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1 Introduction

Since the discovery of instability at KEK photon factory [2], it was realized
that the electron cloud can drive the fast multi-bunch [3] and single bunch
instabilities [4] in the positron storage rings. The instabilities affect perfor-
mance of the B-factories and design of the future linear colliders. Effects
of the e-cloud on the beam dynamics is conveniently described by the ef-
fective wake field [5] which can be calculated [6] given the density of the
e-cloud. The estimate of the density is the main difficulty of the problem.
The e-cloud is neither static in time nor uniform in space and depends on
the bunch population Nb, bunch spacing sb, geometry of the beam pipe, the
flux of the synchrotron radiation (SR) photons, and the yield of secondary
electrons. Due to these difficulties, the density is usually determined either
by elaborate simulations or considered as a fitting parameter. Nevertheless,
it is highly desirable to have some analytic estimate of the density to inter-
pret the results of simulations and for scaling of these results with machine
parameters. The goal of the paper is to provide such an estimate. The results
are compared with the simulations for the NLC [1].

We consider two mechanism of the e-cloud formation: the primary jets
of the photo-electrons and thermalization of electrons in a part of the beam
pipe. The paper is organized as following. In the next section, basic notions
of the e-cloud are reminded. Then we consider jets of photo-electrons gener-
ated by the high flux SR. The density and the energy distribution are given
for this mechanism. In Section 4, thermalization of electrons trapped in the
self-consistent potential is considered. The e-cloud is described by Boltz-
mann distribution. The form of the self-consistent potential is found and the
temperature of the distribution is determined from the condition of quasi-
equilibrium. The applicability of such a model to the e-cloud interacting with
a bunched beam is discussed. Effect of the multipactoring on the electron
distribution is considered in Section 5 and the effect of the finite bunch length
in Section 6. Finally, the threshold of the transverse coupled-bunch and the
head-tail instability driven by the wake of the e-cloud is calculated in Section
7. Wherever it is possible, our results are compared with simulations [1].

As an example, we consider the e-cloud in the NLC main damping ring.
The relevant parameters of the ring are listed in Table.

2 Steady-state: coasting beam, no SR

Let us start with the simplest case: a coasting beam with the average linear
density Nb/sb, a straight beam pipe with the beam pipe radius b, and no SR.
Electrons of the cloud oscillate in the steady-state potential of the relativistic
beam plus the space-charge potential of the cloud. Let us define the force
F and the potential U by the equation of motion d2y/ds2 = F = −∂U/∂y,
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Parameter Description Value
E, (GeV) beam energy 1.98
Nb bunch population 1.5 1010

C, m circumference 299.92
sb, m bunch spacing 0.84
σz, cm bunch length 0.36
σx µm horizontal rms 41.0
σy µm vertical rms 4.97
δ relative energy spread 0.90910−3

b, cm beam pipe radius 1.6
B, T dipole field 1.2
Lb, m bend length 0.96
Ld, m drift length 0.975
E0, eV peak of secondary electrons 5.0
ET , eV energy spread of secondary electrons 2.0

Table 1: Parameters for the NLC main damping ring

where s = ct. Such a definition means that U is measured in units of mc2.
The force due to the beam at small distances y << σy is linear in y,

Fb = − 2reNby

sbσy(σx + σy)
. (2.1)

It defines the average linear frequency Ω̄0/2π of the vertical electron oscilla-
tions

(
Ω̄0

c
)2 =

2reNb

sbσy(σx + σy)
, (2.2)

provided the space-charge force can be neglected. Here re is the classical
electron radius, σx,y are the transverse rms size of the beam.

At large distances from the beam, r >> σx, the force rolls off as 1/r
and the motion of electrons is non-linear. Approximate expression for the
potential of the beam valid in the both extreme cases can be written as

Ubeam = −Nbre

sb

ln[
b2

r2 + σy(σx + σy)
]. (2.3)

Interaction of electrons in the cloud with the density n(r) adds the space
charge potential (in units mc2)

USC = 4πre[
∫ b

0
r′dr′n(r′) ln

b

r′
−

∫ r

0
r′dr′n(r′) ln

r

r′
]. (2.4)

The Hamiltonian is H(r, r′, s) = (1/2)(v/c)2 + U(r), U = Ubeam + USC . Here
we assumed the round pipe geometry.

Consider a simple example: the total potential calculated for the constant
n(r) = n0 is U/(πn0reb

2) = 1 − (r/b)2 − g ln(b2/r2). The potential depends
on g = Nb/(πsbb

2n0), the ratio of the densities of the beam and of the cloud
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averaged over the beam pipe cross-section. The potential is shown in Fig.1.
It has maximum at r = rm, rm/b =

√
g and is monotonic for g > 1 within

the beam pipe. For g < 1 it has maximum at the distance rm < b, and the
beam can not be stable: electrons go to the wall and the cloud decays. The
condition g = 1 defines the maximum density

n0 =
Nb

πsbb2
. (2.5)

This is the well known condition of the neutrality. The condition formulated
in this form is, actually, independent of the form of the distribution n(r):
the result Eq. (2.5) can be obtained directly from Eqs. (2.3),(2.4) if n0 is
understood as the average density of the cloud, n0 = (2/b2)

∫
rdrn(r).
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Figure 1: Potential U/U0 vs r/b, where U0 = πren0b
2. The values of the

parameter g = Nb/(πsbb
2n0) are shown in the plot

For the NLC parameters, n0 = 2.2 107 cm3 . This agrees quite well with
the results of simulations (M. Pivi) which give the average in time density
at saturation 3.0 107 cm−3 at low level SR.

