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1. Introduction

For at least the next decade, the energy frontier for accelerator-based particle physics will
be located at hadron colliders, the Tevatron at Fermilab and the Large Hadron Collider
at CERN. At a given large momentum transfer, the most copious events at these colliders
should be hadronic jets. To test the Standard Model at the shortest possible distances,
therefore, the jet production cross section should be known with the highest possible preci-
sion. Existing calculations of jet production at next-to-leading order (NLO) in the strong
coupling constant ay [1, 2, 3] agree well with the data over a broad range of transverse
momentum. Still, the NLO predictions have an uncertainty from higher order corrections,
traditionally estimated from dependence on the renormalization and factorization scales,
which is of order 10% or more. For very large momentum transfer the predictions can be
improved by resumming threshold logarithms [4]. There are also sizable uncertainties as-
sociated with the experimental input to the parton distribution functions [5], even though
global fits to the data have recently been performed [6] within an approximate next-to-
next-to-leading order (NNLO) framework [7]. Nevertheless, an exact NNLO computation
of jet production rates would be very welcome. Besides reducing the scale uncertainties for
jet rates, the same numerical program should allow a better understanding of energy flows
within jets, as a jet may consist of up to three partons at this order.

Several types of QCD amplitudes are required for a NNLO calculation of jet production
at hadron colliders. Both the tree amplitudes for six external partons [8, 9] and the one-loop
amplitudes for five external partons [10] have been known for some time now. Recently, in
a tour de force series of calculations, Anastasiou, Glover, Oleari, and Tejeda-Yeomans have
provided the NNLO interferences of the two-loop amplitudes with the tree amplitudes, for
all QCD four-parton processes, summed over all external helicities and colors [11, 12].

In this paper, we compute the gg — gg amplitudes directly at two loops in the spinor
helicity formalism [13], and expose their full dependence on external colors as well. The
additional helicity and color information provided here is not necessary for the main phe-
nomenological application, NNLO jet production in collisions of unpolarized hadrons. How-
ever, it still provides several benefits:

e Jet production in collisions of polarized protons, as planned for the relativistic heavy
ion collider (RHIC) at Brookhaven, may help to determine the poorly-known po-
larized gluon distribution in the proton [14]. Theoretical predictions of the relevant
observables require scattering amplitudes for polarized partons. Currently, predic-
tions are available through NLO [15]; the helicity amplitudes presented here are a
prerequisite for improving the predictions to NNLO accuracy.

e Many formal properties of scattering amplitudes are simpler in a helicity basis and /or
after color decomposition. Such properties include supersymmetry Ward identi-
ties [16], collinear limits [9, 17, 18], and high-energy behavior [19].

e Our results serve as a check of the results of ref. [12], and are useful for investigating
the dependence of two-loop amplitudes on the variant of dimensional regularization
used.



Here we also present the helicity amplitudes for gg — gg scattering in pure N = 1
supersymmetric SU(N) gauge theory. Such amplitudes only differ from QCD with massless
quarks in that the fermions are in the adjoint rather than the fundamental representation;
yet they obey supersymmetry Ward identities [16] and are generally simpler than their
QCD counterparts. They also provide useful auxiliary functions for describing the QCD
results.

Several versions of dimensional regularization have been used for loop calculations in
QCD, differing mainly in the number of gluon polarization states they assign in 4 — 2¢
dimensions. The conventional dimensional regularization (CDR) scheme [20] assigns D —
2 = 2 — 2¢ states to all gluons, whether internal or external, virtual or real. This scheme is
traditionally employed in calculations of amplitude interferences, such as ref. [12]. In the
helicity approach, the number of external, observed gluon states is necessarily 2 (helicity
+1), but there is some freedom in the number of virtual gluon polarizations. The ’t Hooft-
Veltman (HV) scheme [21] contains 2 — 2¢ virtual gluon states, while the four-dimensional
helicity (FDH) scheme [22, 23] assigns 2. The FDH scheme is related to dimensional
reduction (DR) [24] but is more compatible with the helicity method, because it allows 2
transverse dimensions in which to define helicity. Of these variants, only the FDH scheme
is fully compatible with supersymmetry Ward identities for helicity amplitudes, some of
which have been verified through two loops [23]. Here we work primarily in the 't Hooft-
Veltman (HV) variant of dimensional regularization [21], but we also discuss the conversion
to the CDR and FDH schemes.

Two-loop scattering amplitudes in massless QCD possess strong infrared (soft and
collinear) divergences. Using dimensional regularization with D = 4 — 2¢, the amplitudes
generically contain poles in € up to 1/¢*. However, these divergences have been organized
by Catani [25] into a relatively simple form, which is completely predictable through at
least order 1/€2. We shall use Catani’s formulae and color space notation to organize the
g9 — gg helicity amplitudes into singular terms (which do contain € terms in their series
expansion in €), plus finite remainders. We find that the general form of the divergences
given in ref. [25] holds precisely in both the HV and FDH schemes; however, the numerical
value of the coefficient K, which appears at order 1/¢2, differs in the FDH scheme from its
value [25] in the HV (or MS) scheme.

The 1/e poles were not predicted a priori in ref. [25] for general processes at two loops.
For the gg — gg amplitude, ref. [12] computed the interference of the 1/€ pole terms with
the tree amplitude, summed over all colors and helicities. Here we extract the full color
and helicity dependence of the 1/e pole terms. We find a term which is independent of
color and helicity, and which agrees with that found by ref. [12] (when we use the HV
scheme), plus a second term with nontrivial color-dependence, which vanishes when the
color-summed interference is performed. A term with similar color structure has also been
identified in contributions of one-loop factors for soft radiation to NNLO processes [26].
We shall also discuss how terms in the infrared decomposition of ref. [25] are modified,
beginning at order 1/€2, in other variants of dimensional regularization, such as the FDH
scheme.

The paper is organized as follows. In section 2 we review the infrared and color struc-



ture of one- and two-loop QCD amplitudes. In section 3 we describe the one-loop gg — gg
amplitudes in a form that is valid to all orders in € [17, 27, 28, 29], and show how to expand
them through O(e2?). This accuracy is required because one-loop amplitudes enter the for-
mulae for the singular parts of two-loop amplitudes multiplied by 1/€?. Section 3.2 shows
that apart from this requirement, only finite remainder terms in the one-loop amplitudes
are needed, because of cancellations with other NNLO contributions. These remainder
terms are then tabulated in section 3.3.

In section 4 we describe our method for computing the two-loop amplitudes. Section 4.1
summarizes how we evaluate loop integrals, especially those that arise only in the helicity
method. Some consistency checks on the results are listed in section 4.2. Section 4.3 dis-
cusses the additional singular term appearing at order 1/¢ in the color-decomposed gg — gg
amplitude, which does not contribute to the color-summed interference with the tree am-
plitude. The finite two-loop remainder functions in the HV scheme are then presented in
section 4.4 and appendix A.

In section 5 we describe conversion of the HV results to different schemes, and the com-
parison with ref. [12], after our results are summed over all external colors and helicities. In
section 6 and appendix B we give the two-loop amplitudes for pure N = 1 supersymmetric
Yang-Mills theory, whose finite remainders also serve as auxiliary functions for describing
the QCD results. In section 7 we present our conclusions.

2. Review of infrared and color structure

In this section we review the structure of the infrared singularities of dimensionally regu-

larized one- and two-loop QCD amplitudes, using Catani’s color space notation [25], as a

prelude to presenting the finite remainders of the one- and two-loop gg — gg amplitudes.
The process considered in this paper is

9(=p1, =A1) + g(—=p2, = X2) = g(p3,A3) + g(p4, \1) (2.1)

using an “all-outgoing” convention for the external momentum (p;) and helicity ()\;) label-
ing. The Mandelstam variables are s = (p; + p2)?, t = (p1 + p4)?, and u = (p1 + p3)%.

We work with ultraviolet renormalized amplitudes, and employ the MS running cou-
pling for QCD, as(u). The relation between the bare coupling o and renormalized coupling
as(p), through two-loop order, is [25]

ol W2 S, = an(p) u* [1 sl bo <O‘s<“))2 (@ _ b—1> T omiw»] R

2T € s e 2

where p is the renormalization scale, S, = exple(lndm+1(1))], and v = —(1) = 0.5772. ..
is Euler’s constant. The first two coefficients appearing in the beta function for QCD, or
more generally SU(N) gauge theory with Ny flavors of massless fundamental representation
quarks, are

11C4 — AT Ny ) 17C% — (10C4 + 6Cp)Tr Ny
_——————— 1 = 5

b
0 6 ’ 6

(2.3)



where Cq = N, Cp = (N?—1)/(2N), and Ty = 1/2. (Note that ref. [25] uses the notation
Bo = bo/(2m), B = b1/(2m)%.)

The perturbative expansion of the gg — gg amplitude is

Mool (). i {p}) = 4ras(10) [M O o)) + (2.4)

( )Mglglgg(u; {p}) +

2
+<%f)> MO (s {p)) + Oad(w) ]

where M‘glgjlgg(ﬂ; {p}) is the LM loop contribution. Equation (2.2) is equivalent to the
following MS renormalization prescriptions at one and two loops,

b

1 o unren 0 0

Mgg)ﬁgg Se Mgg)ﬁgg - ? Mgg)ﬁgg ) (2.5)
) b5 0)

Mgg—>gg =5c Mgg—>gg B S Mgg—>gg + <e_2 2e> Mgg—>gg (2'6)

The infrared divergences of renormalized one- and two-loop n-point amplitudes are
given by [25],

IMED (s {pP))rs = TV (e, 5 {p}) IME (13 {p}))s + IMPD™ (1 {p})) s (2.7)
IME (i {p)))rs = I (e i {p}) IMED (115 {p}) s (2:8)

+ 126, 1 {p}) IMD (15 {p})ms + IMP™ (s {p}) s

where the “ket” notation |M£LL) (15 {p}))rs indicates that the L-loop amplitude is treated
as a vector in color space. The actual amplitude is extracted via

M (1% oo n®) =(ay, ... an | Mu(p1, ... y00)) (2.9)

where the a; are color indices. The subscript rs indicates that a quantity depends on

(1)

are encoded in the color

)

the choice of renormalization scheme. The divergences of My,
operator I while those of Mg) also involve the scheme-dependent operator Iyg 2

In QCD, the operator IV is given by
1 2 —iNj;T ¢
_’2 N , (2.10)
T; 2p; - by

where \;; = +1 if 4 and j are both incoming or outgoing partons, and A;; = 0 otherwise.

1 e—v(1) »

ZZT T

zl];éz

I (e, s {p}) =

The color charge T; = {T?} is a vector with respect to the generator label a, and an
SU(N) matrix with respect to the color indices of the outgoing parton i. For external
gluons T = ife® soT? = Cy = N, and

110, — 4TRN;

: (2.11)

Yg =



The operator I ( g is given by [25]

12 (e, i {p}) = _%I(l)(e’”; teh) (I(l)(e’u; b+ 2_50> !

et (1 - 2¢) (b
(1) .
T (2 K ) 10 (0) +

+ HR (e, 1 {p}), (2.12)

where the coefficient Ky in either the HV or CDR schemes is given by [25]
67 10
Kpyv = <— — —> Cyp— — RNf . (2'13)

Although no scheme dependence was assigned to this coefficient in ref. [25], we shall find

(2)

in section 5 that it is scheme dependent. The function Hy 4 contains only single poles,

H (e, u:{p}) = O(1/e), (2.14)

but is not predicted a priori for general processes. The color- and helicity-summed matrix
element (M©|H® (¢)| M) has previously been computed in CDR scheme for gg — gg [12]
(and for some other multi-parton processes [11, 30]). We shall extract the full color and
helicity dependence of Hy; 2 )( ) for gg — gg in the HV scheme in section 4.3, and in the
FDH scheme in section 5.

