square of the first Pontrjagin class (the second

Pontrjagin class) of this E8 sub-bundle of the LE8 bundle. This is however not to say that

the rest of the LE8 is unimportant - in particular, the dynamics of the M2-brane need not

respect the circle action, so those of the fundamental string need not restrict themselves

to the zero mode subgroup at finite coupling.

3.2. RR Solitons from LE8

Let’s quickly return to the classification of RR solitons via LE8 bundles. The D4-

brane arises as an 11d 5-defect whose embedding and field configuration are invariant

under the circle action. Similarly to the F-string it can be realized with an E8 ⊂ LE8.

It is characterized by the fact that each linking S4 has E8 instanton number one. The

D2-brane is a 2 + 1-soliton transverse to the circle, and is Poincare dual to d ∗ G4, a

7-form related to p2 of the E8 bundle by the canonical dimension lowering map between

characteristic classes of a space and its loop space. The D6-brane arises from a non-trivial

circle fibration, such that the π2 of LE8 lifts to the π3 of E8 via a Hopf fibration, while

the D0-brane arises as usual as a momentum mode along the S1 fibers. In both cases the

associated flux arises from the KK gauge field, the branes representing trivial E8 fibrations

over the 11-fold.

Finally, as discussed above, D8-brane number is connected to the central extension of

L̃E8. Thus, while the D8-brane does not appear to have a simple geometric interpretation

in terms of an 11d E8 soliton, it has a deep connection to the L̃E8 structure in 10d.

This connection may provide insight into the connection between 11d gravity and the E8

structure[12].
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3.3. Fluxbranes from LE8

The 11d E8 origin of IIA Fluxbranes is similarly automatic; its reading in terms of

LE8 follows naturally. The simplest example is the direct dimensional reduction of the

codimension-4 E8 fluxtube, which gives the NS-NS F6 in IIA. Similarly, a codimension-

4 fluxtube which wraps the M-Theory circle remains a codimension-4 fluxtube - this is

the IIA RR F5-brane. Analogously, the codimension-8 fluxtube reduces transversely to

the RR F3-brane and, wrapping the M-Theory circle, to the NSNS F2-brane. The F1

and F7 arise as fluxtubes associated to the nontrivial bundles of the D0 and D6 branes,

respectively. Thus we realize the full spectrum of RR and NSNS Fp-Branes discussed by

Gutperle and Strominger [17] in terms of LE8, as expected.

3.4. K-Theory from LE8 and Indiscretions regarding Torsion

We have seen how the classification of both NSNS and RR solitons in Type IIA

arises from the classification of LE8 bundles in 10d, these derived from a fundamental

E8 structure in M-Theory. Due to the remarkable topology of LE8, this reproduces the

conjectured K-Theoretic classification for RR charges and fields. We would now like to

connect this construction with the AHSS approximation to the K-Theoretic classification.

In the remainder of this section we will use the language of M-branes and D-branes for

simplicity and clarity; in light of the above discussion, it should be clear that the entire

discussion can be phrased explicitly in terms of 11d E8 bundle information.

The classifying group of solitons in M-Theory is a refinement of cohomology obtained

by taking the quotient with respect to a series of differentials that reflect the fact that

some configurations are anomalous and so should not be included, while others are related

by dynamical processes and so must carry the same conserved charges(see eg [9]). For

example, an M5-brane wrapping a 4-cycle that supports k units of G4 flux leads to an

anomaly that, neglecting torsion, can be canceled if k M2-branes end on the M5. Thus

some M5-brane wrappings are anomalous and some M2-brane configurations (such as k

M2’s and the vacuum) are equivalent, this following from the 11d supergravity equation

of motion

d ∗G4 = G4 ∧G4.

The left hand side of this equation is the intersection number of M2-branes with a sphere

linking the M5, and the right is roughly the integral of the G4 flux over the 4-cycle wrapped

by the 5-brane. Both of these numbers are measured in units of the 8-form Poincare dual
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to the M2-branes. In the absence of M2-branes ending on the M5’s, this supergravity

constraint is summarized12 by requiring that the following “differential” annihilate the G4

flux

d4G4 = G4 ∧G4 + [Torsion].

