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Abstract

Two nonlinear second order differential equations for the amplitude of the
vector potential and for the electrostatic potential are derived, starting from
the full Maxwell equations where the field sources are calculated by integrat-
ing in the momentum space the particle distribution function, which is an
exact solution of the relativistic Vlasov equation. The resulting equations are

exact in describing a hot one-dimensional plasma sustaining a relativistically



intense, circularly polarized electromagnetic radiation. The case of standing
soliton-like structures in an electron-positron plasma is then investigated. It
is demonstrated that at ultrarelativistic temperatures extremely large ampli-

tude solitons can be formed in a strongly overdense plasma.

I. INTRODUCTION

The interest in the theoretical investigations of an electron-positron (e~ — et) plasma
and of the dispersive properties of the EM waves in it arises from numerous situations: it
ranges from the astrophysical and cosmological applications to the laboratory experiments
in connection with ultra-intense laser pulses interacting with matter.

The most recent reconstructions of the dynamics of the early Universe assume that be-
tween 1072 and 1 sec after the Big Bang, matter was constituted by electrons (e™), positrons
(e*) and photons in an almost thermal equilibrium at a temperature much higher than m.c?
[1]. Here, m. and c are the electron rest mass and the speed of light in vacuum, respectively.
Of particular interest is the possibility that at this stage of evolution of the Universe, the
interaction between electromagnetic (EM) radiation and the e~ —e™ plasma produces spatial
density nonuniformities, since it is considered as a possible cause of the strongly inhomo-
geneous distribution of matter in the Universe as appears in our epoch [2]. In addition,
it is believed that strong nonuniformities in the primordial Universe would have affected
the primordial nucleosynthesis rate [3,4] and, as a consequence, the relative abundance of
light [5,6], intermediate mass [7], and heavier elements [8], as well as the baryon-to-photon
ratio, during its successive evolution. On the other side, e~ — et plasmas are also thought
to constitute pulsar and neutron star atmospheres [9], accretion disks [10], active galactic
nuclei [11], and black holes [12]. Moreover, in space physics the e~ — et pair plasmas play
a key role in the model of the physical mechanisms of cosmological gamma ray bursts [13].

Coming to laboratory experiments, after the rapid development of the laser technology

in the last ten years [14], femtosecond laser pulses with intensities up to 102'W/em? have be-



come available for investigating the laser-matter interaction under extreme conditions where
the electron momentum largely exceeds m.c [15]. Moreover, it is foreseen that sometimes
in the future intensities on the order of 10*=2*W/cm? could be in principle available [16],
entering the range of laser fields where an effective production of e~ — e™ pairs is expected.
However, during the interaction of a powerful laser pulse with ultrarelativistic electron beams
(say, tens or hundreds of MeV electrons), presently available laser intensities (in the range of
10%°72'W/em?) are already able to produce an appreciable fraction of e~ — et pairs [17,18].

In many of the physical situations mentioned above, the thermal energy of the electrons

2 so that any ”cold plasma” model

and positrons is of the same order of or larger than m.c
fails in describing the strongly nonlinear interactions of EM waves with such relativistic
plasmas. As a further example, taken from laboratory laser-plasma interaction physics, it
has been demonstrated that the presence of a finite electron temperature, even if modelled
in a very simple way, leads to the stable self-focusing of relativistically intense laser-beams
in an electron-ion plasma [19].

Moreover, the most theoretically important is that in a pure e~ — et plasma a finite
temperature is a key ingredient in order for soliton-like structures to be sustained, as a
result of the balance between the radiation pressure and the thermal pressure [20]. In such a
system no charge separation is expected to occur due to the same inertia of the two plasma
components.

Several papers have been published on the problem of the nonlinear propagation of EM
waves in an e~ — eT plasma and in particular on the possibility of the existence of solitary
structures in it [1,12,21-23]. In particular, bright soliton (EM field peaking) solutions have
been found with the addition of a small positive ion concentration (in order to have elec-

trostatic fields to balance the radiation pressure) [21], while dark soliton (density peaking)

have been found in a cold [22] as well as in a warm [23] pure e~ — et plasma. A set of

+ +

localized solutions for e~ — e as well as for e~ — e*-ion plasmas under the relaxation theory

have been obtained in [24].