At the high level of the SR, the average density in simulations is higher,
6. 107 cm−3. This indicates that the average density not always is determined
by the condition of neutrality and may depends on the level of the SR and
the yield η of the secondary electron emission. If the SR is strong (or, the
photo-electric yield Υ is high), there is a high flux of primary photo-electrons
with the density comparable or higher than that given by the condition of
neutrality. Such a situation may be typical at high beam currents. In the
extreme case, electrons go wall-to-wall between bunches. In this case, there
is no electron cloud if it is understood as electrons oscillating many times
before they hit the wall. The effect on the beam dynamics in this case may
be different from the effect of the e-cloud. In the later case, the offset of the
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leading bunch causes dipole oscillations of the cloud while in the first case
the offset changes the velocity and the shortest distance to the beam of the
ejected photo-electrons.

We consider two extreme cases: the low and the high level of the SR. The
second case is simpler and it is considered in the next section.

3 The SR jets

The electrons in the beam pipe are mostly the primary photo-electrons and
the secondary electrons. The multipactoring generates low-energy electrons
with the energy distribution similar to that of the photo-electrons and they
may be considered simultaneously.

In the case of a bunched beam, a kick to an electron at large distance
r >> σx is

∆(
v

c
) = −2Nbre

r
. (3.6)

A photo- electron produced at the wall sees the field of the parent bunch

and starts moving toward the beam with the velocity v/c =
√

2E0/mc2 +

2Nbre/b, where [1] E0 = 5 eV. With the NLC parameters, the second term,
approximately, doubles v/c. To the time of the arrival of the next bunch, the
electron is at the distance 0.78 cm from the beam. It gets a kick from the
second bunch, moves to location at the distance 0.94 cm on the other side
from the beam and then hits the wall with the energy, approximately, 34 eV
before the next bunch arrives. Such primary photo-electrons may explain the
peak at E � 30 eV obtained in simulations [1] with the high photo-electric
yield Y = 0.2.

The secondary electrons don’t see the parent bunch and have the starting

velocity v/c =
√

2(E0 ± Espread)/mc2 where [1] Espread � 2 eV. Such electrons
are very close to the beam, at 2 mm when the second bunch arrives, and then
hit the wall with the energy 446 eV, at the maximum of the yield of secondary
electrons. The initial spread of energies is converted to the spread of energies
of electrons hitting the wall in the range from 192 to 2135 eV.

These arguments are illustrated in Figs. 2 and 3 depicting results of
the 1 dimensional tracking of 1000 particles generated initially at r = b
with random distribution in energy around 5 eV with rms spread 2 eV. A
bunch is a sequence of 11 slices with population corresponding to Gaussian
distribution within a bunch. Particles hitting a wall are replaced by a new
particle distributed with energy spread 2 eV. Results in Fig. 3 show that
high energy tails of the distribution are due to particles crossing the beam
line and illustrate smearing of the initial jet into the e-cloud.

As we can see, the motion of electrons is very simple: electrons move
in compact groups (jets), and there are, approximately, two jets within the
beam pipe. The length of a jet is defined by the initial energy spread. The
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Figure 2: Density profile n(r) (left) and the energy distribution dN/dE (right)
of the lost electrons

space-charge of the jets tends to produce an additional spread of the jet.
However, if the beam current is high, the time of flight is short and the jet
is smeared mostly due to the initial energy spread.

The density of the jets of primary photo-electrons is proportional to the
number of photons

Nγ =
5α0γ

2
√

3

Lb

R
(3.7)

radiated by a positron in the bend with radius R per pass, number of jets
kjets within the beam pipe, and the volume of a jet. The density averaged
over the length Ld of the drift section where SR is absorbed and over the
beam pipe cross-section, is

< neγ >= Y
NγNb

πb2Ld

kjets. (3.8)

For the NLC parameters and Y = 0.2, kjets = 2 and the average density
< neγ >= 5.5 107 1/cm3. This is higher than the density n0 given by the
condition of neutrality and is very close to the result of simulations with the
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Figure 3: Averaged over 10 passes energy distribution of the lost electrons
(bottom: Log scale).

large yield Y of the primary photo-electrons.
In this case, the jets are the dominant contributor to the electron den-

sity. The space-charge field of the jets can clean the beam pipe kicking out
electrons which may be produced by scattered photons or photo-ionization
of the residual gas.

The density njet in a jet crossing the beam line can be larger than the
average density < neγ >. In simulation it was averaged over the area with
the height 10σy. With such a definition and ljet = 0.375 mm defined by the
energy spread, njet is larger than < neγ > by a factor πb2/(10σyljet) � 4000.
In simulations this factor was about 103 (M. Pivi).