An explicit color basis for the gg — gg amplitudes is given by

(€ (L),[i]
M}\1>\2A3A4 S)\l)\2)\3)\4 X Z TI' MA1A2;3A4 (215)
i=1

where

Tel) = tr(rapazpaspas)
Trld = tr(Tar o279 Tes)
Bl = tr(rapasezpas)
Tl = tp(ro T2 )
bl = tr(rapasTraaz)
Telf) = tr(ror T Ta2) |

Tel™ = tr(T79%2) tr (T 7))

Tels) = tr(T079%) tr (T2 7))

Tl = tr(T 7% tr (T2 7). (2.16)

Here T* are SU(N) generators in the fundamental representation, normalized according
to the convention typically used in helicity amplitude calculations, tr(T%T?) = §%. (The
T used in this color decomposition should not be confused with the T}* appearing in I O3
which are in the adjoint representation; nor should they be confused with the generators



for the quark representation, which have the more “standard” normalization, Tr = 1/2, as
mentioned above.)

We have also taken the opportunity in eq. (2.15) to remove some helicity-dependent
overall phases, which arise because we evaluate the amplitudes in the spinor helicity for-

malism [13],
g _ . [12][34] g o (12)(14)[24]
T ) 3y —rr T 30y (23) (24)
_ (12)[34] _(13)[24]
Sy = Zm ) S 1 4= Zm . (2.17)

The spinor inner products [13, 9] are (ij) = (i~|57) and [ij] = (iT|j~), where |i*) are
massless Weyl spinors of momentum k;, labeled with the sign of the helicity. They are
anti-symmetric, with norm | (i j) | = | [i j] | = \/3ij, where s;; = 2k; - k;. It follows that the
Sarangng are indeed phases. They will cancel out from (and therefore may be freely omit-
ted from) all transition probabilities involving unpolarized gluons, or circularly polarized

gluons.
In the basis (2.16) for gg — gg, the matrix IM s [12]
WD (L by
IV (e) = A=\ + Ve X (2.18)
N(S+T) 0 0 0 0 0 (T-U) 0 (sS—U)
0 N(s+0) 0 0 0 0 U-T)(S—-T) O
0 0 N(T+0) 0 0 0 0 (T-—8) (U--9)
0 0 0 N(T+1U) 0 0 0 (T—8)([U-5)
X 0 0 0 0 N(S+71) 0 (U-T)(S—=T) O
0 0 0 0 0 N(ES+T)(T-U) 0 (S—0)
(S—U) (S—T) 0 0 (S—T) (S—U) 2NS 0 0
0 (U-T) (U-8) (U-8) (U-T) 0 0 2NU 0
(T-1U) 0 (T—-8) (T-9) 0 (T-1) 0 0 2NT
where

s (EY e (E) (£ o1

A reflection identity implies that the coefficients of two color structures with reversed
T ordering are identical, so that

L),[4 L),[3 L),[5 L),[2 L),[6 L),[1
M)(qg\z[)\];g)u; = M>(\1))\2[>\}3)\4’ M>(\1))\2[)\}3)\4 = M>(\1))\2[>\}3>\4’ M>(\1>)\2[)\}3)\4 = M>(\1))\2[>\}3>\4' (220)

Also, due to Bose symmetry, parity, and time-reversal symmetry for the process (2.1), we
only have to give results for the four helicity configurations

AMA2 A3y = 4+, —Ft, A, (2.21)
The tree amplitudes are given in the basis (2.16) by

MO = MO, =, for all i,



01,071 _ 4708 40000 _
M>\1>\2)\3)\4 = M>\1>\2>\3>\4 _MA1>\2>\3>\4 =0, for all A;,
2
o, _ S )21 _ _ 8 OB _ S
MZ5=-43, MIZhn=--, MIo=--,
2
O, _ _u (O _ _u 0,8 _ _U
MYy =-o» My =--, MITi=--. (2.22)

A typical partonic cross section requires an amplitude interference, summed over all
external colors. Such interferences are evaluated in the color basis (2.16) as

9
L,y  _ (L) (L") _ (L),[4] * (L"),[4]
IA1A2>\3)\4 = <MA1>\2>\3>\4|M>\1>\2>\3>\4> - Z MA1A22)\3>\4GCZ‘]‘M>\1>\2>?3>\4’ (2'23)
ij=1

where the symmetric matrix Cij = oo Trl* Tl is [12, 31]

Ci Cy Cy Cy Cy C3 NV —N NV
Cy, C1 Cy Cy C3 Cy NV NV —N
Cy, Cy C, C3 Cy Cy —N NV NV
Cy, Cy C3 C; Cy Cy —N NV NV
L=-—| C C3 Cy C C; Co NV NV —-N |, (2.24)
Cs Cy Cy Cy Cy C; NV —N NV
NV NV —N —N NV NV N?V N? N?
—N NV NV NV NV —N N2 N2V N?
NV —N NV NV —N NV N? N? N2V

with
C, = N* —3N? + 3, Cy =3 — N2, Cs =3+ N2, V=N?-1. (2.25)

The unpolarized partonic cross section is obtained from the helicity sum

— 12 o L,Ll
= 30 f§1A2A)3A47 (2.26)
Ai==%1

after the usual averaging over initial spins and inclusion of flux factors. For example, the
helicity sum for the tree-level cross section, constructed from eq. (2.22) in either the HV
or FDH scheme, is

]"(0,0) — 16 N2V<3 _____ - (227)

3. One-loop amplitudes

The one-loop amplitudes for gg — gg were first evaluated through O(e") as an interfer-
ence with the tree amplitude in CDR scheme [32]. Later they were evaluated as helicity
amplitudes in the HV and FDH schemes [22, 33].

Because I() contains terms of order 1/€2, the I™M|M®) ¢ term in the infrared de-
composition (2.8) of the two-loop gg — gg amplitudes requires the series expansions of the
one-loop amplitudes through O(e?). In ref. [29], using results from refs. [17, 27, 28], the



one-loop gg — gg helicity amplitudes were presented in a representation valid to all orders
in €, in both the HV and FDH schemes. These results can easily be rewritten in terms
of integral functions whose series expansions are known to the requisite order [34, 35]. In
section 3.1 we present the all-order results in the color basis (2.16), with the normalizations
implicit in eq. (2.4).

In section 3.2, we show that the only place that terms beyond O(e") in the one-loop
amplitudes are required in an NNLO calculation is in the infrared decomposition (2.8) of
the two-loop amplitudes.

Finally, in section 3.3 we list the finite remainders of the one-loop amplitudes in the
HV scheme, after the renormalization (2.5) and subtraction of infrared divergences (2.7).
The corresponding finite remainder in the one-loop/one-loop NNLO interference has al-
ready been computed in CDR scheme, summed over all colors and helicities [31]. Our HV
amplitude remainders lead to precisely the same result.

3.1 All orders in ¢

Here we present the renormalized one-loop gg — gg amplitudes in the color basis (2.16),
with the normalizations implicit in eq. (2.4), in a form valid to all orders in e.

The first coefficient in the color basis (2.16) for gg — gg at one loop may be written
in terms of “primitive” amplitudes for a gluon or quark in the loop, as [36]

(1),[1] luon fermion bo (0),11]
M)\l)\z)\3>\4(s’ t’ U) N M§1A2>\3>\4 + Nf M)\1)\2)\3>\4 M)\1>\2>\3)\4 ° (31)

The remaining single-trace coefficients are obtained via crossing symmetry:

1,1
Milii(svtau) = M+++L(3,u7t)7 Mi+++(3=t7u) = MJ(rJ)rur(U’t, s),
SJ)FJ[FlL(s,t,u) = Mill’EL(s,u,t), Mg)r’_[f] (s,t,u) = Mg)r’_[ﬂr(u,t,s),
MQJ[FL(&@U) = M—137EL(37u7t)7 Mﬁll[g] (sit,u) = Mg—?-’[—l—]‘r(%ta s),
MUY (s, t,0) = MO (u,5,0), MUEL (s, tu) = MO (u,t,5),

(3.2)

where appropriate analytic continuations are required to bring each function into the phys-
ical region. The double trace coeflicients, to which only the gluon loops contribute, follow
from a U(1) decoupling identity [36]:

1),[7 1),[8 1),[9 2 1),[1 1),2 1),[3
M = M8, = MOEL, = £ (08, + M08, + B8,

Ny=0'
(3.3)

It is convenient to write the gluon and fermion loop contributions, Mfi‘;f;r;\g)% and

Mfermion - “ip terms of a supersymmetric decomposition into scalar, chiral N = 1, and
A1A2A3Aq? ) )

N = 4 supersymmetric multiplets in the loop [37, 18]:

gluon o - scalar
MA1A2>\3>\4 - (1 EaR)MAMz)\SM 4M>\1>\2>\3>\4 M)\1>\2>\3>\4’

Mfermlon Mscalar

)\1)\2)\3)\4 = )\1)\2)\3)\4 M)\l)\2>\3)\4 ’



where g = 1 for the HV scheme and dz = 0 for the FDH scheme.
For “maximally helicity violating” configurations, the supersymmetric components
vanish by a supersymmetry Ward identity [16],

MFhy = METL = MYTL, = MO, =0, (3.6)
The remaining independent components are [17, 27, 29]

M, = —€(1— €) Box¥ (s, 1),
tu—s) .. s(u—1t)
Jgscalar Tr (6) 7
—+++ o (s) + o
s—u
$2

eTri®(¢) +

u 6
+—0 eBub®(s) +

©) (1) — 5L e Box® (s, 1)
e Bub™(¢) 2ueBox (s,t)
—e(1 — ) Box® (s, 1),
Ml = i EtBub(G) (t) — e(1 — €) Box® (s, 1),

t2
pedtar S i) () - TS i) (6) 4 TBub® (8) + LBub@(s) +
u u u u
+ 2 t_2€t Bub(®(¢) + z ;268 Bub(® (s) — Tri® () — Tri® (s) —
t
- %Box@(s, t) — (1 — ) Box® (s, 1), (3.7)

MN=L = —%SEBOX@(S,t) - %Bub(‘l) (t),

MV, = %%Bub(‘”(s) + %%Bub(‘” (t) — %u(l —¢)Box) (s, 1), (3.8)
N= o= %S2 Box™® (s,t)

MNZ = %u2 Box ¥ (s,1). (3.9)

Here Bub(™ (s), Tri®(s) and Box(™(s,t) are the one-loop bubble, triangle and box scalar
integrals, evaluated in D = n — 2¢ dimensions. The bubble and box integrals are

Bub® (s) = 6(174—7F2e)(_8)_57

T e
Bub®(s) = T 2e(1—20)(3 — 20 (=)™,

T (s) =~ (=5)7 7,
€

(O ro(=s)"°
Tri™ (s) 21290 =9)" (3.10)
where
21 _
rp = eeb() L(1+e)l(1—¢)
T(1— 2¢)
- 1— 1 2 _ Z 3 _ ﬂ 4 5
=1 2(26 3(36 16C46 + O(e ), (3.11)



with
=3 n", =1 (3 =1.202057..., (4= —, (3.12)
n=1

and we have kept the full dependence on € in the integrals. In the s-channel (s > 0),
e-expansions of the functions (3.10) are given by using the analytic continuation In(—s) —
Ins — im.

The box integrals in various dimensions appearing in egs. (3.7) and (3.9) are related
via a dimension-shifting formula [38] valid to all orders in e,

Box(®(s,t) = (st Box™ (s, 1) — 2t Tri (¢) — 2 Tri(4)(s)> ,

1
2(—1+42¢e)u

Box® (s, 1) = (st Box(© (s, ) — 2t Tri® () — 25 m<ﬁ>(s)) . (3.13)

1
2(=3+2¢€)u
Because the D = 6 — 2¢ scalar box integral is completely finite as ¢ — 0, it is convenient
to express the other box integrals in terms of it. This isolates all divergences to triangle
and bubble integrals. To expand the six-dimensional box to higher orders in ¢, one could
use an expression for BOX(4)(S, t) valid to all orders in €, in terms of hypergeometric func-
tions [39, 38], and the dimension-shifting formula (3.13). Or one can expand the Feynman
parameter integrand for BOX(G)(S, t) in € directly.

