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Elaborating on a previous letter [1], we use a new approach to compute energy levels of a non-
relativistic bound-state of two constituents, with masses m and M , by systematic expansions — one
in powers of m/M and another in powers of (1 −m/M). Technical aspects of the calculations are
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pure recoil corrections to the average energy shift and hyperfine splitting relevant for hydrogen,
muonic hydrogen, and muonium.
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I. INTRODUCTION

Precision studies, both theoretical and experimental,
of non-relativistic QED bound-states have historically
provided a wealth of information about fundamental
physical parameters such as the fine structure constant
and the masses of the electron, muon and proton [2].
In order to keep pace with the ever-improving precision
of current experiments, increasingly intricate theoretical
calculations must be performed. Fortunately, the emer-
gence of new calculational techniques has brought many
such calculations within reach.

In a previous letter [1], we introduced a practical al-
gorithm which allows a calculation of the bound-state
energy levels in a given order of perturbation theory (in
α and Zα) as an expansion in powers and logarithms of
m/M with an arbitrary precision. The opposite situa-
tion, the calculation of the energy levels to all orders in
α but in a fixed order in the ratio m/M , has been studied
in the literature [3, 4, 5, 6]. We illustrated the method
by calculating the O(α(Zα)5) radiative recoil corrections
to the average energy shift and hyperfine splitting of a
non-relativistic QED bound-state. This analytic result
enabled us to resolve a discrepancy between two previ-
ous calculations of O(α(Zα)5m2/M ) corrections to the
average energy shift, thereby removing a major source
of theoretical uncertainty in the isotope shift (i.e. the
difference between the 2S to 1S transition energies in
deuterium and hydrogen).

In this paper we extend our previous results in several
ways. For instance, we illustrate how the energy shifts
can also be expanded as a series in (1−m/M ). Beyond its

applicability to situations where m ∼ M , this expansion
method provides a useful cross-check on the comparably
more difficult method of expanding in m/M . We also ex-
amine the convergence properties of these expansions in
order to ascertain some general guidelines about the ac-
curacy of the truncated series that necessarily arise when
using these expansions. In addition, we present a calcu-
lation of the pure recoil corrections using an expansion
in m/M .

The rest of this paper is organized as follows. In
Section II we discuss the framework of the calculation
and our expansion method in general terms. Section III
contains a detailed technical description of the calcula-
tion. In Section IV we present and discuss the results of
our calculations for the O(α(Zα)5) radiative recoil and
O((Zα)6) pure recoil corrections to the average energy
shift and hyperfine splitting of a generic QED bound-
state. Our results are summarized in Section V. Finally,
the Appendix illustrates the techniques with which a
class of loop integrals — the so-called eikonal integrals
— can be evaluated.

II. FRAMEWORK OF THE CALCULATION

Non-relativistic bound-states can be conveniently de-
scribed by an effective field theory which exploits a sep-
aration in the energy scales m, mv, and mv2 [7]. This
approach is facilitated further by the use of dimensional
regularization [8, 9, 10, 11]. The basic idea is that the
Coulomb potential supplies the dominant interaction and
all other interactions provide corrections which can be
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evaluated using the familiar time-independent perturba-
tion theory of quantum mechanics. These corrections can
be divided into two classes.

The first class is that of the so-called “soft” contri-
butions, governed by long-range potential terms. These
contributions can be evaluated for arbitrary masses of the
constituent particles because the essential soft dynam-
ics of a non-relativistic bound-state, as described by the
Schrödinger equation, are characterized by the reduced
mass of the system rather than the individual masses of
the consituents. As a result, once the soft contributions
are obtained in the equal mass case [9, 10], the more
general mass case follows easily.

The “hard” contributions make up the second class,
and these contributions lead to the interactions that can
be characterized by δ(r) potential terms. Such terms
result from the relativistic region of loop-momentum in-
tegrals, and they are usually obtained as Taylor expan-
sions of scattering amplitudes in terms of the spatial mo-
mentum components of the external particles, which are
taken to be on-shell. At lowest order in α, the hard dia-
grams should be evaluated exactly at threshold, whereby
the constituents have zero relative velocity. This implies
that the relevant loop-momentum integrals depend on
only two scales, m and M . The hard contributions have
a much more complicated dependence on the mass scales
than the soft contributions do, and this is why we will
expand the hard scattering diagrams in powers of either
m/M or (1−m/M ). By expanding the integrands, we are
left with only homogeneous, one-scale integrals to evalu-
ate, and this consitutes a substantial simplification. This
method lends itself to automation so that many terms
of the expansion can be obtained, with the only limita-
tion being set by the available computing power. High-
performance symbolic algebra software is of great help in
such computations (we use FORM [12]).

