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We exhibit a simple class of exactly marginal “double-trace” deformations of two di-

mensional CFTs which have AdS3 duals, in which the deformation is given by a product

of left and right-moving U(1) currents. In this special case the deformation on AdS3 is

generated by a local boundary term in three dimensions, which changes the physics also in

the bulk via bulk-boundary propagators. However, the deformation is non-local in six di-

mensions and on the string worldsheet, like generic non-local string theories (NLSTs). Due

to the simplicity of the deformation we can explicitly make computations in the non-local

string theory and compare them to CFT computations, and we obtain precise agreement.

We discuss the effect of the deformation on closed strings and on D-branes. The examples

we analyze include a supersymmetry-breaking but exactly marginal “double-trace” defor-

mation, which is dual to a string theory in which no destabilizing tadpoles are generated

for moduli nonperturbatively in all couplings, despite the absence of supersymmetry. We

explain how this cancellation works on the gravity side in string perturbation theory, and

also non-perturbatively at leading order in the deformation parameter. We also discuss

possible flat space limits of our construction.
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1. Introduction

One interesting direction of research in string/M theory concerns novel phases of the

theory. Examples include non-commutative Yang-Mills theory and non-geometrical phases

of string compactifications. Although such phases may appear to be exotic, in some cases

they are generic, in the sense that returning to more conventional backgrounds requires

tuning a superselection parameter to a special value. These novel backgrounds are very

much worth studying, both because of their intrinsic interest and because of the hope

that their unconventional physics may play a role in solving open problems that remain in

formulating and applying the theory (such as the cosmological constant problem).

In [1] we found strong evidence for a new type of perturbative string theory, non-local

string theory (NLST), arising on the gravity side of AdS/CFT [2,3,4,5] dual pairs whose

field theory side is deformed by a “multi-trace” operator4. In such theories, the “exotic”

phase is generic, since it is obvious on the field theory side of the duality that one has

to tune parameters in order to get back to the conventional theory, so the conventional

string theory occupies a set of measure zero in the space of theories. These theories are

gravitational, and have many intriguing features outlined in [1]. In a perturbative string

description, the perturbative expansion in the deformation is reproduced by shifting the

worldsheet action by a bilocal term of the general form

δSws =
∑

I,J

h̃IJ

∫
d2z1V

(I)[y(z1)]

∫
d2z2V

(J)[y(z2)], (1.1)

where V (I) are some vertex operators in the string theory each including a factor of the

string coupling gs (in the examples of [1] the index I was continuous), and y(z) are the

embedding coordinates of the string worldsheet (or any other fields on the worldsheet).

In [1] examples of double-trace deformations which were relevant or marginal in the dual

CFT were exhibited. It was shown that these deformations could not be accounted for by

4 We will use the names “single-trace” and “multi-trace” operators for any CFT which has a

weakly-curved AdS dual, though the operators can only be represented in terms of traces in the

case of four dimensional gauge theories. By a “single-trace” operator we will mean an operator

which is dual to a single particle in string theory (for example, a KK mode of the graviton), while

“multi-trace” operators will appear in the OPE of such operators. The distinction between these

classes of operators is not always clear (see, e.g., [6]), but it can be made in an obvious way for

operators of low dimension when the background is weakly curved (such “single-trace” operators

correspond simply to supergravity fields) and this is all that we will use here.
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local 10-dimensional supergravity, and that, in perturbation theory in the strength h̃ of

the deformation, the changes in CFT correlators are formally reproduced by the shift (1.1)

in the worldsheet action. This leads to a new type of diagrammatic expansion encoding

the perturbation theory in both h̃ and gs which has many interesting novel features. In

particular, at a given order n in the gs expansion, one has contributing diagrams which do

not have the modular properties of genus n Riemann surfaces.

In these theories, some sectors are affected by the deformation at leading order in

gs (classically on the gravity side), while other sectors are not. For instance, exclusive

graviton scattering along the AdS directions remains the same at tree level on the gravity

side [1]. This parametric hierarchy between an approximately local sector and a completely

non-local sector for small string coupling on the gravity side may potentially render these

theories more viable as physical models than they would be otherwise.

The examples of [1] involved string theory in RR backgrounds, so it was difficult

to make the formal expression (1.1) more explicit, due to the current limitations on our

understanding of RR backgrounds in string theory. It is important to study more explicitly

the conformal perturbation expansion around the undeformed background, in order to

understand how divergences arising in conformal perturbation theory are regularized from

the point of view of both sides of the duality, and in order to make progress on the larger

questions regarding the consistency, degree of non-locality, and applications of the new

theories.