Recently, the possibility of existence of one-dimensional bright solitons of very high



amplitude in an overdense e~ —e™ plasma has been demonstrated on the basis of a relativistic
hydrodynamic formulation retaining the finite plasma temperature subjected to an adiabatic
equation of state [20]. The choice of the adiabaticity conditions is consistent with the closure
of the moment equations derived from the relativistic Vlasov equation by assuming the
relativistic Maxwellian distribution function [25]. Strong plasma density and temperature
inhomogeneities are then possible, which correspond to strong radiation concentrations and
to a large frequency downshift.

In this paper we demonstrate that large amplitude one-dimensional bright solitons can
exist in an overdense e~ — et plasma, that is for w < v/2w,., even on the basis of an
isothermal hydrodynamic model derived by assuming a priori a distribution function which
is an exact solution of the relativistic Vlasov equation. To our knowledge, it is the first
derivation of soliton-like distributions of EM radiation based on a relativistic kinetic model.
This type of exact solutions of the Maxwell-Vlasov equations represents an extension of the
well known BGK solutions [26,27], that describe travelling electrostatic waves in plasmas as
well as the magnetostatic equilibria of collisionless plasma-magnetic configurations [28-32].

We derive numerical solutions of the relevant second order differential equation for the
vector potential amplitude and discuss the results, with particular interest in their com-
parison with those of the adiabatic model [20]. In Sect.II we give the particle distribution
function and discuss under which conditions it is an exact solution of the relativistic Vlasov
equation. The sources for the EM field are then calculated and the Maxwell equations are
written explicitly for the general case of a multicomponent plasma. The equations are then
reduced to the case of a one-dimensional e~ — et plasma. Localized stationary solutions for
arbitrary amplitude, frequency, and temperature are found in Sect.IIl. Sect.IV is devoted to

concluding remarks.



II. DERIVATION OF THE FIELD EQUATIONS FROM THE KINETIC PLASMA

MODEL

Let us consider the following distribution function for the charged particles of j-th species:

No;
[i(W;,Pj1) = m5(PJL)eXP (‘T]) ()

where we have defined the total particle energy (rest mass, kinetic, and potential)
Wi(r, 1) = m;v; + ¢;o(r, 1), (2)
the particle generalized momentum
P;(r,1) = p; + ¢;A(r,1), (3)

and the relativistic factor
2\’
= (1+ 2] )

Furthermore, in the above equations the functions ¢(r,t) and A(r,t) represent the electro-
static and vector potentials, respectively, 3; = T;/m; is the ratio of the thermal energy to
the rest energy of the particle of jth species, m;, q;, No;, p;, T; are the rest mass, electric
charge, unperturbed density, momentum, equilibrium temperature of the jth species, and
K (€) is the modified Bessel function of first order and argument ¢

Eq.(1) describes a highly anisotropic particle distribution function with a finite constant
parallel temperature and a transverse beam-like distribution in the momentum space with
a zero perpendicular energy spread. This is physically meaningful whenever the particle
thermal spread transverse to the radiation propagation direction (or in the plane of the
wave electric field) is negligible with respect to the particle motion under the action of the
EM field.

The é-function in Eq.(1) assures that the L-component of the generalized momentum

(i.e., perpendicular to the direction of the spatial gradients) be preserved. In our model this



condition is imposed a priori. For the sake of brevity of the notations, we have used and
will use the physical units where the speed of light is unity.

If we substitute Eqs.(1-4) into the relativistic Vlasov equation

af; | p; 0fi
ot myy; Jp;

. Vf] + q; [E(I‘, t) + P; X B(I‘7 t)] =0 (5)

m;y;
for the 5th distribution function, several terms cancel out and we remain with
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It is easy to verify that if we consider a one-dimensional geometry, where all the physical

quantities depend on one spatial coordinate only (say z), assume the circular polarization for
the EM radiation, and take advantage of the conservation of P, then Eq.(6), and therefore
Eq.(5), are exactly satisfied by stationary EM energy distributions. As a consequence, the
distribution function of Eq.(1) is an exact solution of the one-dimensional kinetic equation
and 1t can be used to calculate the consistent charge density and current density distributions
which enter the Maxwell equations as sources for the fields. To this aim, let us begin to

calculate the lowest order moments of Eq.(1), the particle density

Ki(v8;7) ©;
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and the transverse component of the current density

K ~ ,/8,_1 .
Jii(r,l) = %/VL [i(Wi, Pin) &py = —|g;| Noj M_f) aji exp (—ﬁ), (8)
[Xl(ﬁj ) /8]

where normalized field variables have been used, that is g;¢(A1)/m; — ¢;(a;L), vi; =
m, and K, (&) is the modified Bessel function of order n-th and argument £. We
observe that the particle density and the current density distributions in general differ from
what one would obtain by assuming the Boltzmann equilibrium. It is possible to show that
the Boltzmann distribution is recovered only under the simultaneous limits of both small
temperature and small radiation amplitude.