In the u-channel (s < 0, t < 0), where the functions are manifestly real, the expansion
of the six-dimensional box through O(e?) is [34, 35]

—1—¢ 1
Box(® tzL—V—W2 2
ox ) = 50 5 2<( ) J”T)Jr
3 2
+ 2 (Lig(—v) — VLig(—v) — % - %V) -
1

— 2¢? (Li4(—v) + WLig(—v) — 5V2Li2(—v) —
Loa 1.3 1o T o
S V 5 VW 4+ 1 VW 1 Vv
2

— VW -2+ (s t)| +0O(?), (3.14)
where
t t
vzf, w=—, Vzln(—f>, Wzln(——). (3.15)
U U U U
In the s-channel (s > 0, t < 0) an analytic continuation of the box integral yields,
B (6) H = Tr‘s‘—e
oxst) = T 20
Lo : : L3 1 2 1 o
X §X +¢e| — Lis(—z) + XLia(—z) — §X +C3+§YX 57 X |-

,10,



X

_ e <Li4(—§> — Lig(—y) + Liz(—y) X +

1 1

1 1
—Lig(—xz)(X? Y2 —ZY3X +2Y2%Xx?
—1-2 io(—z)(X? + %) + 24( + 72)? — G +4 +
+3X3Y—1(X2 )2 + XY—i—LTFA‘ -
3 8 3 360
i | X + e(Lin(— )+YX—1X2—7T—2)+
T € o(—x 5 6

(~Lig(a) ~ Lis(~y) — 5 X7 4 2X* + G5) } "

+0O(e), (3.16)

xzz, y:E, X:ln<—£>, Y:ln<—2>. (3.17)
s s s s

Also define, for future use,

where

X =X +irm, Y=Y +ir. (3.18)

In general, both expansions of box integrals (3.14) and (3.16) will appear in eq. (2.8) for
the divergences of the two-loop amplitudes.

3.2 NNLO cancellations involving Mt%)qgg

The NNLO gg — gg cross sectlon has a term proportional to the square of the one-loop
amplitude, T = <M( _)gg]./\/l g_>gg> One might expect to need the O(e?) terms in
M%ng here, because ./\/lﬁ])_)gg also contains 1/e? terms. Here we show this is not the
case, for a generic NNLO calculation of an infrared-safe observable, because of cancellations
against contributions involving radiation of additional partons.

If one uses the one-loop infrared decomposition (2.7), one can rewrite I(hY) as [31]

T = (MO 1MW) 1D (6)| M
|M(1 )fin >

99_’99
+ < 99_’99 g99—499g
0 1 1 1 1
<M§g gg!I( IV () MO )+ 2Re(MD [TV ()| MO+
+ (M MR (3.19)

99—499

gg—>gg> + 2R€<Mgg_)gg‘.[ ( )‘Mgg—’99>

9—’99

Similarly, the contribution of the two-loop/tree interference to the NNLO gg — gg cross

section is
2Rel*0) = 2Re(M) 1@ ()| MO ) +2Re(M) [TV () MD) )+
2)fin
+2Re(M PR MO ). (3.20)

(For clarity, we have dropped rs subscripts from equations in this subsection.)
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Thus the two singular terms containing the one-loop amplitude in the NNLO gg — gg
cross section combine to form

IV () + IV ()| MO Y. (3.21)

99—499

(1)

2Re(Mg 4

These terms will partially cancel, in an NNLO cross section for an infrared-safe quantity,

against phase-space integration of certain terms arising from the one-loop/tree interference

for the processes with one additional parton radiated (in this case, g9 — 999, 99 — 99¢,
99 — 9qq, etc.). The “radiation” terms may be written generically as

2 Re<M§r)ad’Mé?r)ad> : (3.22)

To see this NNLO cancellation, it is useful to recall the corresponding cancellation at
NLO, where the singular part of the virtual correction

Re(Mgg)_)gg ID(e) + I(l)T(e))\Mgg)_,gg> (3.23)
is cancelled by phase-space integration of the real radiation terms,
0 0
Re(M{) i |M), 1) (3.24)

The singular phase-space behavior, soft or collinear, of the one-loop five-point amplitude
factorizes as [17, 40, 29, 41]

M — MO 4 s, (3.25)

where S (SM) represents a universal tree-level (one-loop) soft or collinear factor, which
contains all the dependence on the unresolved phase-space variables that have to be inte-
grated over. The tree-level factorization is of course
MO — MPSO. (3.26)
Using eqs. (3.25) and (3.26), one sees that the Mil)S (©) terms in the singular behavior
of eq. (3.22) have exactly the same form as the real NLO terms (3.24), but with <Mio)]
replaced by (M 41)|, and an overall factor of 2 from the interference. Thus the result of
integrating the Mgl)S(O) terms in eq. (3.22) over phase space must be cancelled by the
virtual NLO terms (3.23), but with the corresponding replacements, i.e. by eq. (3.21).
The NLO cancellation is good to O(e°) (after factorizing initial-state collinear singularities
in the usual manner); see e.g. ref. [42]. The NNLO cancellation is at the same order, in
the sense that O(e!) and higher terms in Mfll) no longer contribute.
In summary, the only place the terms beyond O(¢°) in Mfll) are really required at
NNLO is in the infrared decomposition of the two-loop amplitude. Once the two-loop

(2)f )

finite remainders M, are given, the higher-order terms in /\/lfl1 are no longer needed.
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3.3 Finite remainders

Next we tabulate the finite remainders of the one-loop gg — gg amplitudes at O(e°), defined

by M%)Ef;g in eq. (2.7) and color decomposed into M S)Aﬂix in eq. (2.15). We write, in

the HV scheme,
1),[i]fin o . 0),[i i i .
M)(\l))\il\s)ul = —bo(ln(s/,u ) - W)M>(\1)>\£;\3A4 + Na[)\]1>\2>\3>\4 + Nf c[)\}1>\2)\3)\4 , U= 17 27 37

),[dfin [ Ny i o
M)\l)\;)\;)l\4 - g)\ll)\z)\g)u; + F h;1A2A3)\4 y b= 77 87 97 (327)

and the MW for § = 4,5 6 follow from eq. (2.20). The one-loop U(1) decoupling
identity (3.3) implies that

(1] _ (1] (2] 3] F_
Iridedsha = 2<a>\1)\2)\3)\4 T O onsne T a)\1)\2)\3)\4>’ 1=17,8,9. (3.28)

For the ++++, —++4+, and ——++ helicity configurations, Bose symmetry under exchange
of legs 3 and 4 (t < u) implies that

(2] _ [
NPT ISV (S’t’u) - CL)\I)\Z)\BM(S,U,t),

2 1
C[)‘l]AQ)\S)q (87 t’“) = c[)\l})\g)\g)ul (S7u7t) . (329)

For the ++4+++ helicity amplitude, the independent remainder functions a, ¢, g and h

are
oy = —é, (3.30)
=3, (3.31)
=1 (3.32)
Py = é (3.33)
e = =l =0, (3.34)
For —+++, they are
=L (3.35)
= —%, (3.36)
Mo = g (3.37)
= % (3.38)
=l =nf o, (3.39)

where x and y are defined in eq. (3.17).
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For ——-++, they are

= o (R 4 (3.40)
oy = (e ypent) - (B - T x D 1
+ {t o u} , (3.41)
M= —9%, (3.42)
M= —%((X Y)2—|—7T2> + 1(2—2 —|—x+5y>X— % —gng
+ {t — u} , (3.43)
pf = nl® =l = ;—yf( +{tou}. (3.44)
For —+—+, the required functions are
[_”++:—%(}Z%ﬂr?)—<§y—g+§>5{+%y;+%, (3.45)
a?, | = —%(f/? + 72 + % yY + % Y, (3.46)
= ((x-Y2+ ) + % 5y + ?—; Z, (3.47)
A, = <2% - i) (X2 427+ 2 _6;’) Ty G- 2yi§f “2)  (3.8)
Py =y gy (3.49)
A= —3% Y- g % : (3.50)
R Ry gyX + g y;ff. (3.51)

The contribution of the one-loop finite remainders to the NNLO gg — gg cross section
is
7(1,1)fin (1)fin (1)fin
I( ) " = Z <M)\1)\2>\3>\4‘M>\1>\2>\3)‘4> (352)
Ai==%1

Using the color sum matrix (C;; in eq. (2.24), the color and helicity sum in TADA oy be
evaluated in terms of the above explicit expressions (3.27)—(3.51) for M ,@,\53 A, 1t repro-
duces precisely the finite remainder function Finite(s,t,u) given in eq. (3.22) of ref. [31]
for the corresponding quantity evaluated in CDR scheme; the HV/CDR scheme difference

for I(H1) has been completely absorbed into the first two of the three terms in eq. (3.19).

— 14 —



j : 3 21 : 3
1 4 1 4
3 3 2 3
2
1
4 4 1 4
Figure 1: Some of the two-loop diagrams for gg — gg.

4. Two-loop amplitudes and finite remainders

A generic sample of two-loop Feynman diagrams for gg — ¢g is shown in figure 1. How-
ever, we did not evaluate the diagrams directly. Instead we computed the unitarity cuts
in various channels, working to all orders in the dimensional regularization parameter
e = (4—D)/2 [43, 17, 37, 18]. Essentially we followed the approach first employed at
two loops for the pure gluon four-point amplitude with all helicities identical [34] and for
N = 4 supersymmetric amplitudes [44]. These amplitudes were simple enough that a com-
pact expression for the integrand could be given. The fermion loop contributions with all
helicities identical are about as simple [23]. For other helicity configurations, the integrands
become rather complicated. We therefore used the general integral reduction algorithms
developed for the all-massless four-point topologies [45, 46, 47, 48], in order to reduce the
loop integrals to a minimal basis of master integrals. To efficiently incorporate polarization
vectors of gluons with definite helicity requires some minor extensions of these techniques,
which we now discuss.

4.1 Tensor loop integrals

Here we discuss techniques for evaluating the loop integrals required for the two-loop
amplitudes for gg — gg and related processes, with an emphasis on the additional types
of integrands encountered in the helicity amplitude method.

In calculating a typical two-loop scattering amplitude in QCD, a large number of
two-loop integrals are encountered. The most complicated topologies are the planar and
non-planar double box integrals, displayed in figure 2, which are given by

Ty [P)(s,t) =
_ / dPp dPq P
) @emP @2n)P p??(p+a)?(p—k1)* (p— k1 — k2)? (¢ — ka)? (q — k3 — ka)?’
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(4.1)

INP[P)(s,t) =
_ / dPp dPq P
)PP PR p+a)?p—k)?(@—k2)? (p+q+ks)?(p+q+ks+ka)?

(4.2)

Here p and ¢ are the loop momenta, and k;, ¢ = 1,2,3,4, are the external (outgoing)
momenta. P is a polynomial (or tensor) in the loop momenta p and ¢, which accompanies
the scalar propagator factors shown in the figure. It is generated by the numerator algebra
of the Feynman diagram, or unitarity cut, that is being evaluated.

2 3 P+q 3

p q
1p+4q 1 2

Figure 2: The planar and non-planar double box integrals.