In this paper, we present a rather explicit example of an interesting “double-trace”

deformation in the Neveu-Schwarz version of AdS3/CFT2 arising from the low energy/near

horizon limit of a system of Q1 fundamental strings and Q5 NS 5-branes [2]. In the dual

CFT this deformation is of the form δSCFT ' h̃
Q1Q5

∫
d2xJ(x)J̃ (x̄) where J and J̃ are left

and right moving global symmetry currents in the dual CFT. By using the explicit string

theory description of undeformed AdS3/CFT2 that has been developed in recent years

(see for example the comprehensive analysis in [7] and references therein) – in particular

the formalism of [8,9] for vertex operators and correlation functions and the semiclassical

analysis of [10] – we are able to analyze explicitly many aspects of this deformation. In

particular, we check explicitly the absorption of divergences in conformal perturbation

theory.

This deformation has an interesting physical property. It is exactly marginal but at

the same time, if J and J̃ are U(1) currents in the R-symmetry group, it breaks supersym-

2



metry. Applying the basic relation between conformal invariance and AdS isometries [2] to

nonsupersymmetric systems leads to an interesting element in the duality dictionary [11].

Namely, when there is a non-supersymmetric hypersurface of RG fixed points, a destabi-

lizing potential for moduli is not generated along this hypersurface despite the absence of

supersymmetry.

Our model provides for the first time an example realizing this possibility where

the fixed surface exists for finite values of the string coupling. The price of this (which

may end up being a positive feature) is that the fixed surface includes a “double-trace”

deformation which controls the strength of supersymmetry breaking. Perturbatively in the

string coupling gs, and also non-perturbatively in gs at first order in h̃, we find a simple

cancellation mechanism that reproduces the cancellation of the moduli potential directly

on the gravity side. For higher orders in h̃ we do not yet understand directly the way the

cancellation occurs beyond string perturbation theory on the gravity side; this is a very

intriguing prediction of the duality. The supersymmetry breaking in this model is “hard”,

in that the supersymmetry-breaking splittings of the masses (which are related to the

splittings between the dimensions of corresponding operators in the dual CFT) grow with

the masses. Unfortunately, the supersymmetry breaking effects are small – they disappear

when we take the flat space limit, so that this does not yet provide a basis for a realistic

theory of supersymmetry breaking. However, the cancellation of tadpoles for moduli is

nontrivial in our model for finite AdS radius, since the (vanishing) moduli tadpoles are

hierarchically smaller than the scale of supersymmetry breaking.

Given this prediction for stability after supersymmetry breaking, and more generally

in the interest of clarifying the physics of NLST’s, it is important to study the effects of

the deformation on bulk physics on the gravity side of the correspondence.

The deformation has interesting effects on both the perturbative and non-perturbative

sectors of the theory. The dimensions of operators corresponding to charged particles

propagating in AdS are changed by the deformation. As far as the perturbative sector

is concerned, because the “double-trace” deformation in this specific case involves vertex

operators which are total derivatives on the worldsheet, we find semiclassically in Euclidean

space that this causes the deformation of closed string diagrams to be localized near the

boundary of AdS space. In Lorentzian space we do not expect this to be the case, and we

present some indirect evidence (coming from the behavior of amplitudes in the flat space

limit) that in Lorentzian space closed string amplitudes are affected in the bulk.
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We also study explicitly the dynamics of D-branes. Diagrams involving D-branes have

explicit bulk effects which are evident semiclassically in Euclidean space, and we explicitly

compute the contribution of the deformation to bulk forces between D-branes.

We also discuss the deformation in the language of the low energy effective theory.

The deformation we perform is by a product of currents, each of which is dual to a gauge

field in the bulk with a Chern-Simons coupling at leading order in the low-energy expan-

sion (see, for instance, [12]). The deformation of the dual CFT action by a product of

chiral and antichiral currents can be identified with a local deformation of the boundary

(surface) terms in the gravity-side 2 + 1-dimensional Chern-Simons theory in a standard

way [13,14,15]. This description is equivalent in this case to our description (1.1) (both

descriptions lead to the same perturbation expansion involving insertions of bulk-boundary

propagators), and leads equivalently to interesting bulk physics such as novel contributions

to forces between D-branes. It is also worth emphasizing that even though the surface term

is local in the 3d action on AdS3, it is non-local in the 6d action on AdS3 × S3, with a

non-locality scale given by the AdS curvature radius. We will mostly use the formalism

(1.1) which generalizes to other cases of NLSTs and “double-trace” deformations. It is

interesting that in this simple case the NLST results obtained from a non-local shift in the

worldsheet action can be reproduced by a change in the 3d local action involving boundary

terms in spacetime.

The construction of a stable non-supersymmetric background in perturbative string

theory (with flat moduli and maximal symmetry in the noncompact dimensions) provides

one potential application of these theories. More generally, it is important to articulate

the conditions for consistency of this type of theory directly in string theory language, in

order to understand whether this phenomenon goes beyond the fascinating but somewhat

esoteric realm of AdS spacetimes. In this work, we find that a particular scaling of the

deformation leaves interesting effects in the flat space limit. It is not clear if this limit

defines a consistent theory or not, but if it does then this may provide an avenue towards

understanding more general realizations of NLST’s5.