The corresponding normalized one-dimensional equation for the the vector potential

reads



Alg, — ALy = (9)
_ . Ko(y/1+at A7) o <£) N ZKO[\/l +p?Z%a% (pAi)7] o (_ Z‘P)
B B LAUWAN Kil(ph) 1] PN

where the new dimensionless variables, independent of the species, have been defined:

€A (d)/me — ai(p), wpet(x) — t(z). Moreover, \. =T, /m. = B, \i = Ti/m., p = m./my,
and 7 is the ion charge. By introducing the complex amplitude ay (z,t) = a,(z,t)+ia.(x, 1),
which suitably describes the circular polarization of the e.m. field, and looking for localized

solution (a, = 0) of the form a(z,t) = a(z)e™!, where w is the field angular frequency,

Eq.(9) becomes

a +w2a($) = (10)
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In the same variables, the equation for the electrostatic potential reads

Y e Ki(V1 + a? /\e_l)eXp<¢>_ (11)
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Eqs.(10,11) constitute a closed set of one-dimensional relativistic equations for the fields

interacting with a hot, two-component plasma, whose macroscopic state has been consis-
tently derived from a solution of the kinetic Vlasov Eq.(5). Once they are solved, Eqs.(7,8)
can be used to calculate the corresponding particle density and current density distributions.

Eqgs.(10,11) admit the Hamiltonian:

[(a;)Q + w?a® — (4,9;)2} + W(a, ) = constant, (12)

DO | —

H(av agm ¥, 9‘9;7 w, /\67 /\z) =

where the constant is zero for localized solutions with a,a’, ¢, ¢! — 0 for || — co. The

xr

function W reads

W(a,p) = =X [1 —V1+a? B Kl(—l;\_f)/\e_l) exp (%)] - (13)
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Moreover, exponentially decaying solutions of Eqs.(10,11) exist only for

Aw? = —w?>0. (14)

Ki(AZ1) Ki[(pAi)~']

In the zero temperature limit, Eq.(14) gives the well known results w < /T + pZ, cor-
responding to the condition of an overdense plasma. The requirement that, in order to
trap the radiation, the background plasma should be opaque to the radiation frequency is
physically well understandable. One may ask a question of how this condition is dynami-
cally achieved in an real experiment, for example during the interaction of a relativistically
intense laser pulse with a plasma. Indeed, particle-in-cell numerical simulations [33] show
that during the propagation of a relativistically intense laser pulse in an underdense plasma,
a non-negligible fraction of the laser energy is lost due to its trapping into quasi-stationary
localized density depressions which are formed behind the pulse. In these regions the ra-
diation frequency turns out to be lower than the laser frequency. The mechanism which
produces the frequency down-shift has been explained in [34] and can be summarized as
follows: during the nonlinear interaction the pulse is strongly distorted and depleted by
Stimulated Raman Scattering, leading to the reduction of its amplitude. Since the time
scale of the depletion is much longer than the period of the laser light, we can assume that
the process occurs at constant photon number, the adiabatic invariant. Then the ratio of
the laser energy (proportional to the square of the field amplitude) to the photon energy
(proportional to their frequency) remains constant and as a consequence parts of the laser

pulse acquire a frequency which is below the plasma frequency, becoming trapped.

III. LOCALIZED SOLUTIONS IN AN F~ — ET PLASMA

Let us apply our model to the case of an e~ — et plasma (with T.- = T.+ = T'), where
the masses and moduli of the charges of the two species are equal, that is p = Z = 1. Since

the inertia of charged particles constituting the plasma is the same, no charge separation is



expected to occur. Therefore, no electrostatic potential is excited during the evolution of
the system (¢ = 0 at any time). We therefore remain with a single nonlinear second order

ordinary differential equation for a(x)