We expect that the torsion terms are nontrivial because, for example, G4 is half-integral

when the M5 brane wraps a 4-cycle with non-vanishing w4 [20]. Also, as we will soon see,

its dimensional reduction is nontrivial.

The classification for IIA follows from dimensional reduction of this M-Theory story.

There are three distinct classes of reductions of this constraint to IIA, reflecting three

possible locations of the M-Theory circle x11 in the above scenario. First consider an

M5-brane wrapping x11 which is not in the 4-cycle, so that the anomaly-canceling M2-

branes do wrap x11. This leads to an anomaly condition requiring F -string insertions on

a D4 as follows. The M5-brane wraps x11 and so the G4 flux that it generates has no

11 component; it is thus not Kaluza-Klein reduced. Similarly, the 4-cycle does not wrap

and so the G4 supported on the 4-cycle is not reduced. Thus the 10d anomaly condition

arising from this situation is identical to the 11d condition:

d4G4 = G4 ∧G4 + [Torsion],

now a 10d constraint with G4 identified with the 4-form RR fieldstrength.

Next consider the case in which both the M5-brane and the 4-cycle wrap x11, yielding

a D4 with D2 insertions as follows. The G4 flux sourced by the M5-brane is still not

reduced, but now the 4-cycle is reduced to a 3-cycle, the G4 flux it supports dimensionally

reduced to the 3-form H. The resulting anomaly constraint is thus

d3G4 = H ∧G4 + [Torsion].

This is a well-known differential from the AHSS for twisted K-Theory [21], which was seen

to be the relevant constraint in [9]. In particular the torsion correction was seen to be

Sq3G4.

The final case involves an M5-brane not wrapping x11, reducing to an NS5-brane

with D2-brane insertions. In this case the 4-form flux is dimensionally reduced to H while

the flux in the 4-cycle is not reduced, yielding the constraint

d4H = G4 ∧H + [Torsion].

12 This was seen in type II in [9].
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The torsion in this case is as yet poorly understood.

Combining these three constraints, as well as the AHSS conditions on other RR fluxes,

we hope to arrive at a K-Theoretic classification of both NSNS and RR charged objects

in IIA. We expect this classification to be T-dual to the S-duality covariant classification

in [22]. Independently of our proposal, it would be interesting to better understand the

11d lifts of the other constraints on RR fluxes.

For example, anomaly cancellation on a D2-brane in IIA wrapping a 3-cycle C with

k units of H flux requires k D0-brane insertions. Lifting this to M-Theory we learn that,

while we know of no restrictions on what cycle an M2-brane may wrap, if it wraps a 3-cycle

C such that ∫

C×S1

G4

2π
= k 6= 0

then k units of momentum around x11 must be absorbed by the brane. To get an intuitive

understanding of the physics at work13, let us pretend that C is a 2-cycle times the time

direction, with a constant H flux density, and then KK reduce on the 2-cycle. Before

reducing, this corresponds to a constant flux of D0-branes incident on the D2-brane in

IIA, while in M-Theory this corresponds to a steady injection of p11 into the M2. KK

reducing, the G4-flux reduces to an electric field along the circle, while the M2-brane

reduces to a particle charged under this field. This flux drives the charged particle to

accelerate around the circle with a constant acceleration, that is, to absorb p11 at a constant

rate. The anomaly condition lifted to M-Theory is thus simply F = ma! Although we do

not understand the deep connection of the M-Theory E8 bundle to gravity, this relation

between G4 and p11 is perhaps a significant clue.

4. The Heterotic String and the Small Instanton Transition

Consider now an E8 bundle over an 11-fold X = M × S1/ZZ2. The bulk bundle

naturally restricts to two 10d E8 bundles, one over each of the two boundary components.