Our m/M expansion method is motivated by a proce-
dure in which Feynman diagrams are expanded in large
masses and momenta [13, 14, 15]. Although this proce-
dure was originally expressed in a different way, it can
be reformulated more practically using the notion of mo-
mentum regions. The algorithm, which is applied directly
to the loop integrals, consists of five steps [16]. First,
identify the large and small external scales in the inte-
grals. Second, divide the integration volume into regions
so that the momentum flow through any of the internal
lines is of the order of one of the external scales. More
specifically, the statement k ∼ M asserts that k2 > m2

in Euclidean space. Third, perform Taylor expansions
within every region for any individual denominator fac-
tors (propagators) where the terms within these factors
depend differently on the external scales. Fourth, inte-
grate the expanded integrands from every region over the
initial integration volume — in other words, ignoring the
constraints that identify the regions. Finally, add the
contributions arising from the individual regions in or-
der to obtain the final result. The fourth step of this
algorithm requires further explanation, since by ignoring

the constraints on the individual regions, it may appear
as if contributions to the total integral are counted more
than once. This does not happen because the extra con-
tributions to the total integral that are introduced by
removing the constraints on individual regions can be
expressed as scale-less integrals, and scale-less integrals
vanish in dimensional regularization. This implies that
the integrals from the various regions are different ana-
lytic functions of the parameters of the problem. In the
next section, we will demonstrate this algorithm in detail.

III. PROCEDURE

In the previous letter [1], we outlined the expansion
procedure for the radiative recoil diagrams. These dia-
grams are shown in Fig. 1.

FIG. 1: The forward-scattering radiative-recoil diagrams.
The bold line represents the heavy constituent of the bound-
state (e.g. a proton if we consider hydrogen) and the thin
line — the light one (an electron). Diagrams with the crossed
photons in the t-channel are not displayed.

We will now describe the expansion procedure using
the pure recoil diagrams, since a few additional compli-
cations arise. These diagrams are shown in Fig. 2.

To illustrate the method we focus on the last diagram
in Fig. 2 and consider the following scalar integral:

∫
[dDk1][dDk2]

(k2
1)(k2

2)(k1 + k2)2 [(k1 + k2)2 + 2(k1 + k2)p1]
(1)

× 1

(k2
1 + 2k1p1)(k2

1 − 2k1p2 + iδ)(k2
2 + 2k2p2 + iδ)

.

Here [dDk] stands for dDk/(2π)D, p1 ≡ mQ, p2 ≡ MQ,
where Q = (1, 0, 0, 0) is the time-like unit vector. Only
the relevant infinitesimal imaginary parts of the propaga-
tors have been displayed. We are going to illustrate the
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FIG. 2: The forward-scattering pure recoil diagrams.

expansion of the integral in Eq. (1) in powers of m/M
following the five steps outlined above.

There are five momentum regions to be considered.
In the first one all the momenta are of the order of the
large mass M . In this case one can expand the electron
propagators in mQki. The resulting integrals are all of
the form:
∫

[dDk1][dDk2]

(k2
1)
a1(k2

2)
a2 (k1 + k2)

2a3(k2
1 − 2k1p2)a4(k2

2 + 2k2p2)a5

,

(2)
with some integer powers ai. One immediately recognizes
that all these integrals are identical with the general two-
loop self-energy integrals of the particle with mass M for
which the general solution is known [17].

Next, there is a momentum region where k1 ∼ M and
k2 ∼ m. By using k1 ∼ M to expand the electron prop-
agators we obtain Eq. (2) again. With k2 ∼ m, the
(k1 +k2)2 and (k2

2 +2k2p2) factors can also be expanded,
so that the only denominator factors which depend on k2

are (k2
2) and (2k2p2). Since we are working at threshold,

we have p2 ≡ MQ, which leads to
∫

[dDk2]

(k2
2)
α

(2k2p2 + iδ)β
= 0 , (3)

so that this region provides no contribution to the am-
plitude for this particular diagram.

