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We compute O(α2
s) QCD corrections to the lepton invariant mass spectrum in the decay b→ ulνl,

relevant for the determination of the CKM matrix element |Vub|. Our method can also be used to
evaluate moments of the lepton energy distribution with an O(α2

s) accuracy. The abelian part of
our result gives the neutrino invariant mass spectrum in the muon decay and, upon integration, the
O
(
α2
)

correction to the muon lifetime.
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Determination of the CKM matrix elements from pre-
cision studies in B-physics is one of the main goals of
experiments BaBar and Belle, under way at SLAC and
KEK. These studies are expected to provide important
insights into flavor physics, in particular to shed light
on the origin of the CP-violation and, possibly, discover
“New Physics.”

The two CKM parameters directly accessible at B-
factories, |Vcb| and |Vub|, strongly differ in magnitude,
with the former being about ten times larger than the
latter. An accurate determination of |Vcb| is much easier
since the relevant decay rates are relatively large and the
backgrounds are small. For |Vub|, the theoretically favor-
able methods are not feasible experimentally, whereas in-
terpretation of clean experimental signatures suffers from
large theoretical uncertainties.

Extraction of |Vub| from inclusive semileptonic decays
of B mesons requires a suppression of the much larger
contribution of b → c transitions. In order to do so one
has to impose cuts on various observables and several op-
tions have been discussed in the literature. For example,
one can select events with large energy of the charged
lepton, which can be produced only in b → u decays, or
require that the hadron invariant mass be smaller than
the lightest charmed meson D.

Unfortunately, such cuts are so severe that the rate
of the remaining events cannot be predicted using the
Heavy Quark Expansion. For example, imposing the cut
on the electron energy induces a sensitivity of the decay
rate to the B-meson light-cone wave function which is
not very well known. It can in principle be extracted
from measurements of the photon energy spectrum in
b → sγ. However, the relevant theoretical analysis has

only been performed in the limit of an infinite b quark
mass and the potentially sizable ΛQCD/mb corrections
are not under control. It is desirable, therefore, to have
an alternative combination of cuts which can remove the
charm background, keep a significant fraction of b →
u events, and preserve the applicability of the standard
Heavy Quark Expansion.

Recently, a method fulfilling these requirements has
been proposed by Bauer, Ligeti and Luke [1, 2]. Their
idea consists in extracting |Vub| from inclusive semilep-
tonic decays b → ulνl by applying a cut on the invari-
ant mass of the leptons q2. To eliminate the charm
background, one requires q2 > q2

0 = (mB − mD)2 ≈
11.6 GeV2. It turns out that this cut is mild enough to
keep significant fraction of b → u transitions and also
the energy release is sufficiently large so that the stan-
dard methods of the Heavy Quark Expansion in 1/mb

can be applied with confidence. Of course, there are
several sources of the theoretical uncertainties associated
with this method, including in roughly equal measure the
value of the b quark mass, the non-perturbative power
corrections (of third order in the ratio of ΛQCD and the
characteristic momentum flow), and the two-loop pertur-
bative QCD corrections [3]. The calculation of this last
effect is the main purpose of this Letter.

The difficulty connected with such corrections is that
they involve the q2 distribution, rather than the total de-
cay rate. While two-loop corrections to charged particle
decays are in general challenging (the first calculations for
specific kinematic configurations or the total decay rates
have been completed only recently, see e.g. [4, 5, 6, 7]),
two-loop corrections to the decay distributions have never
been evaluated so far.
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FIG. 1: Examples of diagrams whose cuts contribute to the
semileptonic decay b → u l νl: (a) abelian; (b) light or heavy
quarks; (c) non-abelian.

In the present calculation we take advantage of the
fact that, for the experimentally interesting case, the in-
variant mass of the leptons is large. We introduce an
expansion parameter δ = (m2

b − q2)/m2
b . In b→ u stud-

ies using cuts proposed in [1, 2] the maximal value of δ
is about 0.5 for q2 = q2

0. Obviously, increasing q2 re-
sults in a rapid decrease of δ, so that δ can be considered
as a small parameter in the region of interest q2 > q2

0.
Therefore, by constructing an algorithm for expanding
the relevant Feynman diagrams around δ = 0 and com-
puting several terms of such an expansion, we can derive
the O(α2

s) correction to the dilepton invariant mass spec-
trum valid in the region of experimental interest.

Examples of diagrams we have to consider in studying
the semileptonic b → u decay at O

(
α2
s

)
are shown in

Fig. 1. The optical theorem connects the imaginary part
of such diagrams with contributions to the decay. We
first integrate over the lepton and neutrino phase space,
thereby reducing the problem to the decay b→W ∗(q2)u,
where W ∗ is a virtual W boson with an invariant mass
q2. In the limit δ → 0, q2 approaches m2

b . There-
fore, due to phase space constraints, W ∗ becomes static.
The expansion in δ is constructed by applying the Heavy
Quark/Boson Expansion to the Feynman diagrams. The
only unusual feature in our case is that the initial b-quark
is on the mass shell. In the HQET limit, this leads to
propagators of the type 1/(2pk), whereas the W ∗ boson
is off-shell so that its propagator has the form 1/(2pk+δ).