[(0(\/ 1 + CE2 /\_1)
[(1(/\_1) ’

al +w'a(z) = 2a

(15)

where A.- = A+ = A. Solutions of Eq.(15) in the form of localized concentrations of
the e.m. field are found under the condition that for large |z|-values they should be
exponentially vanishing; oscillating functions should be avoided. By linearizing Eq.(15),
the equation a’ — Aw?a(z) ~ 0 is found and the above mentioned condition becomes
Aw? = 2K5(A71) /K1 (A7) —w? > 0. In Fig.1 the function Aw? = 0 is plotted in the form of
A vsw (thick solid line): localized solutions are found in the region to the left of this curve. It
is seen that the existence of soliton-like solutions is permitted in high temperature, strongly
overdense plasmas. It means that, in order to trap super-intense radiation (upper-left side
of the plot in Fig.1), the background plasma density should be much higher than the critical
one. The critical density for an EM wave of frequency w is defined as N. = m.w?/(4me?).

It is easily verified that Eq.(15) admits the Hamiltonian of the form

H(a,a ;w,\) =

Y x?

(a7 + ] + V(@) = constant, (16)

DO | —

where the constant is zero for localized solutions (i.e. with a(z),a! — 0 for |z| — o0).

Moreover, V(a; ) = 2A(N —1) = 2X [\/1 + a? Ml—l W — 1] . Here and in what follows
the particle density N is normalized to the unperturbed density N.,. Real phase space

trajectories are given by
1
al = {—QV(a; A) — w2a2}2 , (17)

for V(a;A) < —3 w?a® < 0. In particular, Ng = 1 — (w?ad)/(4X), where, ag and Nj are the
values of the normalized field amplitude and of the normalized particle density at x = 0,
respectively.

In Fig.1 a bundle of oblique lines represents the function A = (w?ad)/[4(1 — Ny)] for

different values of ag and Ny. Each group of lines refers to a given value of ag, from 0.1 up

9



to 100, from the bottom to the top. Inside each group, Ny decreases moving to lower lines.
The considered central density values are 0.99, 0.9, 0.7, 0.5, 0.3, and 0.1. Moving along a
line, the temperature and the radiation frequency change in order to maintain constant ag
and Ny. For given frequency w and amplitude ag values, in the limiting case of A — oo the
plasma density tends to be uniform, Ny — 1.

In addition, Eq.(15) can be led to quadrature giving

a(z) da
ty = / . (18)
a(0) {=2V(a; ) — w?a?}?

The particle density and the complex amplitude of the current density can be calculated in

terms of a(z), that is

Vi) = VT BT 19)

) _ Ko(v/1+a% X7h)
](.ZL‘) =a [{1()\_1) )

(20)

respectively. We notice that the plasma density is a positive definite quantity, as it should
be. This guarantee of density positivity is one of the important consequences of the finite
temperature. In zero temperature models unphysical negative density solutions often appear.

The finite value of @ which makes the r.h.s. of Eq.(17) equal to zero, that is a4 such that
a!. = 0, gives the maximum amplitude of the corresponding localized solution. In Fig.2A
a4 has been plotted as a function of the temperature for several values of the radiation
frequency, w = 0.1 — 1.1, illustrating the temperature interval in which soliton-like solutions
exist. Also, the density perturbation, N — 1 (B), and the fluid velocity, v = j/N (C) are
reported. It is seen that at low temperatures, an almost full plasma density evacuation can
occur, even if the amplitude of the soliton is small. This is the consequence of the fact that
in a plasma where the charged particles have all the same mass, their inertia is the same
and therefore no charge separation is expected to occur. On the other side, given a small

radiation pressure perturbation, it can be balanced only by the thermal pressure, which in a

cold plasma is also quite small. An equilibrium with low temperature and small amplitude

10



radiation concentration is possible. In Fig.3 the case of a soliton in a low temperature
(A = 0.01) plasma is presented. The field amplitude (A), the plasma density (B), and the
fluid velocity (C) distributions are plotted as functions of expelled, it is possible to assume
N = 0 in Eq.(18) and integrate it analytically. It turns out that the radiation profile is

approximately

1/2
a(z) = 2) cos(we), (21)

w

which is plotted also in Fig.3A4, by a dotted line. It represents a cosine-soliton in the region
of full cavitation. That the cavitation may occur at low temperatures is also understandable

by taking the limit A — 0 in Eq.(19). The density distribution becomes

\/1-}-&2—1]

: (22

N(z)=(1+ a2)1/4exp [—

which manifests a strong dependence on the background temperature. In Fig.4 the same
plots as in Fig.3 are shown for an ultra-relativistic temperature plasma, with A = 30. Here,
due to the extreme high temperature, the density depletion is only partial.