The third momentum region has k1 ∼ M and k2 ∼M
but k1 + k2 ∼ m. After a Taylor expansion in small vari-
ables, the integrals in this region factorize into products
of two simple one-loop integrals.

In the fourth region, k1 ∼ m and k2 ∼ M . A Taylor
expansion in small variables allows the integrals in this
region to be factored into one-loop integrals as

∫
[dDk1]

(k2
1)a1(k2

1 + 2k1p1)a2 (2k1p1)a3

×
∫

[dDk2]

(k2
2)a4 (k2

2 + 2k2p2)a5
. (4)

The k2 integral is a trivial one-loop integral. The k1

integral can be converted to the same simple form, along
with integrals like Eq. (3), by multiplying it by factors of

1 =
(k2

1 + 2k1p1)

(k2
1)

− (2k1p1)

(k2
1)

(5)

until either a2 or a3 is brought to zero.
The fifth region is characterized by the condition k1 ∼

k2 ∼ m. In this case, the heavy particle propagators can
be expanded into static, or as we will call them, eikonal,
propagators. The integrals in this region are of the form

∫
[dDk1][dDk2]

(k2
1)a1(k2

2)a2(k1 + k2)2a3 [(k1 + k2)2 + 2(k1 + k2)p1]
a4

× 1

(k2
1 + 2k1p1)a5(2k1p2 − iδ)a6(2k2p2 + iδ)a7

. (6)

Notice how the eikonal propagators arising from (k2 −
2kp+ iδ) factors acquire −iδ pole terms. Such terms are
important in this region and must be carefully accounted
for. The integral in Eq. (6) can be simplified using the
identity

1

(k2 + 2kp)(2kp)
=

1

k2

(
1

(2kp)
− 1

(k2 + 2kp)

)
. (7)

Once one of the seven factors in Eq. (6) has been re-
moved, an identity can be constructed from the observa-
tion that the remaining six factors are linearly dependent.
Using such an identity, the integrals in this fifth region
can be expressed as one of four types of integrals. The
first type is the two-loop self energy integral of a particle
with mass m for which the general solution is known [17].
The remaining three types contain eikonal propagators:

E±1 =

∫
[dDk1][dDk2]

(k2
1)a1 (k2

2)a2 (k1 − k2)2a3
(8)

× 1

(k2
2 + 2k2p1)a4 (2k1p1 ± iδ)a5

,

E±2 =

∫
[dDk1][dDk2]

(k2
1)a1 (k2

2)a2 (k2
1 + 2k1p1)2a3

(9)

× 1

[(k1 + k2)2 + 2(k1 + k2)p1]
a4 (2k2p1 ± iδ)a5

,

E±±3 =

∫
[dDk1][dDk2]

(k2
1)a1 (k2

2)a2 (k1 − k2)2a3
(10)

× 1

(2k1p2 ± iδ)a4 (2k2p2 ± iδ)a5
.
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At threshold, the E3 integrals are exactly zero for similar
reasons as are needed to establish Eq. (3). This leaves
us with two new types of integrals, E1 and E2, required
for the recoil calculations. The calculations for radiative
recoil diagrams involve E2 but not E1 integrals. In Ap-
pendix A, we outline the procedure by which the E1 and
E2 integrals can be evaluated.

We shall now describe a second method of expansion,
relevant to the scenario where the two bound-state con-
stituents have similar, but not necessarily equal, masses.
Although this scenario is not realized by any common
QED bound-states, this second expansion can provide a
useful check on the first expansion method.

The essential idea is to introduce an expansion param-
eter

y = 1− m

M
(11)

so that the external momentum of the light particle, p1,
can be written in terms of y and the external momentum
of the heavy particle, p2, via

p1 = (1− y)p2 . (12)

Then, any massive propagator containing p1 can be ex-
panded, as a series in powers of y, in terms of the corre-
sponding propagators containing p2:

1

k2 + 2kp1
=
∞∑

n=0

(2ykp2)n

(k2 + 2kp2)n+1
. (13)

As a result, the two-scale general scalar integral in Eq. (1)
is expanded, as a series in powers of y, in terms of two-
loop on-shell self-energy integrals. As an additional cross-
check, we note that in the limit that the two masses are
equal, we have y = 0, so that the positronium results
[9, 10] can be recovered from the leading term of this
expansion.