The energy spread of the electrons is translated in some distribution over
the shortest distances from the bunch and then in the distribution over the
energy of electrons hitting the wall. Let us assume the uniform distribution
of electrons along the jet. Then, if the shortest distance of the jet centroid
from the beam line is d and the length of the jet is ljet, the energy E(z) of
an electron kicked to the wall depends on it location z in the jet |z| < ljet/2,

dN

dE
= Y NbNγ

∫
δ[E − mc2

2
(
2Nbre

d + z
)2]

dz

ljet
. (3.9)

Integration gives

dN

dE
=

Y NbNγ

ljet
(
2Nbre

mc2
) (

mc2

2E
)3/2. (3.10)

The distribution is shown in Fig. 4 for Y = 0.2.
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Figure 4: Number of electrons dN/dE hitting the wall per bunch. Electrons
are accelerated by the beam while a jet crosses the beam line. Y = 0.2

The high energy tail of the spectrum Eq. (3.10) of the electrons accelerated
from the jets crossing the beam line depends on the beam current, beam pipe
geometry, but also on the yield of the primary photo-electrons which may
vary with the dose of radiation and many other factors. The low energy
part of the spectrum in this mechanism is suppressed if the density of the
electron cloud (electrons making many oscillations before hitting the wall) is
low at large distances from the beam. It is true that the energetic electrons
of the jets may produce large number of secondary electrons. The energy of
such electrons, however, is low, of the order of (mc2/2)(2Nbre/b)

2 � 7 eV.
Eventually, smearing of the jets leads to formation of the electron cloud.

4 Low SR flux, cloud formation

At the low beam current, electrons traveling from wall to wall experience
many kicks from passing bunches. The kicks may change the electron direc-
tion making the motion, basically, random. Such electrons form the e-cloud.
In practice, the number of random walks is not too large and the e-cloud
is never stationary. Nevertheless, the e-cloud is a useful notion describing a
possible extreme situation.

The phase space of electrons can be divided in three regions: one, in the
vicinity of the beam, where a large kick from the beam sends electrons to
the wall each time a bunch passes by. The size of this region is of the order
of r/b � p0 where p0 = 2Nbresb/b

2, an important parameter of the problem.
It is clear that e-cloud may exists only if p0 << 1. Otherwise, for p0 > 1,
most of electrons go wall-to-wall after each bunch passage. It is worth noting
that, for the NLC, p0 = 0.277 and would exceed one for Nb by only a factor
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of three larger than the NLC bunch population.
In the second region electrons move more or less randomly. The third

region is in the vicinity of the wall. Generally, there is a bump of the potential
well in the vicinity of the wall which defines how many of the secondary
electrons can go to the central regions. Such a sheath works as a virtual
cathode. The density in the sheath near the wall depends on the balance of
the number of electrons kicked to the wall from the central region and the
number of electrons produced at the wall by the SR and multipactoring.

4.1 Stationary e-cloud, averaged beam

In the zero approximation, the average beam potential at the distances r >>
σ⊥ depends only on the bunch spacing,

Ub(r) = −2Nbre

sb

ln(
b

r
). (4.11)

The average over time distribution function of electrons trapped in this po-
tential well can be taken as Boltzmann distribution

ρ(r, v) = |N |e− 1
T

[(1/2)(v/c)2+U(r)], (4.12)

where T is temperature in units of mc2, |N | is the normalization factor,∫
2πrdrdvρ(r, v) = πb2n0. The density of the cloud

ncl(r) =
∫

dvρ = |N |c
√

2πTe−U/T = n0
b2

2

e−U/T∫
rdre−U(r)/T

. (4.13)

Here n0 = (b2/2)
∫

rdrncl is the average density of the cloud to be defined.
The potential U in Eq. (4.13) is the total potential U = Ub + Ucl of the

beam and the cloud. The later is defined by the Poisson equation with
the right-hand-side (RHS) proportional to ncl. Let us define dimension-
less x = r/b and measure all potentials in units of T , introducing V (x) =
(U(r)/T )r=bx. Then, for a cylindrically symmetric beam pipe, the Poisson
equation takes the form

1

x

∂

∂x
x
∂Vcl

∂x
= −ĝ

e−V (x)∫
xdxe−V (x)

, (4.14)

where

V (x) = Vcl − g ln(1/x), g =
2Nbre

Tsb

, ĝ =
2πreb

2

T
n0. (4.15)

In the stationary case, the total potential U(r) and the force dU(r)/dr are
zero at r = b. That gives the boundary conditions V (1) = 0, (dV/dx)x=1 = 0
or, for the space-charge potential,
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Vcl(1) = 0, (
dVcl

dx
)x=1 = −g. (4.16)

The space-charge potential is finite at x = 0. Integration of Eq. (4.14)
with the weight x gives (dVcl/dx)x=1 = −ĝ. Comparison of this result with
Eq. (4.16) gives ĝ = g and defines the average density

n0 =
Nb

πsbb2
, (4.17)

reproducing the density given by the condition of neutrality. Note, that
the average density n0 is independent of the shape of the density ncl(r) and
temperature T .