In the interference method, as recently applied to two-loop QED and QCD scat-
tering amplitudes [35, 11, 12, 30|, one sums over all external polarization states in D
dimensions. In this case, P can only depend on the loop momenta, p and ¢, and external
momenta, k;. By Lorentz invariance, this dependence is only through scalar products,

Putert. = P(0%, 0 ¢,¢,p - ki q - ki). (4.3)

In contrast, in the helicity amplitude method [13] used in the present paper — and
previously applied to two-loop amplitudes in N = 4 super-Yang-Mills theory [44], gg — gg
for identical helicities in pure Yang-Mills theory [34], and the QCD processes gg — vy [49]
and vy — ~v [50] — P also depends on the polarization vectors e; for the external
gluons. We take D > 4 in the calculation, i.e., ¢ < 0, in order to have two transverse
dimensions in which to define helicities. Because the polarization vectors are intrinsically
four-dimensional, their Lorentz products with the loop momenta distinguish between the
four-dimensional and (—2¢)-dimensional components of p and g. Write

pl = pﬁ] + Ap, ¢ = qffq + Ag, (4.4)
where piy, 4 are the four-dimensional components and Xp, Xq are the (—2¢)-dimensional

components. We use the Minkowski metric with signature (1, —1,—1,—1,...), and write

==, C=dy -, 00 =utae)’ N (45)

where A2 = Xy Ap >0, Ay = (Xp + Xg)? = A2 4+ A2+ 2X, - Ag. Then the generic

polynomial encountered in the helicity amplitude method has the form

Pocl. = P00 4,00 kivq - ki Ao AL N2, g pii - q). (4.6)
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We rely on reduction algorithms developed to handle general tensor integrals for the
all-massless planar [45] and non-planar [47] double boxes, and related topologies such as
the pentabox [46]. These algorithms were derived using integration by parts [51] and (for
the non-planar double box) Lorentz invariance [48] identities, which act in the space of
integrals with P = 1, but with the scalar propagators raised to arbitrary integer powers
v;. For example, for the planar double box topology one considers

dPp dPq o
IE(V17V27V37"' ,1/7) = (47T)D/ (27T)D ( )D H 2\Vi (47)
where

p1 = ¢, p2 = q — k3 — ky, P3 =D, pa=p— k1 — ko,
ps =p— ki, ps=p+q,  pr=q— ks, (4.8)

and v; € {0,1,2,...}. The reduction algorithms reduce any such integral to a linear
combination of simpler “boundary” integrals, where at least one of the v; vanishes, plus
one or two master integrals with the same topology. All told, there are 10 different master
integrals for the massless 2 — 2 processes [45, 47, 46].

Given an integral with P of the form (4.3) or (4.6), it is simple to convert it to integrals
of the form (4.7) using Schwinger parametrization [52]. For the scalar integrals, using

1 o0
— = / dt; exp(—t;p?) (4.9)
b; 0

and performing the p and ¢ integrals, leads to

LS ~D/2 s, b,
Xa,,...,1) = H/O dt; [A(T)] exp —% : (4.10)
i=1
A(T) = 1Ty + TpTpg + 1T (4.11)

where X labels the topology of the integral (P, NP, etc.). In eq. (4.11), T}, Ty, T, are
the sums of Schwinger parameters along the lines carrying loop momenta p, q, p + ¢,
respectively. Equivalently, they are Schwinger parameters for the two-loop vacuum graph
obtained by omitting all the external lines, as shown in figure 3. For the planar double box
integral, with propagators numbered by eq. (4.8), the T}, are given by

Tp =t3 +t4 + 15, Tq =11 + tg + 17, qu = ig. (412)

The quantity Q) x is more cumbersome. For the planar double box integral, its expres-
sion is

QP(S, t, t,') = —5 |:t1t2(t3 +1t4 +t5) +t3t4(t1 +19 +t7) +t6(t1 —l—tg)(tg +t4)] —t tstgty. (4.13)

However, the precise form of Qx will not matter in the following.
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Figure 3: The two-loop vacuum graph obtained by omitting external momenta, and its three
Schwinger parameters, which are relevant for general two-loop integrals containing v - p, v - g, Ap,
and Xq.

If a polynomial P is present, Schwinger parametrization converts it to a polynomial
in the Schwinger parameters, along with inverse powers of A. Then the more general

parametrization,
S /OO dt; t' " exp(—t;p?) (4.14)
@) Tw)Jo 7 e '
can be used to rewrite Schwinger parameter monomials as integrals of the form (4.7),
typically in shifted dimensions, D — D+ 2n, n =0,1,2,... (to account for the inverse
powers of A). (Shifted-dimension integrals pose no problem; equations for them can be

found by rewriting the factor A=P/2 in eq. (4.10) as
AP = (T,Ty + Ty Typq + TyTpg) x A~PHI/2 (4.15)

and reducing the latter, shifted-dimension representation.) In principle, this approach gives
a prescription to handle any polynomial in the loop momentum, for either the interference
or helicity method.

However, as the degree ), v; increases, the number of integrals of the form (4.7) grows
rapidly, and the reduction algorithm can become rather time-consuming. We have found
it useful to instead use simple algebraic relations, e.g. for the planar double box integral,

2q - ks = pi —p3, 2q-ks = p* — p3+ 2ks - ky,
2p-k1 = pi —pi, 2p-ko=pi—pi+ 2k ke,
2p-q = pg —pi — p3, (4.16)

to quickly reduce integrals with polynomials of the form Pj,ierr. to a relatively small set of
“irreducible” integrals for each topology, plus boundary integrals generated when the p?
factors cancel propagators. Of course the “irreducible” integrals are only irreducible with
respect to (4.16), and not with respect to the integration-by-parts and Lorentz identities.
We compute the “irreducible” integrals once and store them.

For the planar double box, eq. (4.16) and momentum conservation, kj +ko+ksz+ks = 0,
show that the “irreducible” monomials needed to generate all Piyierr. are

Praiert. (mn) = (20 - k)™ (2p ko), m+n <6, (4.17)

interf.

The restriction on the sum of m and n comes from gauge theory — at most six powers
of the loop momentum can appear in the Feynman diagram numerator algebra. The

,18,



planar double box also has a symmetry, reflection about the central vertical line, so that
Pintert. (M, n) = Pintert.(n,m). This leaves only 16 integrals (4.17) to store. Not all of the
highest degree integrals actually appear in the amplitude. For the non-planar box, we store
the integrals of the monomials,

’PNP’mod(m,n) =(2(p+q) k)™ (2p- kg)", m4+n < 6. (4.18)

interf.

We also store those “irreducible” boundary integrals with six (instead of seven) propagators;
these monomials are generated by three independent factors. For example, for the planar
double box boundary integral obtained by setting v3 — 0, one requires

(2q - k1) (2p - k)" (2p-k1)", m+n+r <5. (4.19)

For the helicity amplitude approach, the more general loop momentum polynomial

Prel. given in eq. (4.6) requires a bit more work before the above method can be used.
o

Consider the product ¢; - p. Because ¢

written as &; - py. We can expand pﬁ] in terms of a basis of four different four-dimensional

is a four-dimensional vector, this can also be

vectors. Because of momentum conservation, there are only three independent external
momenta, but we can use the Levi-Civita tensor to construct a fourth one,

H = M
vt =¢ vivavs

KRR (4.20)

Then
Py = K + Ry + B RY + o (4.21)

where

1
&= 3|t @p k) +u(@p- ko) +5(2p- ko),

G = [t p k) —uCp ko) + 5 ks)]

&= o [t@p k) +up k) — 5 (20 )]

@ = P KRR = —vp. (4.22)
Thus we can write

giop=Cclei-ki+de kat+de ks+de-v. (4.23)

This equation, and the analogous one for g; - ¢, reduce the problem of handling helicity
amplitude polynomials (4.6) to those of the form

Pher. = P(p27p : q7q27p : kiv q- kla )‘?)7 A; )\?)—1—[172} b, v Q), (424)

where v - p and v - ¢ come from the ¢, coefficients.
The effect of inserting factors of v - p and v - ¢ into the integral is very similar to
inserting factors involving the (—2¢)-dimensional components of the loop momenta, A, and
Ag- In either case, shifts of p and ¢ by amounts proportional to the external momenta
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k;, as required to perform the Gaussian integrals over p and g, have no effect, because
v-k; = Aj - k; = 0. Thus both types of factors result only in polynomials in the “vacuum
graph” Schwinger parameters 7Tj,.
Insertions of )\g, )\2 and /\12, +, may be handled by differentiating the (—2¢)-dimensional

part of the (Wick rotated) integral,
/ A0, AN exp| X2 T, = N2Ty = A2, Ty | o A, (4.25)

with respect to Tj,, T;, and T},4. They lead to parameter insertions such as

A?H—q - _6¥,
02 = —e(1 - g Tt ol
ApAg = %—e(l—@i—ﬁg,
(A2)2N2 — e(1—¢) [e% —(2— E)W] ’
Ao A Apg — €(1=€) [EW +(2- 6)%] . (4.26)

Similarly, the polynomials in v - p and v - q are easily parametrized:

stuTy +Thpy
8 A
stuT, + T,
8 A
2 2
4 stu\“ (T4 + Tpq)
o () B

2r 2
9 9 stu 1 T
(v-p)°(v-q) —><—8> Z+3—Ap2q]’

3 2
3 T, + T T (T, + T,
(v~p)4(v-q)2 — <_s u> 3-4 P4 4 15 Pq( q pq)] 7

(v-p)* —

(v-(p+q)* —

8 ) |7 A A3
3._
stu T, + 1, +1, 1,1,T,
(v-p)’ w9 (p+a)* — <—8 > S CEe EE v ”q]. (4.27)

These equations apply to any two-loop integral, independent of the external momenta.
They also apply in the presence of any additional numerator factor of the form f(p-k;, q-k;),
since cross contractions are forbidden by the orthogonality of v to the k;.

Finally, polynomials in v-p, v-q can be related to those in Xi, using the expansion (4.21).
For example,

1
PPNy =y Py = s ek + Bk +ucleh — Jstu (), (4.28)
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or

4 R
2 2
>‘p = _%(’U 'p) + PP7 (429)
where
Pp=-—p*+sEh+tchdh +uddl. (4.30)
Similarly,
4 o
2 9
)‘ Stu(v q) +PII7
2, =4 24P 4.31
p+q—_£(v’(p+Q)) + Ppq (4.31)
where
Aq = _q + 30162 + tC203 + UC({Cg s
Pog = —(p+q)° + s(h + ) + ) + t(ch + c§)(ch + ) + ulc] + c]) (s + ).

(4.32)

Note that 75p, 75q and 75pq only contain the types of Lorentz products which already appear
in Pintorf.-

Because egs. (4.26) and (4.27) are so similar, and taking into account the relations
between the integrands, we can solve for the additional “new” integrals required for the
helicity method, in terms of the “old” integrals needed for the interference method. For
example, for a general function f(p - ki, q - k;), we have

/A2f=—ei/(v P f=—1" »
/A§+q = e—/ (p+q)°f= 1_2/quf,
Jowrs - —6(13 <Sfu> /(v P = (1_26 L5 [P
s sy [

[ prt-ar s = (%) [(1_26 o [P 5 [ 4]

[0 =~ e e | PP

4e(1 —€) Pf
(3 —2¢)(5 — 2¢) / (4.33)

A factor of 1/A indicates that a shift of the dimension of the integral is required: D — D42,
e — ¢ — 1 (€’s in prefactors should be shifted as well).

In practice, we used egs. (4.29) and (4.31) to eliminate v - p and v - ¢ in favor of A2,
)\2 and )\12) +¢ In the loop momentum polynomial. We used equations like (4.33) to compute
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the “irreducible” monomials including the XZ-, which we then stored. FE.g., for the planar
double box integral, we stored values for

Plli)(;li.rred(llv la,l3,m, n) ()‘2)11 ()‘2)12 ()‘123-%-(1)13 (2(] : kl)m (2]? : k4)na
2[1 + 2[2 + 213 +m+n<6. (4.34)

Having reduced all the tensor loop integrals in the amplitudes to a linear combination
of master integrals, the next step is to expand the master integrals in a Laurent series
in e, beginning at order 1/¢*, using results from refs. [53, 54, 45, 47, 46]. Many of these
master integral expansions are given in terms of Nielsen functions [55], usually denoted
by Sy p(x). However, it is straightforward [56] to express the results solely in terms of
polylogarithms [57],

Li,(z) = z” / —Lln 1( (4.35)

Lis(z) = — /0 %ln(l—t) (4.36)

with n = 2, 3,4. The analytic properties of the non-planar double box integrals appearing
in the amplitudes are somewhat intricate [34, 54]; there is no Euclidean region in any of
the three kinematic channels, s, t or u. So we do not attempt to give a crossing-symmetric
representation, but instead quote all our results in the physical s-channel (s > 0; t, u < 0)
for the gg — gg kinematics (2.1).