Since we are interested in the O
(
α2
s

)
corrections to the

decay distributions, we have to consider the three-loop di-
agrams of the self-energy type, like those shown in Fig. 1
and extract their imaginary parts. Initially, there are
two scales in the problem: using mb as a unit of energy,
these scales can be expressed as O (1) and O (δ). We
employ asymptotic expansions to indentify contributions

arising from these widely separated scales. The region
with all loop momenta of O (1) does not contribute to
the imaginary part since it is analytic (polynomial) in
δ. When some loop momenta are O (δ) and others are
O (1), a three-loop diagram factorizes into a product of
one- and/or two-loop diagrams and is easy to evaluate.

The non-trivial part of the calculation is the HQET
limit where all loop momenta are of O (δ). These di-
agrams are similar to the three-loop HQET diagrams
[8, 9, 10] but not identical with them, since some of
the lines in the present case are on-shell. We have con-
structed an algorithm based on recurrence relations and
integration-by-parts identities [11] with which one can
reduce any relevant three-loop diagram to a linear com-
bination of a few master integrals. Four of these master
integrals are new. We compute them in the Euclidean
(p2 = −1), D = 4− 2ε dimensional space.

Propagators occuring in the master integrals are de-
noted by D1 = k2

1, D2 = k2
2, D3 = k2

3, D4 = (k1 −
k2)2, D5 = (k2 − k3)2, D6 = 2pk1, D7 = 2pk2, D8 =
2pk3, D9 = 2pk1 + 2pk2, D10 = 2pk1 + 2pk3, D11 =
2pk1 + 2pk2 + 2pk3. The four new results are

I1 =

∫
dDk1 dDk2

Dε
1D2D4D6(D7 + 1)

= C2
ε

[
− 1

24ε2
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24ε

−13

24
− 17π2

48
+ ε
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(
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(
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,

I2 =

∫
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= C3
ε

[
1
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+
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+
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+
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,

I3 =

∫
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D1D3D4D5D6D7(D8 + 1)

= C3
ε

[
− π2

36ε2
+

1

ε

(
2

3
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2π2

9

)

+
16

3
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13π2

9
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270
+ O (ε)

]
,

I4 =

∫
dDk1 dDk2 dDk3

D1D3D4D5D6(D7 + 1)D8

= C3
ε

[
−ζ3
ε
− 8ζ3 −

π4

60
+O (ε)

]
. (1)

In the above formulas ζ3 is the Riemann zeta function,

ζ3 =
∞∑
i=1

1/i3, and Cε ≡ π2−εΓ(1 + ε).

Using recurrence relations to reduce all loop integrals
to a combination of master integrals (these algebraic ma-
nipulations are done with FORM [12]), we obtain the
O(α2

s) correction to the dilepton invariant mass spectrum
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(we use the pole mass mb and the MS scheme for αs)

1

Γ0

dΓ

d|δ| = 6δ2 − 4δ3 +
αs(mb)

π
X1 +

(αs
π

)2

X2, (2)

where Γ0 = G2
F |Vub|2m5

b/192π3 and X1,2 denote the one-
[13] and two-loop corrections, respectively,

X1 = CF

[
δ2

(
27

2
− 9L− 4π2

)
+ δ3

(
2

3
− 2L+

8

3
π2

)

+δ4

(
L − 13

3

)
− 19

30
δ5 − δ6

(
31

180
+
L

6

)
+O

(
δ7
)]
,

X2 = CF (CFXA + CAXNA + TRNLXL + TRNHXH) (3)

where L = ln δ and CF = 4/3, CA = 3, and TR = 1/2
are the usual SU(3) color factors and NL and NH denote
the number of light (mq = 0) and heavy (mq = mb)
quark species. We use the approximation mc = mb since
for q2 > q2

0 there is no phase space available for charm
quark production. If needed, corrections for mc 6= mb in
virtual effects can easily be computed.

For the coefficients XA, XNA, XL, XH we find

XA = δ2
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,

XL = δ2

{
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3
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4
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.

XH = δ2

[
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8
− 5
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(
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108
+

2

3
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)

+δ

(
2473

2700
− 1
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(
1747
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− 1
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L

)

+δ3
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L

)
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− 3
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L

)]
. (4)

For brevity we have presented the results accurate up
to the terms O(δ6). For the numerical analysis below we
use terms up to O(δ8).

We tested these results in several ways. We used a
general covariant gauge and checked the cancellation of
the gauge parameter. The result for XL agrees with the
numerical calculation in [14]. A simple interpolating for-
mula which we actually used for the comparison can be
found in the appendix of Ref. [2]. The agreement is very
good, practically for all values of δ.