Potentials V (x), Vcl(x), and

ncl =
n0

2

e−V (x)∫ 1
0 xdxe−V (x)

(4.18)

depend only on one parameter g. It is defined in the next section.
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Figure 5: Total self-consistent potential V (x) and the beam potential Vb =
−g ln(1/x) vs x = r/b. Parameter g is found from Eq. (4.23).

4.2 Stationary distribution, bunched beam

In the approximation of the averaged beam potential, electrons have regular
motion oscillating in the self-consistent potential well. However, for the NLC
DR, Ω̄0,y/2π = 31.7 GHz and the number of oscillations between bunches
Ω̄0,ysb/(2πc) >> 1. The linear frequency of oscillations during the bunch

passage ΩB is higher
√

sb/σz times. Even the number of oscillations per
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bunch length ΩBσz/c is large, nosc = 3.67. Obviously, the beam potential
cannot be approximated by a potential of the coasting beam.

Nevertheless, an electron shifts its position between bunches only by the
distance 2Nbresb/b = p0b � 0.27 b. Hence, before an electron can reach the
wall, it is kicked several times. Electrons move changing direction and the
motion is similar to a random walk. We can estimate the number of kicks
npass an electron gets before it can reach the wall from

npass < (
2Nbresb

r
)2 >= b2, (4.19)

what gives npass � 1/p0. It is clear again that it makes sense to speak about
e-cloud only for p0 << 1. For the NLC parameters, p0 � 3 − 4.

In the previous section, the temperature T remains undefined. Now we
take into account the beam bunching considering bunches as point-like macro
particles. The goal is to define the temperature T and the average over time
density of the cloud.

The bunching of the beam has several implications. First, instead of the
steady-state beam potential, an electron in the beam pipe sees periodic kicks.
Neglecting the space-charge potential, we can write a simplectic map M(x, v)
giving transformation of the electron coordinates per bunch spacing [x, v]− >
[x̄, v̄] = M(x, v)[x, v]. The eigen values of the Jacobian D[M [x, v], {x, v}] are
real only for x < σ⊥/b, i.e. in the region of the linear motion.

Elsewhere the motion is chaotic and the average in time distribution
function can be taken in the form of Eq. (4.12) although the approximation
of the coasting beam is not valid. That is possible due to the other effects
of the bunched beam: heating of the cloud caused by the kicks balanced by
the cooling of the cloud due to the loss of electrons.

A kick from a bunch increases the average energy of the e-cloud by

∆Egain = 2π
∫

rdrdvρ(r, v)(
2Nbre

r
)2, (4.20)

where integration is over the phase space of the cloud.
The electrons in the vicinity of the beam are kicked to the wall and are

replaced with the low energy secondary electrons. The later process produces
cooling. To be lost, an electron has to reach the wall before the next bunch
arrives. The trajectory of an electron between bunches can be estimated as
following. Consider an electron with the initial conditions r, v/c just before
a bunch arrives. A bunch changes β = v/c to β0 = v/c − 2Nbre/r. After
that, an electron moves in the field of the space charge. Let us assume, for a
moment, a uniform density of the cloud, ncl(r) = n0. Then, the space-charge
force is 2πren0r and the electron is at r̄ = r cosh(Ωsb/c)+(cβ0/Ω) sinh(Ωsb/c)
at the time of arrival of the next bunch. Here (Ω/c)2 = 2πn0re. A quasi-
stationary cloud can exist only if (Ωsb/c)

2 = p0 << 1. For the NLC param-
eters, n0 = 2.2 107 cm−3, and (Ωsb/c)

2 = 0.277. In the case of small (Ω/c),
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r̄ = r + (v/c − 2Nbre/r)sb and is independent on n0. The electron hits the
wall if |r̄| > b, or

v

c
>

b − r

sb

+
2Nbre

r
, or

v

c
< −b + r

sb

+
2Nbre

r
. (4.21)

All electrons within this part of the phase space get lost and are replaced by
the electrons from the cloud. The energy loss is equal to the energy of the
lost particles before they were kicked to the wall:

∆Eloss = 2π
∫

rdrdvρ(r, v)[
1

2

v2

c2
+ U(r)], (4.22)

where integration is restricted by the condition Eq. (4.21) and 0 < r < b.
Here we neglected the energy brought to the cloud by the low energy sec-
ondary electrons coming in from the wall.

The balance of energies Eq. (4.20) and Eq. (4.22) gives the following equa-
tion:

gp0

∫ 1

0

dx

x
e−V (x)F (x) =

∫ 1

0
xdxe−V (x)[(

1

2
+V (x))(1−F (x))+

1

2
√

π
(z+e−z2

++z−e−z2
−)],

(4.23)
where

F (x) = (1/2)(Erf [z+] + Erf [z−]), p0 = 2Nbresb/b
2, (4.24)

and

z+ =

√
g

2p0

(1 − x +
p0

x
), z− =

√
g

2p0

(1 + x − p0

x
). (4.25)

Let us remind that, given p0, V (x) depends only on g. Eq. (4.23) defines g,
i.e. the temperature T . It is plausible to expect that g � 1/ ln(1/p0). Given
p0, the solution of Eq. (4.14) and Eq. (4.23) can be obtained numerically.
Calculations for the NLC parameter p0 = 0.277 define g = 0.552, what is
close to the estimate above, 1/ ln(1/p0) = 0.780. The temperature in units
of mc2 is T = g(2Nbre/sb), or T = 92.4 eV. The potential V (x) is shown in
Fig. 5. At small distances it goes as beam potential but at large distances
is flatter due to the space charge contribution. The density profile n(x)/n0,
Eq. (4.18), for the same parameters is shown in Fig. 6. The density at the
beam line (at the moment of a bunch arrival) is substantially larger that the
average density n0.