4.2 Checks on results

We performed a number of consistency checks on the amplitudes to ensure their reliability:

1. As a check of gauge invariance, we verified that the amplitudes vanish when a gluon
polarization vector is replaced with a longitudinal one.

2. The agreement of the explicitly computed infrared divergences with the expected
form (2.8) provides a stringent check on the amplitudes. Most of the master integrals
contain divergent as well as finite terms, so the finite remainders are checked indirectly
in this way.

3. Using supersymmetry Ward identities [16], we evaluated the identical-helicity case,
including fermion loops [23], by relating it to the already known identical-helicity
pure-glue gg — gg amplitude [34]. The integration in ref. [34] was done by a com-
pletely different technique, thus checking the programs and integration methods used
to obtain the general helicity cases.

4. As described in more detail at the end of section 5, we compared our results for
g9 — gg to those of ref. [12]. The interference of the two-loop gg — gg helicity
amplitudes with the tree amplitudes, after summing over all external helicities and
colors, and accounting for the different schemes used (HV vs. CDR), agrees precisely
with the calculation of ref. [12].
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4.3 H® operator
(2)

As mentioned in section 2, the function H g (€), which contains only 1/e poles, has not
been predicted a priori for general processes. However, there is accumulating evidence from
explicit calculations [11, 12, 30] in the CDR scheme that the color- and helicity-summed
matrix element (MO |H® ()| M) is a sum of terms for each external colored leg in the
process, namely

e_ﬂ/}(l)
4eT(1—€)

where n, is the number of external gluons, and n, is the number of external quarks plus

(MOIH® (6)| MO = (ngHP + ng HP ) (MO MOy, (4.37)

anti-quarks, with

2
@ _ (8, M o 5\ ([ 7 89 N5 e
H, ( - 144 - 12>N * ( 7108 ) VN T (4.38)
7 11 409 2 41 3 72 3\ 1
H? — _ 2 T N? e — — _2 L2
a <4C 06" Tsea) T C?’ 96 10s) T\ 2%t E T3)ae
72 25 \N?2-1
Sl Ne. 4.
* <48 216> N Y (4.39)

Note that Hy ) and Hé2) are constants, independent of the kinematic variables.
We find that the full color and helicity dependence of H (2 )( ) for gg — gg is the sum
of two terms,

e—eb() 2 %
2 e 7 (A (2) rr(2)
H® () = 4€m_6)<_8> (4Hg 1+ H ) (4.40)

ﬁ(z) =4 1n< > ln< _t> ln<_—u> X |:T1 Ty, Ty - Ts] ) (4.41)
—t —U -5

with In((—s)/(=t)) — Ins — In(—t) — im in the s-channel, etc. (The overall factor of
(u%/(—s))? is a choice of convention, because (u?/(—s))? — 1 is of order e. Including it

)fin

cleans up the finite remainder M(gégg a bit.) The first term in the sum is proportional
to the identity matrix in both helicity and color spaces. In the HV scheme, Hg(,z) is given
by precisely the same value (4.38) found in the CDR scheme [12]. The value in the FDH

scheme is different; see eq. (5.9).

where

The second term in eq. (4.40) is also independent of the helicity configuration, but
it is a nontrivial commutator matrix in color space. (The possibility of nontrivial color
structure in H®) () was pointed out in ref. [25].) Indeed, it vanishes when sandwiched
between tree amplitudes, after performing the color sum,

(MOLE|MO) o MO(Ty - To T Ty Ty T3 Ty -To) | MO) =0, (4.42)

using hermiticity of the T;. Equation (4.42) ensures that the result (4.40) is perfectly
compatible with the previous color-summed results (4.37).

Actually, in the course of the q¢ — ¢ calculation, the authors of ref. [11] evaluated
the matrix element

MO EH MO

7' —qq’

O (4.43)
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relevant for the interference term in identical-quark scattering. Because the color structures
for the s-channel and t-channel tree amplitudes, Mgglq,q, and Mg%),éqq,, are different,
eq. (4.42) does not apply, and the non-vanishing CDR result is completely consistent with
our HV result eq. (4.41), including all normalization factors [58].

We find that the commutator term is the same in FDH scheme as well. Note that it

can be rewritten as a “triple product” in color space, because
[Tl Ty, Ty Ts| = i fue TOTOTE . (4.44)

This form of the color operator has previously appeared in analysis of the contributions of
one-loop factors for soft radiation (i.e., S1) in eq. (3.25)) at NNLO [26]. This fact, and

2
( ), leads one to suspect that it arises from soft, not

the lack of scheme dependence for H
collinear, virtual contributions. The 1/e divergence would presumably cancel against the
contributions discussed in ref. [26], in a color-resolved approach to a NNLO computation.
In a fully color-summed approach, however, such contributions should cancel individually,

thanks to eq. (4.42).
(2)

(2
The factorization of H
is clearly an accident of having exactly four external colored partons. Color conservation,

in eq. (4.41) into a product of kinematic and color factors

T+ Ty + T3+ T, = 0 in the color-space notation, implies that there are only three
independent T'; - T'; factors, say T -T'o, T'2-T'3, and Ty - T'3. But their sum is a c-number,

1
T1-T2+T2-T3+T1~T3:g[Tﬁ—T%—Tg—Tg], (4.45)

hence there is only one independent commutator. (A similar argument holds in the
fabcTi“T;-’Tlg representation [26].) For three or less external colored partons, all such struc-
tures vanish; whereas for five or more partons there are multiple independent ones.

4.4 Finite remainders

The two—loop finite remainders are defined in eq. (2.8) and are color decomposed into
M )(\?)/\Lz;\ir;q in eq. (2.15). Their dependence on the renormalization scale p1, N and Ny may

be extracted as
2),[4]fin . . 0),[z
M>(\1)>\£;\3>\4 = — [bg (ln(s/,uz) — z7r)2 + by (ln(s/u2) — i) M>(\1)>\£;\3>\4 —

. 1),[¢]fin
— 2bg (ln(S/N2) - ”T) M)(\l))é;\g)u; +
Ny i

2 4l [1] [4]
+N7A\ oasna T Baioasns T VNP O oaan, T N D) aoxsn, T

i N

2 1 7 .

+ ]Vf E)\1A2)\3)\4 + m FA1)\2)\3)\4 ) 1= 17 27 37 (446)
2),[i]4 . 1),[i]fi

M oA = —2bo (In(s/u?) — im) ML, +

i g N
1 (] 7 .
+NG>\1)\2>\3>\4+NfH)\1>\2>\3>\4+WI>\1>\2>\3)\4, 227,8,9. (447)
The p-dependence is a consequence of renormalization group invariance. The tree and
one-loop functions, M )(\(1]))15;3 ), and M Sl\g\ix, are given in eq. (2.22) and egs. (3.27)—(3.51),

respectively, while by and by are given in eq. (2.3).
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The coefficient functions A, B,C, D, E, F,G, H, I, which depend only on the Mandel-
stam variables, obey several relations. Group theory (e.g. U(1) decoupling identities)
implies that the G functions are not independent of the others,

[7] _ (1] [2] (3] (3]
G)\1)\2)\3)\4 - 2<A)\1)\2)\3)\4 + A>\1)\2)\3)\4 + A>\1)\2)\3)\4> - B}q)\g)\g)\4 ’ (448)

8 1 2 3 1
G[)\l])\2)\3)\4 = 2(A[)\1])\2)\3)\4 + A[)\EA2>\3)\4 + A[)\EA2>\3>\4> B Bg\1]>\2>\3)\4 ) (449)

(9] _ (1] 2] (3] 2]
G)\1)\2)\3)\4 - 2(A)\1)\2)\3)\4 + A)\1)\2)\3)\4 + A)\l)\z)\g)ul) - B)\l)\z)\g)\4 ’ (450)

and that the sum of the B coefficients vanishes,
3 1 2

Bg\l})\2)\3)\4 = _Bg\l])\z)\g)u; - Bg\l})\g)\'g,)u; N (451)

As at one loop, for the ++++, —+++, and ——-++ helicity configurations, Bose
symmetry under exchange of legs 3 and 4 (¢ <> u) implies further relations,

[2] _ vl

X)\l/\2)\3)\4(s,t,u) = X>\1>\2>\3)\4(8,u,t), X e{A,B,C,D,E,F}, (4.52)
(9] _ v8l

Y/\1>\2)\3)\4(3,t,u) = Y/\l/\2>\3)\4(s,u,t), Y € {G,H,I}. (4.53)

In appendix A, we give the explicit forms for the independent finite remainder functions
appearing in egs. (4.46) and (4.47). For the two complicated helicity configurations, ——++
and —+—+, these functions also involve auxiliary functions, ASY™[ and BSY[ which
will be presented in appendix B. The latter functions also serve as the finite remainders
for gg — gg in N = 1 super-Yang-Mills theory, as discussed in section 6.

5. Scheme conversion at two loops

The preceding helicity amplitudes were presented in the HV variant of dimensional regu-
larization and renormalization. As mentioned in the introduction, the HV scheme contains
D —2 = 2—2¢ virtual (unobservable) gluon states, and 2 external (observable) gluon states.
However, it is possible to alter the number of virtual states. In the FDH scheme [22, 23],
one adjusts the number of virtual gluon states to be 2, matching the number of external
states, and also matching the number of fermionic degrees of freedom in a supersymmetric
theory. This scheme is quite similar to dimensional reduction (DR) [24].

Dimensional reduction is usually thought of as having D < 4, i.e., ¢ > 0, and contains
D — 2 = 2 — 2¢ gluon states, plus 2¢ scalar states, for a total of 2 bosonic states. On the
other hand, the helicity of a particle is its angular momentum eigenvalue for a rotation in
the two-dimensional plane normal to its momentum vector. If D is less than four, this plane
does not exist, making the definition of helicity obscure. The FDH scheme can be regarded
as an analytic continuation of DR to D > 4, to make it compatible with helicity amplitudes.
No scalars are required, however. For both the HV and FDH schemes, helicity amplitudes
with fermions and gluons are computed in the same fashion, with D-dimensional loop
momenta and four-dimensional gluon polarization vectors (see section 4.1). In performing

,25,



the algebra leading to the loop-momentum polynomial P, when the trace of the Minkowski
metric is encountered, one sets

', = Ds=4—2€0R, (5.1)
1, HV scheme

_JL ) 2

OR { 0, FDH scheme. (52)

This procedure is gauge invariant because the terms proportional to Dy are related to loops
containing scalar fields in the adjoint representation [23]. We allow dr to be arbitrary below,
although only the HV and FDH cases in eq. (5.2) seem well motivated.

The CDR scheme has Dy — 2 = 2 — 2¢ virtual gluon states, just as in the HV scheme;
but in addition there are D — 2 = 2 — 2¢ external gluon states. To convert from the HV
to the CDR scheme within the helicity method, one could in principle compute additional
amplitudes where some external states have e-helicities (explicit polarization vectors that
point into the extra (—2¢)-dimensions) [59]. Since the CDR result is already available via
the interference method [12], we have not done that computation. Instead we shall check
the conversion between schemes expected from experience at one loop.