Another method has been proposed [18] for deal-
ing with similar problems involving more than one
mass/energy/distance scale. Intermediate parameters
are introduced to separate various scales and the calcu-
lations are performed in four dimensions. An advantage
of such an approach is that it avoids various complica-
tions arising when working in D dimensions. However,
it spoils the homogeneity of integrals and it is not clear
whether one can apply integration-by-parts algorithms,
which are crucial for larger calculations involving many
terms of expansions.

IV. RESULTS AND DISCUSSION

We have applied our algorithms to compute the
O(α(Zα)5) radiative recoil corrections to the average en-
ergy shift and the hyperfine splitting of a general QED
bound-state composed of two spin-1/2 particles with
masses m and M . In this case the soft contribution is
absent and the hard corrections shown in Fig. 1 are the

only diagrams we have to consider. We have done the
calculation in a general covariant gauge; the cancellation
of the gauge parameter dependence serves as a check of
the computation.

For the S-wave ground state energy E we define

E = Eaver +

(
1

4
− δJ0

)
Ehfs , (14)

where J = 0, 1 is the total spin of the two fermions form-
ing the bound-state.

For the hyperfine splitting we obtain

δErad rec
hfs ' 8(Zα)4µ3

3mM
α(Zα)

{
ln 2− 13

4

+
m

M

(
15

4π2
ln
M

m
+

1

2
+

6ζ3
π2

+
17

8π2
+ 3 ln 2

)

−
(m
M

)2
(

3

2
+ 6 ln 2

)

+
(m
M

)3
(

61

12π2
ln2 M

m
+

1037

72π2
ln
M

m

+
133

72
+

9ζ3
2π2

+
5521

288π2
+ 3 ln 2

)

−
(m
M

)4
(

163

48
+ 6 ln 2

)

+
(m
M

)5
(

331

40π2
ln2 M

m
+

5761

300π2
ln
M

m
+

691

240

+
9ζ3
2π2

+
206653

8000π2
+ 3 ln 2

)

−
(m
M

)6
(

577

120
+ 6 ln 2

)}
, (15)

where µ = mM/(m + M ) is the reduced mass of the
bound-state.

For the spin-independent energy shift we find

δErad rec
aver ' α(Zα)5 µ

3

m2

{
139

32
− 2 ln 2

+
m

M

(
3

4
+

6ζ3
π2
− 14

π2
− 2 ln 2

)

+
(m
M

)2
(
−127

32
+ 8 ln 2

)

+
(m
M

)3
(
− 8

3π2
ln2 M

m
− 55

18π2
ln
M

m
+

47

36

−3ζ3
π2
− 85

9π2
− 2 ln 2

)

+
(m
M

)4
(
−55

24
+ 4 ln 2

)

+
(m
M

)5
(

37

60π2
ln2 M

m
+

29

900π2
ln
M

m
+

1027

360

−3ζ3
π2
− 370667

36000π2
− 2 ln 2

)
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+
(m
M

)6
(
−67

20
+ 4 ln 2

)

+
(m
M

)7
(

199

70π2
ln2 M

m
− 1759

7350π2
ln
M

m
+

887

210

−3ζ3
π2
− 241491119

18522000π2
− 2 ln 2

)}
. (16)

To our knowledge the terms O(m3/M3) and higher
are new for both Ehfs and Eaver, while the other terms
have been obtained previously [19]. The coefficient of the
O(m/M ) term in Eq. (16) was the subject of some con-
troversy, since two different numerical results have been
reported, [20, 21, 22] and [23].

Our result for this term,

α(Zα)5 µ
3

m2

m

M

(
3

4
+

6ζ3
π2
− 14

π2
− 2 ln 2

)

' −1.32402796 α(Zα)5 µ
3

m2

m

M
, (17)

is in excellent agreement with the numerical result of
Ref. [23] where the coefficient −1.324029(2) was ob-
tained, and has since been confirmed in an independent
analytical calculation [24].