The number of electrons with the energy E hitting the wall of the drift
chamber with the length Ld is

dN(E)

dE
= 2πLd

∫
rdrdvρ(r, v)δ[

1

2
(
v

c
− 2Nbre

r
)2 + U(r) − E], (4.26)

12



0 0.25 0.5 0.75 1
x

0

2.5

5

7.5

10
n

n0

Density profile

Figure 6: The density n(r)/n0, n0 = 2.2 107 cm−3 vs x = r/b for the NLC
parameter 2Nbresb/b

2 = 0.277.

where integration is taken over the region v/c >
√

2Tz+ and v/c < −√
2Tz−,

and ρ is the distribution function at the moment of bunch arrival.
Substitution of ρ(r, v) and V (x) gives

dN(E)

dE
=

n0

T

√
π

2

Ldb
2∫ 1

0 xdxe−V (x)

∫ 1

0

xdx√
E/T − V (x)

G(x)e−V (x), (4.27)

where

G(x) = e−( 1
x

√
p0g

2
+
√

E
T
−V )2Θ[

√
E
T
− V (x) − (1 − x)

√
g

2p0
]

+e−( 1
x

√
p0g

2
−
√

E
T
−V )2Θ[

√
E
T
− V (x) − (1 + x)

√
g

2p0
], (4.28)

and Θ[z] is a step function.
The result of calculations is shown in Fig. 7. Parameters are the same as

in Fig. 6.
Finally, the number of electrons hitting the wall per passing bunch is

given by the integral

Nloss = 2πLd

∫
rdrdvρ(r, v) (4.29)

where the integration is over the region v/c >
√

2Tz+ and v/c < −√
2Tz−.

In terms of the total potential V (x), dNloss/ds is given as

Nloss =
Nb

sb

Ld∫ 1
0 xdxe−V

∫ 1

0
xdxe−V (x)[1 − F (x)]. (4.30)
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Figure 7: Number of electrons per bunch dN/dE 1/eV accelerated from the
e-cloud and hitting the wall with energy E.

F (x) is defined by Eq. (4.24). Calculation gives Nloss = 5.53 109, 31% of
the total Ntot = πb2Ldn0 = 1.74 1010 electrons in the cloud in the drift with
length Ld. This result may be compared with the simple estimate which
assumes that all particles within radius r, where (2Nbre/r)sb > b are lost.
If the density would be constant n0 = 2.2 107 1/cm3, then Nloss = 1.37 109.
The actual number is higher because the density at the beam line is higher
than the average density n0.

The total energy loss is given by the integral

Eloss

T
=

πb2n0∫ 1
0 xdxExp[−V (x)]

∫
xdxe−V (x)

∫
due−u2

[(u − 1

x

√
p0g

2
)2 + V (x)].

(4.31)
Here the variable u = (v/c)/

√
2T , and the integral is taken over |x +

u
√

2p0/g−p0/x| > 1. Numeric integration gives power loss (c/sb)Eloss = 101

W/m.

5 Saturation

High energy electrons hitting the wall produce secondary electrons which,
after thermalization, may increase the density of the cloud in the avalanche-
like way. Let us estimate the number of bunches m needed to reach saturation
of the cloud density n0 = 2.2 107 1/cm3. At the low level of the photo-electric
yield Y = 0.002 taken in simulations [1], the SR adds to the average density
nSR = 5.5 105 1/cm3 per bunch (see Eq. (3.8). Most of these electrons go
wall-to-wall and only (η − 1)nSR of the secondary electrons remain in the
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cloud. Due to the multipactoring the density increases exponentially:

dn

dm
= −ξn + ηξn + (η − 1)nSR, n =

nSR

ξ
[eξ(η−1)m − 1]. (5.32)

Here we introduced parameter ξ = Nloss/Ntot defining the fraction of the
cloud participating in multipactoring. The estimate of the previous section
gives ξ = 0.3 and the density reaches saturation after

m =
1

ξ(η − 1)
ln[

n0

nSR

ξ + 1] (5.33)

passes. For the NLC DR, m = 19 for η = 1.45. At the high SR photon flux,
where nSR � n0, the number of passes to reach saturation os of the order
of [ξ(η − 1)]−1 � 7. These estimates are in reasonable agreement with the
simulations.

6 Effect of the multipactoring

In the equilibrium, the number of lost particles is equal to the particles
coming to the cloud from the wall. If the yield of secondary electrons is high,
to sustain the equilibrium, the total potential changes to stop the back flow
of the secondary electrons.