A given scheme has implications for regularization of both ultraviolet and infrared sin-
gularities. These implications have been discussed extensively at one loop [22, 33, 60]. Let
us first consider the ultraviolet situation. Renormalization by modified minimal subtrac-
tion, as in egs. (2.5) and (2.6), leads to different renormalized coupling constants, related
by finite shifts. In the class of schemes we are considering, the ultraviolet behavior only
depends on the number of virtual gluon states. Thus the CDR and HV schemes imply the
same coupling constant, the standard MS coupling, as(z). The FDH and DR schemes also
are the same in the ultraviolet (the ability to accommodate helicity, and the sign of €, are
irrelevant here), and so they both define the DR coupling, aE_R(,u).

To shift from either pair of schemes to the other, in the ultraviolet, amounts to using
the following relations between coupling constants [61, 33|, recently improved to two-loop
accuracy [23],

BE Cy o 11C% — 9CFTRrN; [ o 2
asDR(N):as(N)[1+—Aa(M)+ A FRf<a(”)>+

6 27 18 2
n oaas(m]‘”’)} , (53
- aD— 2 aﬁ 2
(1) = PR () [1 - Cac ) 10C ffFTRNf< = W(“)) i
n oaaE_%)P)] | (5.4)

(Recall that the three-loop running coupling enters into any NNLO computation. The
three-loop beta-function coefficient by in DR differs from the value in MS [62], but it can
be obtained simply from the coupling shift (5.3) [23].) For completeness, we give the
two-loop relation [23] between the MS coupling and that defined by an arbitrary value of
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o3 (1) = o) [1 LG sy

6 2T
+ <§—§‘(1 —0p)% + "Ca - ?(;FTRNJC (1- 5R)> <O‘;(:)>2 +
+ 0] 55)
i) = afe([1 - Lo - o S0
+ (g—éu —6r)% — G- ?(;FTRNf(l - 5R)> <O‘g;§”)>2 +
+ 0l ()] 5.6)

which reduces to egs. (5.3) and (5.4) for 0 = 0. Inserting the appropriate coupling relation
into the perturbative expansion of the amplitude (2.4) leads to simple, finite ultraviolet
conversion relations between renormalized amplitudes M%L).

Because the ultraviolet shifts are so simple to implement, in the rest of this paper (with
one exception to be discussed below) we take the ultraviolet scheme to be the same as the
infrared scheme. That is, when we report results for M%ng in the FDH scheme, they
correspond to coefficients of a perturbative expansion defined as in eq. (2.4), but where
as() is the FDH/DR coupling, ost_R(,u). In the more general dr scheme, the expansion
parameter would be a7 (u).

In this convention, the one-loop relation between gg — gg helicity amplitudes is [22, 33]

Ca

M \Mglg)_)ggmv + 5 (1-90g) ]./\/lgg_)gg> (5.7)

gg—>gg>

which only involves a finite shift. The corresponding relation at two loops also requires
shifts of the divergent terms in the infrared decomposition (2.8). We find that

Ks, = Kny — Cx <% + %6> (1—-90r), (5.8)
(HP)s, = B~ Ty (1~ 6m), (5.9)
’Mggﬁgg>512 \M%E{;ﬁ av +
2 <—%w + 152> b Th Nf<2§7cA _ %CF>] (1—6p) MO, ).
(5.10)

where Ky is given in eq. (2.13) and H, 52) (the value in the HV or CDR schemes) is given
in eq. (4.38). Because I(l)(2e, w; {p}) contains at most 1/€2 poles, the term proportional to
ex(1—0r) in K, clearly could be shifted into (H, 52))51% if desired. However, the assignment
we have chosen makes eq. (5.10) simpler.
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Also, the interpretation of Ky as the integral of a splitting function® [42, 60] leads to
both the €® and e terms proportional to (1 — dz) in eq. (5.8): The azimuthally-averaged
g — gg splitting kernel is given in the general dp scheme by [60]

(POR(z;€)) = ZC’AL - —+ ! . ‘5 (1 1 = (1 —5R)>z(1 - z)} . (5.11)

With the identification [60]

1 ! e psns. 2T 72
3% [ -y B =2 v (K- T2)e, Ga)

€

one sees that the dg-dependent term of K = K| is

1
CA6(1 - 53)/0 dz (2(1— 2)1 = —Cy <3 42 e> (1-0r), (5.13)

1—- 6 9

in agreement with eq. (5.8).

One can also present results for the two-loop gg — gg amplitudes using the ér scheme
as the infrared regulator, but switching to the MS coupling constant with the aid of eq. (5.5).
For the infrared decomposition (2.8) to hold, assuming that I (1)(6) is scheme-independent,
we find that the quantity Krg must be set to

K(;R = Kgv + %(1 —0Rr) + O(e). (5.14)
Thus such a definition of K would be scheme dependent too. Also, in contrast to the
simplicity of eq. (5.9), the scheme-dependent part of H ) will contain logarithms and will
no longer be proportional to the identity matrix in color space. Hence we refrain from
presenting such a decomposition explicitly.

Finally we discuss conversion from the HV scheme results reported in section 4 to the
CDR scheme used in ref. [12]. In the CDR scheme, one usually computes the interference
of amplitudes, summed over all external colors and (2 — 2¢) polarizations. The generic
one-loop/tree interference encountered at NLO is

2Re[(:” =2Re Y [<M£}) 1M59>>] - (5.15)
color,hel.

Inserting the infrared decomposition (2.7) for MY into eq. (5.15) gives

N0 =2Re Y [(MOIOIMO)]  + 1O, (5.16)
color,hel.
where
I —2Re [(Mﬁ}’ﬁ“wﬁ?w : (5.17)
color,hel. RS

We thank Henry Wong for clarifying this point.
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It is well-established from explicit calculations and general arguments [22, 33, 60] that
the finite remainder (5.17) has the same value in the HV and CDR schemes, in the limit
e — 0. Essentially, the treatment of unobserved partons is the same in both schemes,
so the infrared divergences should take the same form, when expressed in terms of the
lower-order-in-as amplitudes.

It is natural to expect the same pattern to hold at two loops. The two-loop/tree
interference is

2Re A" = 2Re . [<M53>|M§?)>] N (5.18)
color,hel.
=2Re Y [(MOEOMD) + (MOIONMD)|  +IEO™, (5.19)
color;hel.
where
IEO™ =2Re Y [(MPPIMP)] (5.20)
color,hel.

Note that I and I® are the same operators in the HV scheme as in the CDR scheme.

We have interfered the color-decomposed finite remainders of the two-loop gg — gg
helicity amplitudes in the HV scheme, as given in section 4, with the tree amplitudes given
in eq. (2.22), summing over all external helicities and colors with the help of eq. (2.24). This
sum gives precisely the same result as the corresponding quantity (5.20) in CDR scheme,
as evaluated in ref. [12], after accounting for the slightly different definition of H ) that
we used in eq. (4.40). We conclude that eq. (5.20) should be the same in the HV or CDR
schemes for general two-loop QCD scattering amplitudes.

6. Two-loop amplitudes in pure N = 1 super-Yang-Mills theory

The quarks of QCD are (massless) fermions transforming in the fundamental representation
of SU(N). If one replaces the quarks by a gluino, a massless Majorana fermion transforming
in the adjoint representation, one obtains a supersymmetric theory, pure N = 1 super-Yang-
Mills theory. The amplitudes for this theory, when it is regularized in a supersymmetry
preserving fashion, obey supersymmetry Ward identities [16], and from experience at one
loop they are expected to be simpler than the corresponding QCD amplitudes. On the
other hand, SU(N) group theory generates linear relations between amplitudes of the
two theories, so one can use the two-loop super-Yang-Mills amplitudes to simplify the
presentation of the two-loop QCD amplitudes, as we do in appendix A.

In this section we discuss the supersymmetry Ward identities and infrared decomposi-
tion for the two-loop amplitudes in pure N = 1 super-Yang-Mills theory. Then we describe
the finite remainder functions for these amplitudes, deferring the most complicated formu-
las to appendix B.

Here we work in the FDH scheme discussed in section 5, in order that the Ward iden-
tities are valid. One set of identities implies that “maximal helicity violating” amplitudes
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vanish for any supersymmetric theory and any number of loops,

MUY (g, 95,95, g)) =
SUSY
M (917927937"'797—’;)

where g (g) denotes a gluon (gluino), and the superscripts denote helicities in the all-

0,
0,

outgoing convention. In addition to egs. (6.1) and (6.2), all other super-Yang-Mills n-point
amplitudes containing either zero or one negative-helicity particle vanish trivially, by using
gluino helicity conservation. We have checked that eq. (6.1) is indeed obeyed for the four-
point amplitude gg — gg at two loops in the FDH scheme [23].

Other identities relate the non-vanishing supersymmetric helicity amplitudes for exter-
nal gluons alone, to amplitudes where some of the gluons are replaced by gluinos. For the
four-point amplitudes, all the non-vanishing amplitudes in pure N = 1 super-Yang-Mills
theory can be related to the gg — gg amplitudes [33]:

o 23
MEMG .Gy .95 .91) = 2 i S ™M(91 95,95 ,98)s (6.3)
MEMGT .Gy 0G5 .01) = 24 MP™M(gy, 95,95 .91 )- (6.4)

(13)

These relations are crossing symmetric, when a crossing symmetric definition [63] of the
spinor products is used. Thus, to obtain all the gg — g9, gg — g9, 99 — gg, and gg — gg
amplitudes from egs. (6.3) and (6.4), it suffices to give the two independent non-vanishing
helicity amplitudes for gg — gg, namely the ——-++ and —4—+ configurations.

First we present the infrared decomposition of the pure N = 1 super-Yang-Mills am-
plitudes at two loops. The equations in section 2 hold with a few modifications for the
super-Yang-Mills case. We use the perturbative expansion (2.4) but in terms of the FDH
(or DR) coupling (5.3). The group-theoretic replacements required to convert the quarks
to gluinos are

Cr — Oy, TrNy — Ca/2. (6.5)

Some of the previous equations, such as eq. (4.38) for Héz), are given for gauge group
SU(N) in terms of N and Ny, with Tr = 1/2, rather than in terms of general Casimir
operators. In such equations, to recover the Casimir representation, one should first sub-
stitute Ny — 2TgrNy and 1/N — (C4 — 2CF), followed by N — C4. Then one can apply
the substitutions (6.5).

The first two coefficients of the beta function for pure N = 1 super-Yang-Mills theory
are

B = 2, =203, (6.6)
and 7, is similarly modified,
3
’YSYM = §CA (67)
The coefficients K and Hé2) are given in the FDH scheme, via egs. (5.8) and (5.9), by
24
Kiph = (3- 7 - 5¢) 65)
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2 2
H2))syMm C_3 T _2\e2 ‘

With these replacements, the one- and two-loop infrared decompositions (2.7) and (2.8)
hold in the super-Yang-Mills case. We also color decompose the amplitudes and strip off
the helicity phases exactly as in eq. (2.15) for the QCD case. The dependence of the one-
and two-loop finite remainders on p and N are then extracted as

1 ) ; i) fi . 0 s ) i .

MENIR = g (s /u?) —im) MO L A NG i=1,2,3,
(1),sym,[éffin _ syMm,[4] .

]\4)\1)\2)\3)\4Z B - g)\1)\2)f3)\4 ) 1= 7,8, 9, (610)

2), [i]fin . . 0),[¢
MO = (052 (n(s/p?) — im)? + 6 (tn(s/p?) — im) | MK, —

> 1 ’ ’ ﬁ ’ i ’ i
— 255 (In(s /%) — im) My hoyons ™+ N2 AT+ Biwio,

i=1,2,3, (6.11)
2), Jilf . 1), ,[2]fi R
ML — _opst (n(s /i) — i) MRS 4 v @l
i=1,8,9. (6.12)

The one-loop supersymmetric remainder functions are given in terms of the QCD ones,

symfi] ] (6 Ly (0),] _

a)\l)\z)\3)\4 - a)\l)\z)\3)\4 + C)\l)\z)\3)\4 + EM)\l)\z)\g)u; ’ t= 1’ 2’ 3’ (613)
SYM,|4] . sYM,[1] SYM,[2] SYM,[3] .