Further, we can extrapolate the results of the expan-
sion by taking the limit δ → 1 in which case our formu-
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las should describe the decay of a massive quark into a
massless quark and a massless W boson. In this limit,
second order QCD corrections were computed for the top
quark decay [15]. We find that for the color structures
XNA,L,H the difference between the two results is better
than 10%. The agreement is much worse for the abelian
part XA, where the difference can be as large as 50%.
This demonstrates that the seven terms of the expansion
are insufficient for the abelian part to converge in the
limit δ → 1.

However, because of the SU(3) color factors, the con-
tribution of the abelian part is suppressed and we can
reliably derive the O(α2

s) correction to top quark decay
from our formulas. Taking NL = 5 and NH = 1, we
find X2/2 ≈ −16.4, whereas the central values of the co-
efficients in [15] give −16.7. An even better agreement
is obtained for δ = δW ≡ 1 −M 2

W /m
2
t ' 0.79. At this

point, corresponding to physical values of the W boson
and top quark masses, the width of t → bW was evalu-
ated in [16]. We have perfect agreement with the central
value of the second order correction, X2(δW )/2 = −15.6,
given in eq. (28) of that paper.

X2

δ0 0.2 0.4 0.6 0.8 1

-40

-30

-20

-10

0

FIG. 2: O
(
α2
s

)
correction to the decay width b → ulνl,

X2(δ) (defined in eq. (3)), as a function of δ = 1− q2/m2
b (for

NL = 3, NH = 2).

As the final check one can integrate Eq. (2) over δ,
obtaining the total decay rate b → ulνl, for which the
second order QCD corrections are known [7]. Taking
NL = 4 and NH = 1 and integrating over δ we ob-

tain
∫ 1

0
dδ X2(δ) = −21.24, in excellent agreement with

−21.296, given in Ref. [7].
Integrating the abelian contribution XA we can com-

pute the two-photon corrections to the muon lifetime.

We find
∫ 1

0
dδ XA(δ) ' 3.1, where the 13% discrepancy

with the exact value in eq. (9) of [6] is due to poor con-
vergence of our series for large δ. However, if we assume
that the convergence is good up to δ ≈ 0.65 and extrapo-
late for larger δ using XA(1) = 7.0(4) [15], we reproduce
the muon lifetime correction [6] within 3%.

For δ <∼ 1/2, relevant for the extraction of |Vub|, the
series converge very well and accurately approximate all
color components of the O

(
α2
s

)
correction.

The full O
(
α2
s

)
correction to the quark decay width,

X2(δ), is plotted in Fig. 2. Even at the end point δ = 1,
our estimate for X2 agrees with our result for the top
decay [15] to better than 3%.

To show the impact of the computed corrections on
dilepton invariant mass distribution, we separate the
BLM [17] and non-BLM corrections since the former have
already been studied in the literature. We define the
BLM and non-BLM corrections as

XBLM
2 = −3CF β0XL, XnonBLM

2 = X2−XBLM
2 , (5)

where β0 = 11CA/12−TRNL/3 denotes the beta-function
coefficient in a theory with three massless quark flavors,
appropriate for the range of q2 used for the Vub extrac-
tion.

XnonBLM
2

δ0 0.2 0.4 0.6 0.8 1
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FIG. 3: The non-BLM corrections, XnonBLM
2 /(6δ2 − 4δ3) (for

NL = 3, NH = 2).

The value of the BLM corrections is known to be
strongly correlated with the scale of the coupling con-
stant used in the one-loop result and also with the quark
mass used in the formula for the decay rate A discus-
sion of these issues can be found in the literature [2] and
we will not consider them here. On the contrary, the
non-BLM corrections are new. Their dependence on δ
is shown in Fig. 3 where the ratio of the non-BLM cor-
rections and the tree level decay rate 6δ2 − 4δ3 is plot-
ted. For realistic values of the strong coupling constant,
αs = 0.2−0.3, the non-BLM corrections are about 5% in
the range of δ relevant for the |Vub| extraction from the
dilepton invariant mass spectrum.

The technique described in this Letter might open a
way to reliable estimates of the O

(
α2
s

)
corrections to

more complicated observables. For example, a simple
modification allows one to calculate the moments of the
charged lepton energy spectrum for a fixed value of the
dilepton invariant mass.

Recently, combined cuts on both dilepton and hadron
invariant masses were advocated for the |Vub| determi-
nation [2]. It has been argued that in this approach one
can keep the theoretical uncertainties under control while
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retaining a larger data sample of the b → u transitions.
Since the calculation reported here has been performed
without any restriction on the hadronic invariant mass,
our results for the QCD corrections are not applicable
in this case. However, a sufficiently large number of
moments should contain enough information about the

spectrum to determine the effect of the cut.
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