In the small amplitude limit, it is possible to obtain an analytical solution to Eq.(15). It
become a cubic nonlinear Schroedinger equation, that is

3

al_ — Awla(z) ~ —%, (23)
where the “frequency shift” is
Ko(A™h)
Aw? =2——= — 0’ 24
IO R 24

which should be positive in order to have localized (non periodic) solutions. The solution of

Eq.(23) writes

a(z) = V2XAw?sech(V Aw?z), (25)

11



IV. CONCLUDING REMARKS

In the present paper we have developed a relativistic theory of transverse soliton dynamics
in a hot multi-component plasma, deriving the EM field equations with the source terms
calculated on the basis of an exact solution of the relativistic Vlasov equation. Although we
have considered a very particular case of a one-dimensional standing distribution of circularly
polarized EM field, the resulting equations are exact in describing a hot plasma sustaining
a relativistically intense EM radiation. In this respect Eqs.(10,11) allow one to investigate
soliton-like structures at arbitrary particle temperatures and field intensities for any choice
of the plasma constituents.

The distribution function in Eq.(1) describes a strongly anisotropic population with a
longitudinal temperature and no transverse thermal energy spread with the particle dynam-
ics in the plane of the electric field being dominated by the EM radiation. Our analysis refers
to a spatially uniform distribution of plasma temperature, corresponding to an isothermal
assumption on the equation of state of the system. In [20] the case of an adiabatic closure
of the relativistic hydrodynamic equations has been investigated, indicating the possibility
of the creation of a highly inhomogeneous temperature distribution.

The case of an e~ — et plasma has then been considered, for which it is essential to
retain a finite particle temperature. Indeed, the thermal motion opposes the radiation
pressure allowing the establishment of an equilibrium and then the existence of soliton-like
structures. Similarly to what has been found in [20], equilibria with extremely high field
intensities in strongly overdense plasmas have been demonstrated. While, in contrast to the
adiabatic case, no lower limit occurs on the temperature in order to have solitons. However,it
is to be noted that the hydrodynamic model in [20] predicts that, although the unperturbed
temperature (that taken at infinity) has a lower limiting value, in the region of the soliton
the temperature may decrease appreciably even by orders of magnitude.

A further point to be stressed is that the present analysis predicts the possibility of full

plasma cavitation in an extended spatial region at sufficiently small plasma temperatures.
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Indeed, in these zones the vacuum solution of the field Eq.(15) results in cosine-solitons.
We believe that the present paper, besides being to our knowledge the first investigation
of EM soliton based on a relativistic kinetic model, is particularly important in that it
demonstrates, in parallel with [20], that also in a strongly overdense isothermal e~ — e*
plasma large amplitude EM solitons can exist. Moreover, such EM concentrations are always

accompanied by appreciable density inhomogeneities, what can be thought as a possible seed

of primordial inhomogeneous distribution of matter.
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FIGURES

FIG. 1. The function Aw? = 0 is plotted in the form of A vs w (thick full line). The curve
represents the maximum background temperatures at which a soliton-like solution can exist for the
given radiation frequency. The straight lines represents the loci of points of given normalized peak
field amplitude, ag, and central plasma density, Ny, expressed in the form of A versus w/w,. Four
groups of lines are shown corresponding to ag = 0.1 (dotted lines), 1 (dashed lines), 10 (dot-dashed
lines), and 100 (continuous lines). Within each group of lines, Ny decreases moving towards lower

lines, corresponding to the values 0.99, 0.9, 0.7, 0.5, 0.3, and 0.1.

FIG. 2. The peak amplitudes of the localized solutions a4 (A), and the corresponding values
of the plasma density perturbation N — 1 (B), and of the fluid velocity v = j/N (C), are plotted
vs the background temperature, for different frequencies of the e.m. radiation, w = 1.1 (a), 0.9 (b),

0.7 (¢), 0.5 (d), 0.3 (e), and 0.1 (f).

FIG. 3. The spatial distribution of the field amplitude a(£) (A), of the plasma density N (£)/Ng
(B), and of the fluid velocity v = j/N (C)are displayed for a low temperature plasma with A = 1072

and w =0.1.

FIG. 4. The same quantities as in Fig.3 for an ultrarelativistic plasma with A = 30 and w = 0.1.
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