Iaradsha = 2<a)\1)\2)\3)\4 T aorarg T a>\1>\2)\3)\4) , =T389 (6.14)

The MOl correction term in eq. (6.13) is a consequence of using two different schemes —
FDH for super-Yang-Mills theory vs. HV for QCD. The two-loop analogues of eq. (6.13)
are egs. (A.33), (A.36), (A.37), (A.49), (A.50), (A.54), (A.55), and (A.56) in appendix A.
These equations also have correction terms due to the different schemes used, as well as
feed-down from the subtracted singular terms, which depend on the fermion representation.
The correction terms are more complicated than at one loop, involving M (Wlifin 59 well as
MO:l] but still they contain no special functions, only logarithms.

The two-loop supersymmetric remainder functions AS¥™, BSYM GSYM | ghey the same
types of identities as the corresponding QCD functions. The group theory relations are,

G, = 2(AX, + ATk, + AT ) ~ Baoaka, s (6.19)
G, = 2[00, + AN, + A )~ Baoeh s (6.16)
G, = 2(A0, AR, Al ) - B, 6
and
Birens = ~Bamons — Browans (6.18)

The Bose symmetry relations, which hold only for the ——-++ helicity configuration, are

XM b u) = XS (s 0, X € {A,B). (6.19)
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In appendix B, we give the explicit forms for the independent N = 1 supersymmetric
finite remainder functions appearing in egs. (6.11) and (6.12). This completes the de-
scription of the two-loop four-point amplitudes for N = 1 super-Yang-Mills theory, and
simultaneously of the auxiliary functions required for the QCD amplitudes presented in
section 4.

7. Conclusions

In this paper we have presented the two-loop amplitudes for gluon-gluon scattering in
QCD, and for all of the 2 — 2 scattering processes in pure N = 1 super-Yang-Mills theory,
including the full dependence on external colors and helicities. We found that there is an

additional 1/e pole term, ﬁ(2)

which vanishes after interfering it with the tree amplitude and summing over colors. We

in eq. (4.41), which has nontrivial color dependence, and

investigated the dependence of the amplitudes on the flavor of dimensional regularization
employed. The QCD results, when summed over all external colors and helicities and
converted to CDR scheme, are in complete agreement with the previous results of Glover,
Oleari, and Tejeda-Yeomans [12]. We also expressed the one-loop-squared contribution
to the NNLO gg — gg cross section in terms of one-loop finite remainders. Again the
appropriate interference, converted to CDR scheme, is in complete agreement with previous
results [31].

Much numerical work still remains in order to implement the two-loop amplitudes of
this paper, or those of refs. [11, 12], in a numerical program for NNLO jet production at
hadron colliders. When that is accomplished, however, the intrinsic precision on the QCD
predictions should reach the few percent level, providing a stringent test of the Standard
Model at short distances.
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A. Finite remainder functions for QCD

In this appendix, we present the explicit forms for the independent finite remainder func-
tions for gg — gg in QCD, which appear in eqs. (4.46) and (4.47). For the ++++ helicity
configuration, the functions are

1 1 oy

Al = %<11X—;—8>, (A.1)
3 1 ~ 1

ALL++=5<22X—@—8>+{tHu}, (A.2)
1 11 - ~

Bl = S (X -2D), (A.3)
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SN (TS NPT (A.4)
++++ 36 T ’
B _ 1 ¢ oY
C’++++—%<—13X—|—25+10>+{t<—>u}, (A.5)
1 1 - ~ 1
D= s (X —2)+ . (A.6)
3 1 - 1
DL}+++:_§X+§+{“—>U}= (A7)
2
I O
E++++_%<2X—;—|—1 ’ (A-8)
¥ = L lax - L —|—{t<—>u} (A.9)
++++ 72 Ty ’
1
F—L-}F-F-F =0, (A.10)
3
o A
[7] B S 1 A
H++++—1_8X+Z+{t<—>u}, ( 12)
Y, = L(13x - 3sv) ¢ - A
++++_E(3 —38 )+§= (A.13)
1 -~
1 = 5%+ {tou], (A.14)
8 1 5 -
1P, = —5(X—2v), (A1)
where z, y, X, Y, X and Y are defined in eqgs. (3.17) and (3.18).
For —+++, the functions are
1 T 14+ 23\ - 119> 51—z -
A= (152 X2py+ (L 2% -
T 12 5y2 Ty X"+ )+ 36 x 4 vy
91 —uxzy
— = Al
2o, (A16)
2 2
B 1 _y oz Z V)2 42
AT L = 24<15a:y - y>((X Y) +7T)—|-
11X 5 51— ay
— —+ —(z—y) X+ - t Al
+36:1:y+4(x WX+ +{ H“}’ (A-17)
2
(1] YTt 2z, o9 9 1422y 59 9
By =~ 2 (X" +77) - 972 (Y +77)
1 11 - ~
5@ +2) (X —Y)? 4 7?) + (X —2Y), (A.18)
a0 Lz 5 4>\, o0, o 111—ay
— (== _ 2L 72 (X -
Ot (8 216 1z )X ATy
11—z 1342\ 5
R D ¢ Al
+<8 y 36 a:) ’ (A.19)

X

= I8y (42 + zy + 30y2)<(X —Y)?*+ 772) -
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11 13 1\s 111—ay
—(—(x—y)+——>X+— o +{tHu}, (A.20)

8 36 xy 16
p ., = 112;22 (X2 +72) + 2_453’ X+ %Y/ ;1 g;y , (A.21)
p¥, ., = —%6 y2<(X Y24 772) + i(Gy ~5)X +
11g;;y +{t = u}, (A.22)
Bl = %X, (A.23)
BB, = 18{@ X+ {t o u} , (A.24)
FLl-}l--F-F =0, (A.25)
FE))-}F-F-F =0, (A.26)
HT = 1—12 <2%2 + 3$(1y; 233))(5@ +72) + (%1 %2 = %)X +
+ i(—ﬁ;ww) <(X—Y)2+7r2) + {t<—>u}, (A.27)
., = 1—2(2%2 - 323’2; x)(f(? +7%) + %(2%2 32 )(Y2 +72)
% <2x_y2 — 15zy — 8y* — i—?)) <(X Y2+ ) +
+%<22%2—9>X+%<11y£—30>?, (A.28)
o, = —%X + {t o u} : (A.29)
™., = —é(x—;)i' + <y;2 = 3) ff) . (A.30)
For ——++, the functions are

AN = (@ 1 6% 3ay) [LM(—?) — Lis(—x) — Lia(—y) +

X(Lls( T) + Lis(—y)) -

_7T 4, (%2 2\ v

_6L 2(— a:)+—12X 6(X + )XY +

1 2 2 2 2 17 4
Y(6X —4XY +Y +2w)—%w +

Ik R S X L +C—3X+
v R

1 11 + 60zy

- 1 -~ 1 -
: [Lig(—x) - XLiy(—2) + 3 X3 - 5(X2 + )Y +
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5 - -
— —y(4X3 + 92X — 52¢3) —

—Z(;—z—%—1—1)(5(2—1—7?2)—%(53+15y(3x—y)) -

G2 el e (a3
AP - 23245531( _y) 7;_;(1 ;;y)z(X_Y)2+2i—3yX_ 167;;_

- %(Lig(—x) — XLiy(—7) — 5X3 ;7?2X + 1i’§3 - zg—D +

+ <% %3 - g(x —y)> <(X CY)2X - %Y) -

. %zw% <(X Y24 ) - 27(1695 — 172y + 58)X +

- %(% — 3(x —y)>(5(2 + %) + 214 (41 — 30:17y)((X —Y)? +772) —

SUETESITRRI N IR

+ {t o ulb, (A.32)

B[_l]_++ - BEY_M_L[_}_] - HE?]_++ + 2HES]_++ - H[_g}__i__i_ + I[_ﬂ__i__i_ - 2[[_8}_4_4_ + IE)]_++ -

1 2 ~ 4 2 3N
——(m—y)<2$— —3>X3— —<2x——3xy—y—>X2Y—|—
Y 3 T

3 Y

1 2 2 - 2 2 ~
+—<8x—+x—20xy+3y+10y—>XY2 — —(a:—y)<2y— —3>Y3+

3 Y T 3 T

2 5 _ 9 2 -

+ (5 — day) (X —2V) — —<13$— - 19>X2 +

3 9 Y

4 2 -y 2/(2 13\ -

—(13y—+y 19>Y2—|——<—6—18(:17—y)——3>XY+

9 T 9\ y T

4 - .
+ §(X -2Y), (A.33)

xT

C’[_l]_++ (222 — 6xy + 3y°) | Lig(—x) + Lig(—y) — Liy <—§> — XLig(—z) —

KLis(—y) + = Lig(—a) 4 - 4
BLTY) T g b 24

_l 2/v2 2_1 o 2_i 4
10 ) - XY (X YY) - Y

+ 7T—2(2)~(2 +4XY —Y?) + 18l
12 360

1/2 - 1oy 1 -
-5 (E —3(9x — 13y)> [Lig(—x) — XLig(—x) + gX3 - §(X2 + 7Y +
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——t+ =

17 5o (3
x>
T 6]
—i(gx—l?,) X3+27r25(+5c -
12 J 4 3
1/11 x - 72 y? 85
(= +4=5426) (X2 + 7% — — (38 — = — 358y — 101
+8<y2+ v >( ) 216( gz Y >+
1 z+2y 137\ y 115 4849
T <297 vz )X 18 "7 T 12060 (A.34)
1 2 2 2 2 2
—® ((x =2 +m2) (305 =) = =2) +
+ 1 | Lig(—2) — XLis(—2) — 2X* —iTX(X — V) — 222X
i) — Ly T _yy 3 ey
3wy |2 2 3 2 8

5 K
IETAAE]

L[y a? S9
- — (2= + —(11y — 4z) | X°Y —
12( x+y( y x))

1 ? 2 2\ \ v/ o2 2
——|6— —11(22" +y°) | X(X* +7°) +

36 Y

72 [ _y? 5 1 /44 5

— (2 — 1442 )X — —(— -39z — X2y n%) -
(25 -1 a0) - (- 30w - ) ) (X2 400
s 2 w2, 2) 21342041 —ay)

24(37x +4my)<(X Y) +7T> T 13207

1/ 5 9, _, o) o 11 4849
— (-2 Z5a? —2ay + 9P | X — —

108< oy T 00T~ eyt y)> 8 1296z
—|—{t<—>u}, (A.35)

1 [ 22 .