The expansions in m/M of Eqs. (15) and (16) do not
yield accurate results for increasing values of m/M , even
though an untruncated series can be expected to con-
verge on the interval m/M ∈ [0, 1). The convergence of
the terms in the series which we have calculated is de-
picted in Fig. 3. The upper graph shows the hyperfine
splitting calculations as a function of m/M and the lower
graph shows the corresponding results for the average en-
ergy shift. In both cases, several curves are plotted, each
representing the sum of the first N terms of the expan-
sion, where N is shown in the legend. The graphs suggest
that more terms in the series would be required to obtain
reliable values of the hyperfine splitting for m/M larger
than about 0.2; our series for the spin-independent en-
ergy shift should be reliable for m/M values up to about
0.5.

The expansion in y = 1 − m/M aims to address the
region where m/M is large. For the hyperfine splitting
we find

δErad rec
hfs ' 8(Zα)4µ3

3mM

{(
3ζ3
4π2

+
7

8π2
+ 2 ln 2− 79

32

)

+
(

1− m

M

)(
− 3ζ3

4π2
− 21

8π2
− 3

4
ln 2 +

25

96

)

+
(

1− m

M

)2
(
− 19

24π2
− 3

8
ln 2− 19

384

)

+
(

1− m

M

)3
(
− 1

8π2
− 3

16
ln 2− 55

576

)

+
(

1− m

M

)4
(

57

400π2
− 3

32
ln 2− 2147

23040

)

+
(

1− m

M

)5
(

11

40π2
− 3

64
ln 2− 631

7680

)
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FIG. 3: O(α(Zα)5) radiative recoil contributions to the hy-
perfine splitting and average energy shift in the m/M expan-
sion.

+
(

1− m

M

)6
(

41389

117600π2
− 3

128
ln 2− 46679

645120

)

+
(

1− m

M

)7
(

141709

352800π2
− 3

256
ln 2− 10561

161280

)
(18)

+
(

1− m

M

)8
(

5539481

12700800π2
− 3

512
ln 2− 157753

2580480

)}
,

and for the spin-independent energy shift we obtain

δErad rec
aver ' α(Zα)5 µ

3

m2

{(
9ζ3
2π2
− 35

4π2
+

31

12

)

+
(

1− m

M

)(
− 9ζ3

2π2
+

39

2π2
− 7

2
ln 2 +

45

32

)

+
(

1− m

M

)2
(

61

24π2
+

9

4
ln 2− 119

72

)

+
(

1− m

M

)3
(
− 29

24π2
+

1

8
ln 2 +

31

288

)

+
(

1− m

M

)4
(

233

600π2
+

1

16
ln 2− 571

11520

)

+
(

1− m

M

)5
(

509

1200π2
+

1

32
ln 2− 187

3840

)
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+
(

1− m

M

)6
(

135311

352800π2
+

1

64
ln 2− 13439

322560

)

+
(

1− m

M

)7
(

39721

117600π2
+

1

128
ln 2− 1427

40320

)
(19)

+
(

1− m

M

)8
(

5683891

19051200π2
+

1

256
ln 2− 16901

552960

)}
.

In Fig. 4 we illustrate the convergence of these series.
Both graphs suggest that the terms we have calculated
in this expansion should yield reliable results for m/M
larger than about 0.15.
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FIG. 4: O(α(Zα)5) radiative recoil contributions to the hy-
perfine splitting and average energy shift in the 1 − m/M
expansion.

Although neither expansion can handle arbitrary val-
ues of m and M , the bound-state energy level correc-
tions for any m/M ratio can be reliably calculated with
one of the expansions. To illustrate this, we have spliced
together the two expansions in Fig. 5. The expansions
merge nicely at an m/M value of 0.15, thereby providing
a useful check on these methods. It is also important, in
the context of future applications of these methods, to
have covered the entire range of m/M .

We have also calculated the corresponding O((Zα)6)
pure recoil corrections. For the hyperfine splitting we
obtain

δErec hard
hfs ' 8(Zα)6µ3

3mM

{
m

M

(
− 1

2ε
− 6 ln 2 +

5

12

)
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FIG. 5: O(α(Zα)5) radiative recoil contributions to the hy-
perfine splitting and average energy shift for arbitrary values
of m and M .