The distribution function ρ(r, v) satisfies the Liouville equation with the
source S,

∂ρ

∂t
+ v

∂ρ

∂r
− c2∂U(r)

∂r

∂ρ

∂v
= S

δ(r − b)

2πr
f(v). (6.34)

Here f(v) is normalized distribution of the secondary electrons over ve-
locity,

f(v) =
v

c2Tw

e
− v2

2c2Tw ,
∫ 0

−∞
dvf(v) = 1. (6.35)

The temperature Tw is equal to the average energy of secondary electrons
E0 in units of mc2, Tw =

∫
dv(v2/2c2)f(v). In the estimate we assume E0 = 2

eV, Tw = 4.0 10−6. The source Scl, the number of secondary electrons ejected
from the wall per unit time and unit length of the beam pipe, is given by the
number of lost electrons dNloss/ds and the yield of the secondary electrons
η, Scl = (η − 1)(c/sb)dNloss/ds. (More exactly, Scl is given only by the lost
particles with the sufficiently high energy, E > 50 eV). If there is the SR
flux, it adds SSR, S = Scl + SSR,

SSR = Y NγNb
c

sbLd

. (6.36)
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We imply here that electrons generated at the wall are thermalized and
are added to the e-cloud. This process works as a sink for the generated
electrons and allows us to consider the average in time electron density
ρ(r, v) = ρcl(H)+ρs(r, v), where H = v2/2c2+U(r). Here the first term is the
distribution function of the cloud and the second term describes secondary
electrons,

ρs(r, v) =
S

2πb

f(c
√

2H)

c
√

2H
Θ(b − r). (6.37)

The density of the secondary electrons ns =
∫

dvρs at the wall is

ns(r) =
S

2bc
√

2πTw

. (6.38)

The total potential at the wall V (1) = 0, and in the vicinity of the wall
can be expanded in series V (x) = (1 − x)V1 + (1 − x)2(V2/2) + ... To have
maximum at xmax < 1, V2 has to be negative. The potential is maximum
Vmax = −V 2

1 /(2V2) at the distance ∆ = (1 − xmax) = −V1/V2 from the wall.
Hence, V1 > 0. The Poisson equation at x → 1 relates the coefficients V1,
and V2, V2 − V1 = −G, where

G = S
reb

cT

√
2π

Tw

+
2πreb

2n0

T
∫ 1
0 xdxexp[−V (x)]

. (6.39)

The second term in the right-hand-side is due to the density of the cloud.
To stop secondary electrons to go into the beam pipe, the maximum of the

potential Vmax has to be of the order of Tw/T . Vmax can be estimated equating
the number of particles returning to the cloud to dNloss/ds. Electrons that
go back into the beam pipe have to have energy v2/(2c2) > TVmax,

(
dN

ds
)back =

sb

c

∫
v/c<−√

2TVmax

2πrdrdvSf(v)
δ(r − b)

2πr
=

sb

c
Se−VmaxT/Tw .

(6.40)
Substituting S and equating that to (dN/ds)loss = Nloss/Ld defined by
Eq. (4.30), we get

Vmax =
Tw

T
ln[η +

Y NγNb

Nloss

]. (6.41)

This defines V1 = V2 + G and ∆ = −V1/V2,

∆ =
−Vmax +

√
V 2

max + 2GVmax

Vmax + G −
√

V 2
max + 2GVmax

. (6.42)

This result has meaning only if ∆ << 1, i.e. for the large enough density of
the cloud. Otherwise, the height of the potential barrier can not reach Tw

and the density keeps building up.
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If G << Vmax,

∆ =
2Vmax

G
. (6.43)

For the NLC parameters and η = 1.45, ∆ = 0.082 and Vmax = 0.032 or
2.95 eV.

Although the height of the potential bump at the rmax = b(1 − ∆) is
small, of the order of Tw, it changes the equilibrium density of the cloud.
To see the effect on the average density, let us again integrate the Poisson
equation

1

r

d

dr
r
dUcl

dr
= −4πrencl(r) (6.44)

over r with the weight r in the interval 0 < r < rmax. Because Ucl is finite at
r = 0, we get for the average density

< ncl >≡ 2

r2
max

∫ rmax

0
ncl(r)rdr = − 1

2πrmax

(
dUcl

dr
)r=rmax . (6.45)

The total potential U(r) = Ucl − gT ln(b/r) is maximum at r = rmax. There-
fore, (dUcl

dr
)r=rmax = −gT/rmax, and

< ncl >=
gT

2π
(

1

rmax

)2. (6.46)

Substitution of g from Eq. (4.15) and rmax = b(1 − ∆) gives

< ncl >= n0(
1

(1 − ∆)
)2. (6.47)

The average density is higher than that given by the condition of neutrality
but the difference is small provided ∆ << 1.

It is worth noting that, without the potential barrier, primary photo-
electrons with positive energy go above the potential well. They add to the
average density of electrons but their space charge reduces the density of
the cloud in such a way that the total average density is still given by the
condition of neutrality.