At this point the realization of the various objects in Heterotic string theory in terms of

instantons of the E8 bundle follows naturally from the beautiful arguments of [24]. For

example, an M2-brane stretching between the two boundary components is precisely the

strongly-coupled fundamental Heterotic string. Moreover, anomaly considerations descend

13 See also the beautiful discussion in [23], which addresses an analogous effect for dielectric

branes in a non-compact geometry.
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naturally. In 11-d, there is a mod 2 relation between the Pontrjagin classes of theE8 bundle,

w(F → Y ), and that of the base manifold’s tangent bundle, w(TY ) - thus for example

G4 = w4(TY )/2 . This condition reduces on the induced bundle over the orbifold fixed

point to the 10d condition, which arises from a gravitational anomaly [24][25].

It is easy to see the Heterotic 5-brane arising from the bulk E8 bundle. Recall that the

11d E8 5-defect is defined such that a 4-sphere linking the 5-defect has instanton number

one. Consider a parallel 11d 5-5̄ pair separated a finite distance in a transverse direction,

y, of IR(10,1). For every point yp there is a 10d bundle given by the restriction of the 11d

bundle to the 10d slice y = yp. Since any 4-plane in the slice y = yp, with yp between the

two defects, links one or the other of the defects, the 10d bundles over points between the

two 5-defects have instanton number ±1, the sign fixed by choice of orientation, while the

10d bundles over points not between the two defects have instanton number zero. Since

the 10d bundles over points between the 11d defects are non-singular, their instantons are

“large”. The singular 10d bundles which contain the 11d 5-defects, by contrast, contain

“small” instantons. These are the Heterotic 5-branes.

Next consider a similar configuration with the two defects pulled away to infinity,

leaving a single codimension-4 instanton stretched along the coordinate y and taking com-

pact support in the transverse 4-plane. If we pinch the instanton over a point y = y∗, we

can nucleate a 5− 5̄ pair at y∗ and move them away to infinity, leaving behind no flux in

the interval between them. From the point of view of the 11d bundle, this is a completely

continuous process respecting all conserved charges and symmetries. From the point of

view of the induced 10d bundle over any point y = yo 6= y∗, however, things look rather

odd; the originally large and fluffy instanton shrinks to a singular “small” instanton and

then disappears altogether!

Now consider an E8 bundle over the 11-manifold Y = IR(9,1) × (IR/ZZ2), where the y

coordinate along which the 11d instanton is extended has been orbifolded by a Z2 reflection.

If we repeat the pinching-transition over the point y = 0, which from the point of view of

the covering space is completely continuous and respects all conservation laws, as well as the

orbifold symmetry, we find a transition in the orbifold theory in which a “large” instanton

in the boundary bundle shrinks to a singular “small” instanton before disappearing from

the boundary and moving into the bulk as an 11d 5-defect, i.e. an M5-brane. This is

precisely the Heterotic small instanton transition studied near one boundary component,

as read by the 11d E8 bundle. Note that, while the number of boundary instantons n∂Y

is not conserved, n∂Y + nY is.
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5. Speculations about E8 Bundles and 11d SUSY

Since objects to which the E8 gauge connection couples inM-Theory and string theory

violate at least half of the 32 11d supercharges, we should perhaps expect to see gauge

bundle information only in situations with reduced supersymmetry. It is thus reasonable

to wonder if the gauge connections inhabit representations of only a sub-algebra of the 11d

superalgebra, representations that in particular contain neither gravitons nor gravitinos.

The Chern-Simons 3-form of this connection can then be set equal to the 3-form in the

11d supermultiplet, for example via a Lagrange multiplier14,

δS ∼
∫

M11

α(CM3 − CE8
3 ).

It is worth keeping in mind that both the M-Theory 3-form and the E8 Chern-Simons

form respect an abelian gauge symmetry, since for example under a local E8 gauge trans-

formation with gauge parameter Λ the CS-3-form transforms as C → C+dTr(ΛF ), so this

action is in fact gauge invariant and respects all the requisite symmetries.