AT A OB ()0

222 1 P\ oo 1 -
o E s )Ry - (5L — 14 say + 45 )XV 4

3\ y Y T 3\ = Y

2 2

T ~ ~ 2(y 2\ o3
Z (92— X -9y - 2L V3 —
3( )l ) 3(:17 x>

18
+1i8<—+3( —y)+2y—2>(Y2+ %)

_%<_%_9( - )+_2><(X_Y)2+“2>+144 ™+

Fa(X 2Py - oL, (A.36)

3 3 3 3
—ATBl B el EP 4

1/ 22 . 1/1 3N\ —on 2 -
(T2 )ty + L)X+ T2 ay X -
Y 3\ zy T 3
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—%(1—;—3(x—y)>(X2+7r2) %XY—F%ﬂQ—I—
+éX+%+{t<—>u}],

EE)’]—++:__$ +9%) ( >+1—18<2%2+x+5y>)§'2—
217;1y_%X+{t<_’“}

P, = 1—18[;@%4 )+ )
)

F£3]_++=%<y()~(2+ 2)+—Y—Z7T§y>—|—{t<—>u},

H[—7}—++ = §(2 —zy) <Li3(_x) — XLig(—z) + - X* - ZX?Y +ig(X2 + 7r2)> +

3

36y 6
1

1 3 3 o
—|——X<8X2+297r) —<2$——6($—y)—4y—>X2Y—
Yy

[<1sy——3 +8+4 11 >(X2+7r2)+

18
22 ~
3 2
z 2 2 2 11 7
— | 11— X-Y — | -
( y+8x +6xy><( ) +7T)+2$y]
2 23492y o 1
Sy Xrgr{teu,

HY = 2(2® + )| 3(Lis(—2) + Lis(—y)) — 2X Lig(—z) — 2V Lis(—y) +

1 - ~ 1 ~
- 5(X2 — Y?)Liy(—2) + EX3Y <X2 . >Y2

1 - 2 -
- —<X—ﬂ>y3 . %(X2+6XY—4Y2)+ %774

3 2 t

(A.37)

(A.38)

(A.39)

(A.40)

(A.41)

(A.42)

+ 4a(z — 3y) [Li4(—a:) + Lig(—y) + Lig (—5) — Y (Liz(—z) + Liz(—y)) —

72 1 s
— —Li Yi— (X —iz Y3 —
g Liz(—® )+12 3( Z2)
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it

—Z—XY2+z—Y——

6 24+

1 $3 2 2 . Tt T 2
+3 2— —z"+ 14y L13(—$)+<3—XL12(—33)—|-Z§X -
Yy

11 3
iy 5 7

8 8 *

1/ a3 -
+3 <4$— + 1722 — 302 — 2y2> [Lig(—y) — (3 — YLis(—y) + zg Y2
y

2 (2 - 1 2 o
F (2 ) X3+ — (8L — 15y — 482 + 2722 | X2V —
I\ vy 12 x
1 y? 2 2\ w2 1 y? 2 2 \+-3
— | 14= —Ty* — 36z + 34z* | XY + — (44— — by* — 48x + 3bz" |Y° +
6 T 36 T
2 ~
+ %(182y2 + 96z — 42y + 2122) X —
2 3 48\ ~
~ T (9% y2—63:17—|—155x2——8 Y —2G(z —y) +
36 T Y
1/9 44 oo
+%<?—?+3(1—33§)(1—7$)>(X + 7)) +
1 /36 212 Yy
+%<F——+3(y +4xy+24a; ))(Y +7T)—
1 /44 22 .
— = — — = —3(22? + 522y 4+ 299°) | XY +
18\ y x
2744 176 1 N
T (220 55a? 4 8ay — 144y ) — — —|—45x— X
36\ vy T 54
1 /92 -
—— (= 445y —144|Y A4
54(3: +45y > ’ (A.43)
1 -
M, . = gy XX V) {t o u} : (A.44)
M, = L@ ((x -y +22)Y - U (X2 4+ 7%) +
BT 4 T 4 m

_ 2 2 7\ -~
+—<X2+7T—> + <2$—+7x—y—|——>Y2+
Yy 2 ( x
y? 2 ~
+ <——3y—2—><(X—Y)2+7T2) —6Y|.
x Yy
For —+—+, the functions are

1 3 2\ - 72 (1 —zy)? - 1. y? - 7wty
A[l} - 1 Dl 2y x4 W) 2y 2L x DT
oy —(1+2%) 2 6 zy? +2C3 x 80 x +

(A.45)
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11 ~ 1 - ~ 1 3
+ " % [Lig(—x) — XLig(—x) — §(X2 + 7)Y + §X3 + §i7rX2 —

31 oo 3 4 19
B G P B
T AT TGS

1123 21-z\,- 72 (6

4z X247 X +—(—-—-3zx+8y )X —
+<12y2+9 y >( ™) +18< o y>

1 3 B 2 2 38
36(90 —114%—31y>(X2+772) <66——17x+4+ >+

36
01 x 19 337y
z D X-Y
+<27y+5y+12+54 :17>( )+

337y 5 41 101 \o 5 11093 3>
sofy o 4l 10 2 A4
< - >Y+2+ R 1 (A.46)

1+ 622 — 3z

N [Lu(—g) + Lig(—2) — Lig(—y) — YLig(—2) +

2 1 - 1 - 67
+ T Lis(-a) - V- Y (RY2 = 22(Y —im) + G+

6 720 *

1 - w2 4 Y .5
2 4 2
_ Yy .y = GY
(x 3x+6)<8 " 80>+ GY +
Loy 17 .. 19
_ D VAN VY
2(Y + ) (X ) Y 5 (3
11

———(4Y3 I 52(3)+5y(8Y2+137T W

5/ 1 121 - w2 (60
_2 __4_ 1+ —y ) (Y?+ —(—= -5z +38
4<a;2 Y >( )+36< e y)

5/1 236 1. 1 25 11093
29 - =—=yly - — -2 4 7% A.47
- [2 <a: $> 27 y} 36y 18 T 648 U (A.47)

22 4+6 -3z . x . .
iy = - L14 <—§> — L14(—$) - L14(_y) +

7T2
XY (Lis(o) - G) = (L) + 312 +

11 4 2 2
+opm- ((X Y)! - (2X% = 3XY + 47%)XY)
1— 3z + 622 w2 2y s ¥
- T ((X-Y X-Y = +Y) -
O (JE -+ T VP ) + LG+ T)

_%<ng+?>km z) + Lig(—y) — (X — Y)Lip(~2) —
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- %(2){ - Y)<(X FY)? - 6Y2) -

— z'ﬂ'((X ~Y)?+ 71'2> -
2 , 13
- 27X +25Y 4 2im) + = Ga -

5
12y

- Z(aﬂ —4y+1)((X—Y)2+7r2> -

120y =g o w2 [ .y 60 5 2
2y (st 152 ) oo -2 ) -v)-
AR AT: + s ) 2\ )

T 25 11093 y

4(X +5Y) ((X —-Y)?2+ 7r2> + 725X —3Y) — 5243] —

- (67X+472Y)—§—E+ Tt (A.48)
gl =gl _ gl gl gl ++I[_7L_+—2Iﬂ_++1ﬂ_++
i
_§<4_y>%xtff2_3%2?3_?(4%_5)(;2_2?)_

- %(f( —2Y), (A.49)

2 SYM,[2 7 8 9 7 8 9
B =gl gl om0 B e

2 ? 3\ oy 1[ @ 12\ coe
—T(1-2)(25 -2 )X - (45 +5(x—y) — 8L | X?Y
3 x)< y? y> 3< e ==v) x> "

4 Y 59 2 92 ~ 3 72 x S5
-1-y)=XY*"+-=Y"+—[4—=—-5)2X -Y
+3U -y XY+ STV (45 -5 ) )+

3
2 _ 2 o

T P AT IS v B (LIS R e

9 Y 9 z 9\ vy T

4 .

- SX -7, (A.50)
[1} . 1 1+$ 4 2 2
hs=-5—p 3X4 4+ 272X —

2

. - 1os 1oy 17 ,. 1

— ¥ | Lig(—2) — XLig(—2) 4+ = X3 — =(X Y+ X - 2| —

33:[13( z) (=) + 3 (XS 4o 6o

3 1—z(1— 2 .
39%+11M>X(X2+7r )= <§—2$+1>X+
y y y

33‘2 X ~
—198 = —42°= - X2 4 7?) —
+ 72( 9B [+ 33 55y>( +72)
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2 47 1 37
— = (4 172 — 200y — — | — — ( 594= — 43z + 13y — — | X —
216( 68 + 17x 00y :17) 108<59 3z + 13y $>
11 4849y2
_ Ay A51
4 1296 z (A.51)
2 — 6z + 322 |, T . . -
g Ll4<—§>+L14(—$)—L14(—y)—Y(L13( 7)— Cs) +
2 1 2 Ny (4
+FL12(—x)—ﬂ(4XY—Y . )Y o
1 9—13z |, . oo log 1. 709 2
6<2y 3— )[ng( y) ~ VLis(—y) + 5 ¥ +227T(Y +27r)
1 - 5 o (3
— (V24X -Y) -’y — 2| —
5 (Y7 + ) ) - g™ 5
9— 13z /. .
— 20Y3 + 177%Y + 2
W (2072 + 17227 + 20¢s ) +
1/ > 4 88 5 w2
117 26 Y . 396 63 — 217
+8< +o+26+ -y >( +7r)+216 + Yy
1 115 4849
) A52
108( > 7 T 12067 (4.52)
202 — 6x + 3| . x . . .
i, (—5) ~ Lig(—2) — Lig(—y) + (X — ¥)Lig(~z) -
2 1 1 1
— —(Lig(—2) = X2 —ZY?) + — X* - - XY3
6 < (=) 2 >+24 g T
Ly G3(X — Y)+L7r4 +
24 3 120
1 9z — 13
+—<29—3 ° > Lig(—x)+Lig(—y)—(X—Y)Lig(—a:)] -
6\ =z Y
_ Y _ 2 _ ay2 , 2, 2
18x[(2x Y)((X+Y) 6Y>+6z7r<(X Y) +7r>+
7T2
+ 5 (17X +25Y + 2im) + 53
9z — 13 11y, -
X3 —3XY? 4+ 213X 4V — 2?4+ 72
o ( 3XY? + 27%(X + )>+9$( + ) +
1 2 y 396
—(11y2 + 42 +26) (X —Y)2 +72) — 217 % — 63 — —
+8( Y+ 4o + )(( )+7r) 216( y>+
193y 1 y 1
Y (2911 — ) + 13T ) (X - Y) — —
T8 2 +108< (1=y)+ x>( ) =15y T
115 4849 y
o ¥ A
T T 1206 (4.53)
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+2°Y 59 0N, S - . 2 42 )
X X-2V)- La-pXv2-L vy v
(R ) (X =27 = L= KV - S L )
29 59 2 72 o 1(6 )
ko - Loyx (2 - b
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9x 16 9\ y T
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T3 )=V (A.55)
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X
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+ ey )<(X Y) ) : (A.60)
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11[1—4-::

+ %(2@/ ) <(X Y2y 772) : (A.61)
.%[_%u—axmil+#)—%u—zwdﬂ+w%+
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1+ 22 . ~ . . Sy s
- 6Lig(—) — 4X (Liz(—=) + Lis(—y) — ¢3) — 2Y (Lis(—z) — ¢3) +
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2
2
- % (9X2 —20XY — 2im(X + 2Y)> ~Sat

5)
14 16
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Yy Yy
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2
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_ b (14 21— 2x)> Lig(—2) — G — XLis(—2) + —in(X2+72) ) —
342 3 3 2 5
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v
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+
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n (81?2 12XV +24X2 + 297r2>f/ _
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3
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+
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5
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Liz(—z) — (3 — X (Lig(—2 )_%)+
+%iW(X2+7T2)

Lis(-9)+ G- ¥ (L) + ) -

1 -
— 5X(Y2 + )| +

30 14 . ~
(- - — —Ma+ 39> (X2 +7)X —
Yy
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2
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o
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— X
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— = 4322 — 332y — 251y> (X247 +
Y
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-—+ 173 — 36zy + 283:) (Y2 4 72) —

Blo S <

+
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1 241 - 2 B
Jil ——[—3‘””"2F (X—Y)(X2+7r2)+2(2y;+3y)(X2+7r2)+

2%(?2+w2)+2<2——3x+ >(X V)X +

Y

+ 672 % —6(X —Y) (A.68)

B. Finite remainder functions for pure N = 1 super-Yang-Mills theory

In this appendix, we present the independent N = 1 supersymmetric finite remainder
functions appearing in egs. (6.11) and (6.12). For ——++, these functions are

AS—Y—M-i-[-E = 3y [Li4(—x) + Li4(—y) — Liy <—§> — X(Lig(—y) + Lig(—x)) +

w2 14 S e
+€L12(—x)—6X Yo g (X -7 - S XVPEX - 2v) -
7'1'2 7T4

X+Y)242iny) - —| —
12<( +Y)* +2im ) 180
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