Electrons reflected by the potential barrier hit the wall again increasing
the power deposited to the wall. The power deposited by this mechanism
depends on the yields,

dP

ds
=

c

sb

Tw[(η−1)πb2n0
Nloss

Ntot

+Y Nγ
Nb

Ld

][1−(1+Vmax
T

Tw

)e−VmaxT/Tw ]. (6.48)

For the NLC DR this contribution is negligible, less than W/m.
Another effect of the secondary electrons trapped at the wall is the intro-

duction of a small azimuthal asymmetry of the potential well for the beam
particles. The dipole component of such perturbation may cause an orbit
distortion and the quadrupole component leads to the asymmetric depen-
dence of the tune on the beam current. The estimate shows, however, that
these effects are small.
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7 Effect of the finite bunch length

We assumed everywhere above that a bunch can be described as a point-
like macro particle. The finite bunch length may substantially change the
number of lost particles from the region near the beam. As it was mentioned
in Section 2, the number of oscillations within the bunch length for such
electrons is large. (It may be not true for the electrons far away from the
beam because the frequency of oscillations decreases with amplitude). The
field of a bunch at a given location around the ring varies slowly compared to
the period of oscillations and can be considered as an adiabatic perturbation.
As it is well known, the amplitude of oscillations in this case returns to the
initial value when the perturbation is turned off. It means, that an electron
may decrease the amplitude of oscillations while bunch is passing by, but
retains the initial velocity and position after the bunch goes away. These
arguments mean that the number of the high energy electrons hitting the
wall and power deposition are smaller for the larger bunch length. On the
other hand, low energy electrons in vicinity of the beam can live there for a
long time what would mean larger density at the beam line. From this point
of view, it is preferable to have short bunches but with a large bunch current
to be in the regime where electrons go wall-to-wall in one pass.

One of implications of the finite bunch length is the betatron tune vari-
ation along the bunch. The kick from the head of a bunch causes motion of
the e-cloud electrons toward the beam line and increases density of e-cloud
in the tail of the bunch. The tune spread is of the order of the tune shift:

∆Q =
2πren0 < R >2

γQ
, (7.49)

where < R > is the average machine radius. The tune spread for the NLC
is large, ∆Q = 0.0207 at n0 = 2.22 107 1/cm−3. The interaction with the
dense jets can change tune of the bunches in the head of the bunch train
differently than for the rest of the bunches causing tune variation along the
bunch train.

8 Effect on the wake field

Let us consider the cloud with the average density n0 defined by the condition
of neutrality. The wake field of the cloud can be estimated analytically [5, 6].
For a long bunch, the short-range wake per unit length has the form of a
single mode

Wbunch(z) = Wm
n(p0)sb

Nb

(
ΩB

c
) sin(µζ)e−

µζ
2Q , (8.50)
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where the e-cloud density is taken at rmin = bp0 defined as (2Nbre/rmin)sb = b
to take into account that the density at the beam line is larger than average
density, ΩB/2π is the linear bunch frequency of oscillations,

(
ΩB

c
)2 =

2Nbre

σy(σx + σy)σz

√
2π

, (8.51)

ζ = ΩBz/c, and Wm, µ and Q are characteristics of the wake with weak
dependence on the aspect ratio σy/σx and the beam pipe aperture. They
were calculated in the reference [6]: Wm = 1.2, µ = 0.9, and Q = 5.

The bunch shunt impedance per turn

Rbunch
s

Q
= 2πR

Z0

4π

n(p0)sb

Nb

Wm (8.52)

is � 94 MOhm/m.

8.1 Transverse coupled bunch instability

For a single bunch stability, ΩB/c = 45.3 1/cm and Wmax = 1.55 104 cm−2.
To consider the CB instability, the long-range (LR) wake has to be scaled

from the short-rane wake Eq. (8.50) replacing the bunch length by sb and,
secondly, using the average density n0. The maximum value of the LR wake
is:

WLR(z) = Wm
n0sb

Nb

(
Ωbeam

c
)e−

µζ
2Q , (8.53)

where

(
Ωbeam

c
)2 =

2Nbre

sbr2
min

. (8.54)

The period of the LR mode 2π/(ΩB/c)LR = 4.7 bunches.
The LR shunt impedance per turn

Rbeam
s

Q
= 2πR

Z0

4π

n0sb

Nb

Wm (8.55)

is � 67 MOhm/m for the NLC DR nominal parameters in good agreement
with simulations [1].

The maximum growth rate of the transverse CB

1

τ
=

IbeamRbeam
s

(E/e)

c0βy

4πR
e−(Ω/c)beamσz)2 (8.56)

is τ = 0.01 ms.
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8.2 Head-Tail instability

The growth rate of the head-tail instability can be determined using Satoh-
Chin formalism [7]. The result of calculations are shown in Figs. 8,9. Fig. 8
depicts results of calculations for the wake oscillating with the frequency ΩB

defined by the bunch density. The cloud density is given by the condition of
neutrality. The instability exists only in a narrow range of the bunch current.

Dependence on the bunch current is unusual: the instability has a low
threshold but beam is stabilized at higher currents. This may be related to
the fact that the amplitude and the resonance frequency of the wake depend
on the beam current contrary to the usual geometric wake fields.