+
(m
M

)2
(

1

ε
+

9

2π2
ln2 M

m
+

27

2π2
ln
M

m
− ln

M

m

−23

12
+

33ζ3
π2

+
93

4π2

)

+
(m
M

)3
(
− 3

2ε
− 6 ln 2 +

25

12

)}
. (20)

The divergences in this result are canceled by soft-scale
terms, which can be calculated by extending the calcula-
tion of [9, 10] to the unequal mass case, resulting in

δErec soft
hfs =

(Zα)6µ5

m2M2

×
[
−16

3

(
log(2µα)− 1

4ε

)
+ 4

mM

µ2
+

230

27

]
. (21)

Combining the results of Eqs. (20) and (21), we find that
the total (Zα)6 pure recoil contribution to the hyperfine
splitting is

δErec
hfs '

8(Zα)6µ3

3mM

{
3

2
+

µ2

mM

[
65

18
− 8 ln 2 + 2 ln(Zα)−1

+
(m
M

)( 9

2π2
ln2 M

m
+

27

2π2
ln
M

m
− ln

M

m
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−12 ln 2− 13

12
+

33ζ3
π2

+
93

4π2

)

+
(m
M

)2
(

9

π2
ln2 M

m
+

27

π2
ln
M

m
− 2 ln

M

m

−13 ln 2− 4

3
+

66ζ3
π2

+
93

2π2

)]}
. (22)

The terms in the first line of Eq. (22) are in agreement
with the result first obtained in [25]. The remaining
terms, arising solely from the hard-scale contributions in
Eq. (20), can be used to obtain an analytic approxima-
tion to the function f(x) near x = 1 in Eq. (72) of [26].

For the hard contribution to the spin-independent en-
ergy shift we find

δErec hard
aver ' (Zα)6 µ

3

m2

{
m

M

(
4 ln 2− 7

2

)

+
(m
M

)2
(

4

π2
ln
M

m
− 8

3
ln
M

m
− 12ζ3

π2
+

3

π2
+

8

3

)

+
(m
M

)3
(

4 ln 2− 31

6

)

+
(m
M

)4
(
− 11

3π2
ln2 M

m
− 113

18π2
ln
M

m
− 2 ln

M

m

−6ζ3
π2
− 1565

72π2
+

62

9

)}
. (23)

The m/M term of this expansion is in agreement with a
calculation in Ref. [6]. To our knowledge, the subsequent
terms of this expansion are new. In addition, we have
calculated these energy level shifts as an expansion in
(1−m/M ), but for brevity we shall omit these results.

In spite of the fact that the hard-scale contribution
to the average energy shift given by Eq. (23) is finite
at this order, soft contributions are also present and are
needed to arrive at the physical result for this quantity.
These soft contributions can be obtained by a calculation
completely analagous to the one that produced Eq. (21).

V. CONCLUSIONS

We have demonstrated a method by which the correc-
tions to the energy levels of a QED bound-state, with
constituents of mass m and M , can be expanded in ei-
ther powers of m/M or (1−m/M ). Both expansions are
applied directly to the integrands of the loop integrals
arising from the hard-scale contributions to the energy
shifts. We have demonstrated the utility of these proce-
dures by computing several terms in the expansions for
the α(Zα)5 radiative recoil and (Zα)6 pure recoil correc-
tions to both the average energy shift and the hyperfine
splitting of a general QED bound-state.

Further studies of QED bound-state problems, us-
ing the methods described in this paper, might involve
higher-order corrections to the energy level shifts. Even
in the absence of a complete calculation of such terms,

it might be feasible to extract the terms enhanced by
one or more factors of ln(M/m) by examining the sin-
gularities of the contributions from different expansion
regions. Since these singularities must cancel in the com-
plete result, their coefficients can be found by a partial
calculation of the divergent parts of those contributions
which can be evaluated most easily.