Of course, not all bundles in the same topological equivalence class correspond to

BPS solitons. Rather, the bundles in each equivalence class are related by a change in

boundary conditions which does not change the topology; in the associated SUGRA class,

this corresponds (roughly, as the equations of motion are non-linear) to a shift by a solution

to the vacuum equations of motion. However, since the topological classification of bundles

is precisely the classification by charge (at least up to torsion terms), there is some choice

of background fields which does not affect the topological class and yields precisely the

BPS soliton. In particular we attribute an array of classical moduli, such as the size of

Heterotic instantons, to precisely such a freedom of choice of boundary conditions.

6. Conclusions and Open Questions

We have argued that the topological classification of E8 bundles in 11d, which natu-

rally reproduces the soliton spectrum of M-Theory, reproduces when reduced on S1/ZZ2

the spectrum of Heterotic E8 ×E8, while reduced on S1 reproduces the spectrum and

14 We particularly thank Eva Silverstein for discussions on this topic.
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K-classification of RR and NSNS solitons in Type IIA15. Remarkably, while there appears

to be no simple dynamical role for E8 in Type IIA, there does appear to be a deep role

for its loop group LE8 in the K-Theoretic classification of IIA solitons, including in an

important way its central extension. The relevance of E8 bundles even for perturbative

string theories with no dynamical gauge bosons suggests an important role for E8 in the

construction of the fundamental degrees of freedom of M-Theory.

The most obvious open question is how, precisely, an 11d gauge theory fits with 11d

supersymmetry. This is extremely confusing. Perhaps a natural place to look for hints

to this puzzle is in Heterotic E8 ×E8, where the gauge boson couples in an intricate but

natural and beautiful way. Extending this story to 11d would be an exciting advance.

Another obvious omission in our presentation is the absence of torsion terms in (2.2).

That this is an important omission is clear from any geometry where, for example, an

M5-brane lies inside not an S4 but some orbifold thereof. Following [3], one thus expects

the torsion terms to include some ZZ lift of sq4; however, as there is no canonical lift of

the ZZ2 Steenrod squares of even rank, identifying the correct “derivation” is somewhat

delicate. In the language of Witten, and in the orientable case, one might expect the fourth

AHSS differential to take the form d4 = λ + G4∪. However, the sign in front of λ is not

obvious. It could of course be fixed by comparison with the 5-brane anomaly, but would

still leave ambiguous the correct torsion terms in non-orientable cases, where some lift of

the ZZ2 Steenrod square sq4 must obtain.

One avenue of approach might be to identify a canonical lift for the special case of

11-folds with compatible circle actions. As a first guess, define

S̃q
4

= π∗(Sq3),

where π∗ is the pullback of the projection of the S1 fibration. From various Adem relations

one can argue that this restricts correctly to sq4 if π∗(β) = sq2. A case where one might

test this possibility would be an M5-brane wrapping SU(3)/SO(3) ≡M5, whose anomaly

requires an M2-brane to end upon the M5-brane. Reducing on an S1 to a D4-D2, the

anomaly arises from Sq3 in the D4-brane worldvolume, which is canceled by the incident

15 While we of course do not have a candidate for what the complete K-Theory of L̃E8 bundles

is, it should be identical to that of the universal classifying group K(ZZ, 2) up to corrections in-

volving topology well above 11d, as discussed above. One might for example attempt to generalize

Rosenberg’s K-Theory, [21].
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D2. Pulling back along the S1 fibration, Sq3 should lift to a ZZ-graded rank-four differential

which measures the correct 10d anomaly under bundle projection. It would be interesting

to explicitly check when, if ever, such a non-trivial pullback exists, and when it does

whether it restricts to the ZZ2-graded sq4. We leave such questions to future work.

Finally, it would be particularly interesting to revisit the beautiful and delicate cal-

culations of Diaconescu, Moore and Witten in [3], who showed that the cancellation of

anomalies in IIA and M-Theory agree, though the structures underlying the calculations

in the two cases were apparently unrelated. DMW read this unlikely agreement as strong

evidence for the conjecture that RR fields and charges in IIA are indeed classified by K-

Theory. We expect that the IIA computation will take a natural form in terms of Ê8

bundles, and that in this language the relation to anomaly cancellation in M-Theory will

be immediate. This would be interesting to check directly.
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