In particular, the resonance frequency grow with the current and can go
out of the bunch spectrum. This result should be checked with tracking
simulations.

Fig. 9 show results for the wake oscillating with the frequency reduced
by a factor of 10 (what is close to Ω̄0). In this case, instability exists in much
wider range of the bunch current.

1 1.1
I bunch, mA

-0.01
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0.01
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l

1 2 3
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-2

0

2

R
e
l

Figure 8: Head-tail instability of a single bunch driven by the electron cloud.
The growth rate Im[λ] = 1/(ωsτ) and the coherent tune shift Re[λ] = ω/ωs.
The wake frequency is given by the average bunch density.

9 Summary

A simple model of the e-cloud formations allows us to reproduce main results
obtained in simulations. Two mechanisms of the e-cloud formation are con-
sidered explaining the level of the density at saturation. The jets of primary
and secondary electrons can explain the high energy tail in the distribution
of electrons hitting the wall. The density of the jets at high beam current can
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Figure 9: The same as in previous figure but the wake oscillates with frequency
defined by the average beam density (i.e. factor 10 lower).

be, actually, higher then that given by the condition of neutrality. At high
currents, electrons may go wall-to-wall between bunches and electron cloud,
in the usual sense, does not exist. The beam stability depends in this case
on the perturbation due to few jets within the beam pipe. Thermalization of
electrons, takes place at a moderate current within some distances from the
beam. Even if the number of the linear oscillations per bunch is large, such
electrons can be described by the Boltzmann distribution due to randomness
of the electron motion. The temperature of the distribution is defined by
the condition of the energy equilibrium. The multipactoring does not change
the temperature much but rather affects the distribution of electrons in the
vicinity of the wall. That explains why the average density of the cloud is
close to that given by the condition of neutrality. The final bunch length
may change the power deposited to the wall and the density of electrons at
the beam line. Interaction with the cloud can cause the tune variation along
the bunch train. Transverse CB instability requires strong feedback. The
head-tail instability which can not be cured by the feedback contrary to the
coupled bunch instability. However, the instability is suppressed due to high
frequency of the wake.
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10 Appendix: examples

Parameter Description Value
E, (GeV) beam energy 1.98
C, m circumference 299.792
βx, m horizontal 3.64
βy, m vertical 7.06
νx, m horizontal tune 27.261
νy, m vertical tune 11.136
νs synch.tune 0.0035
b, cm beam pipe radius 1.6
B, T dipole field 1.2
Lb, m bend length 0.96
Ld, m drift length 0.975
E0, eV peak of secondary electrons 5.0
ET , eV energy spread of secondary electrons 2.0
Y , photo-electric yield (low/high SR) 0.002/0.2
η, secondary emission yield, 1.45

Table 1: Global parameters for the NLC main damping ring
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Parameter Description I II III IV
sb, m bunch spacing 0.84 0.42 0.84 0.42
Nb 1010 bunch population, 1.5 0.75 1.5 0.75
ex,N , mm mrad norm. x-emitt. 3.86 3.86 150.0 150.0
eY,N , mm mrad norm y-emitt. 0.018 0.018 150.0 150.0
σz, mm rms bunch length 3.6 3.6 7.0 7.0
δ 10−3 relat. energy spread 0.909 0.909 10.0 10.0

Table 2: Four sets of parameters for the NLC main damping ring

Parameter Description Simul. I II III IV
Ibeam, Amp aver.beam current 0.86 0.86 0.86 0.86 0.86
n0, 1013 m−3 average density 3.0 2.2 2.2 2.22 2.22
neff , 1013 m−3, effective density 3.11 11.9 3.11 11.9
Number of y-oscill/bunch 7.16 5.06 0.283 0.20
fbeam, MHz LR wake frequency 76.28 305.14 76.28 305.24
fbeam/frev 100-200 76.23 304.9 76.23 304.9
WLR period in sb 4 4.7 2.34 4.7 2.34
W y

bunch m−2 short range Wmax 3.12E9 8.5E9 6.3E7 1.7E8
W y

beam 106 m−2 LR Wmax 0.60 0.715 2.86 0.715 2.86
Ry

s MOhm/m SR shunt 94.07 361.5 94.06 361.6
Ry

s MOhm/m LR shunt 67.1 67.1 67.1 67.1
τx ms LR growth time 0.018 0.018 0.018 0.018
τy ms LR growth time 0.1 0.01 0.01 0.01 0.01
∆νy, incoher. tune spread 0.021 0.021 0.021 0.021
T temperature, eV 92.2 69.1 92.2 69.1
Nloss/Ntot lost per bunch 0.32 0.145 0.32 0.145
Number of passes to saturat. (high/low) SR 8/25 7/18 15/39 7/18 15/39
Pwall W/m power to the wall 80. 87. 119. 87. 119.
p0 parameter 0.277 0.0694 0.277 0.0694
g parameter 0.5529 0.743 0.553 0.7426
norm parameter

∫
xdxe−V 0.614 0.667 0.614 0.667

Vmax potent. bump, eV 0.8 0.8 0.8 0.8
∆ parameter 0.067 0.070 0.067 0.070

Table 3: Results of calculations for the four sets of parameters.
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