In a more general context, these expansion techniques
are applicable to a plethora of other types of problems in-
volving multiloop calculations with more than one exter-
nal scale. Many kinds of superficially disparate physical
problems often depend on a few common classes of loop
integrals, thereby reducing the number of technical hur-
dles which restrict the progress of precision calculations
in particle physics.
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Appendix A: Calculation of Eikonal Integrals

An expansion in powers of m/M typically gives
rise to integrals containing eikonal propagators such as
(2kp± iδ), arising from expansions in the momentum re-
gion where the loop momenta are all ∼ m. The easiest
way to solve them is to employ the integration-by-parts
techniques [27, 28] so that any integral of the form in
Eqs. (8) and (9) can be algebraically expressed as a com-
bination of the two-loop on-shell self-energy integrals and
four new master integrals. The latter are the only inte-
grals we have to compute, and the results read

J±1 =

∫
[dDk1][dDk2]

(k1Q− 1± iδ)(k2
2 + iδ) [(k1 + k2)2 − 1 + iδ]

=
1

(4π)D
[2Γ(1− ε)Γ(3ε− 2)B(4ε − 3, 2ε− 1)

−(1∓ 1)
√
πΓ

(
2ε− 3

2

)
B

(
5

2
− 3ε,−1

2
+ ε

)]
, (24)

J±2 =

∫
[dDk1][dDk2]

(k1Q± iδ)(k2
2 − 1 + iδ) [(k1 + k2)2 − 1 + iδ]

= ±
√
π

(4π)D
Γ

(
2ε− 3

2

)
B

(
−1

2
+ ε,−1

2
+ ε

)
.(25)

Please note that there is a typographical error for J±2
in [1]. For clarity, we now outline the process by which
these master integrals are calculated.

Starting with J+
1 , we can Wick rotate the momenta

and subsequently ignore the poles. After shifting k1 to
k1 − k2 and using the identity

1

AαBβ
=

1

B(α, β)

∫ ∞

0

dλ
λβ−1

[A+ Bλ]α+β
, (26)
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we have

J+
1 =

∫
[dDk1][dDk2]

k2
2

×
∫ ∞

0

dλ

[k2
1 + 1 + λ(k1Q − k2Q+ 1)]2

. (27)

The k1 integral can be evaluated, after completing the
square and using Q2 = −1, so that

J+
1 =

Γ(ε)

(4π)D/2

∫ ∞

0

dλ

∫
[dDk2]

k2
2

(
λ2

4
+ λ + 1− λk2Q

)ε .

(28)
Introducing a second parameter from the identity in
Eq. (26), the k2 integral can be evaluated, yielding

J+
1 =

Γ(2ε− 1)

(4π)D

∫ ∞

0

dλ

×
∫ ∞

0

dρ ρ−ε
(
ρλ2

4
+
λ2

4
+ λ+ 1

)1−2ε

(29)

With the substitution

ρ = 4z
(λ/2 + 1)2

λ2
, (30)

we can readily integrate over the remaining parameters
to obtain the result for J+

1 in Eq. (24). The evaluation of
J+

2 starts by introducing a Feynman parameter to com-
bine and integrate over the k2-dependent factors, and
is followed by the introduction of a parameter from the
identity in Eq. (26).

Turning to J−1 , we note that the −iδ pole term in the
eikonal propagator prohibits a Wick rotation. Instead,
the identity

∫ ∞

−∞

dx

x− a± iδ = P

∫ ∞

−∞

dx

x− a ∓ iπδ(x − a) , (31)

with respect to the k0
1 integral, allows us to write

J−1 = J+
1 + ∆J1 (32)

with

∆J1 = 2πi

∫
[dDk1][dDk2] δ(k0

1 − 1)

(k2
2 + iδ)[(k1 + k2)2 − 1 + iδ]

. (33)

A Feynman parameter can be introduced to evaluate the
k2 integral in ∆J1. After performing the k0

1 integral, we
have

∆J1 =
−2πΓ(ε)

(4π)D/2(2π)D

∫ 1

0

dx

×
∫

dD−1k

[x− x(1− x) + x(1− x)k2]
ε , (34)

where k denotes the (D−1)-dimensional spatial momen-
tum associated with k1. Working in hyperspherical coor-
dinates, and using

∫
dD−1Ω =

2π(D−1)/2

Γ
(
D−1

2

) , (35)

we obtain

∆J1 = − 4
√
π

(4π)D
Γ(ε)

Γ
(

3
2 − ε

)
∫ 1

0

dx

×
∫ ∞

0

kD−2 dk

[x2 + x(1− x)k2]
ε , (36)

with k = |k|. With the substitution

k =

√
x

1− x z , (37)

the x and z integrals can be evaluated in terms of B-
functions, yielding the result in Eq. (24). The evaluation
of J−2 proceeds in a similar fashion.
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