The 3d boundary term which generates our deformation affects the bulk in AdS in two

ways. One has to do with the analogy between AdS and a finite box – it takes some modes

5 In a companion project [16], we are investigating the role of NLST’s in describing squeezed

states, such as those that occur in particle production processes in time dependent backgrounds,

in perturbative string theory.
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a finite time to reach the boundary. Another way in which the boundary can affect the

bulk is via the fact that the boundary deformation existed for an infinite time in the past.

The latter effect survives in the flat limit, along with severe non-locality felt by modes

with momentum along the dimensions descending from the S3.

This paper is organized as follows. In §2, we introduce the basic deformation on the

field theory side and then translate it to the gravity side using the vertex operators of

[9]. In §3, we study the effects of the deformation on closed string correlators. In §4 the

description of the deformation in the low-energy effective theory in three dimensions is

discussed. As mentioned above, this is simply given by a local boundary term in this case.

Then, in §5, we calculate corrections to forces between D-branes (and to the instanton

action of D-instantons) induced by the NLST deformation. Finally, in §6 we exhibit a

scaling of the deformation parameter in which these effects survive in the flat space limit.

2. The Deformation

In this section we introduce the “double-trace” deformation we are turning on and

calculate its effects on correlators on the CFT side. We then translate the deformation to

the gravity side language using the vertex operators of [9]. In the subsequent sections we

will calculate the effects of the deformation on physical quantities directly on the gravity

side.

2.1. Field Theory Side

Consider an AdS3 background of superstring theory which is dual to a two dimen-

sional (super-)conformal CFT containing holomorphic and antiholomorphic U(1) affine

Lie algebras of level k generated by currents J(x) and J̃(x̄) (obeying J(x)J(0) ∼ k/x2).

For example, in cases where the dual CFT has N = (4, 4) supersymmetry, there is an

SU(2) × SU(2) R-symmetry and we will be interested in a U(1) × U(1) subgroup of this.

The dual CFT could also include sigma-models on circles (there are 8 such circles in the

CFT which is dual to string theory on AdS3 × S3 × T 4, which is related by marginal

deformations to the sigma-model on [(T 4)N/SN × T 4] [17]), in which case we can choose

J and J̃ to be the generators of the corresponding isometries.

Our main interest is in the deformation of the dual CFT by

δSCFT = h

∫
d2xJ(x)J̃(x̄), (2.1)
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where h will be normalized shortly. This deformation is exactly marginal (as can be seen for

example by bosonizing the currents). In the case that J and J̃ are part of the R-symmetry

group of a superconformal theory, this deformation completely breaks the supersymmetry.

This combination of exact marginality and SUSY breaking is very interesting, as it means

for example that no destabilizing potential for moduli is generated in the dual string theory

at all orders and nonperturbatively.

Many aspects of the effect of the deformation on the dual CFT can be calculated

exactly, since the currents involved in the deformation (2.1) can be bosonized. It will be

convenient to use such a bosonized description, in which we identify J(x) =
√

2k∂xη(x, x̄)

and J̃(x̄) =
√

2k∂x̄η̃(x, x̄), where η and η̃ are canonically normalized scalar fields.

In the case of the CFT dual to the near horizon limit, AdS3 × S3 × T 4, of Q1 funda-

mental strings and Q5 NS5-branes on a T 4, the parameters of the CFT and those of the

background are related as follows6. The central charge of the dual N = (4, 4) SCFT is

c = 6Q1Q5 (up to a correction of order one which we will ignore, since we will be interested

in the perturbative weakly-curved limit of Q1 � Q5 � 1), and the level of its SU(2) affine

Lie algebra is k = 2Q1Q5. The gravity side AdS radius in string units is
√
Q5, and the

six-dimensional string coupling on AdS3 × S3 is g6 =
√
Q5/Q1. Therefore powers of g6

correspond to powers of 1/
√
Q1; this will be important in comparing gravity side diagrams

to the expansion of correlation functions on the field theory side.

Let us proceed with the analysis for the U(1) currents coming from the SU(2) R-

symmetry, for definiteness. In this case we have

J(x)J(0) ∼ 2Q1Q5

x2
. (2.2)

This scales as 1/g2
6, which is appropriate since it is related by the duality to a classical

kinetic term for bulk gauge fields. In the bosonized language we can write our deformation

in this case as
h̃(Q5)

Q1Q5

∫
d2xJ(x)J̃(x̄) = 4h̃(Q5)

∫
d2x∂η∂̄η̃, (2.3)

where we normalized the coefficient using the fact [1] that the deformation should scale

6 In this case it was argued in [17] that the CFT which is dual to the perturbative string

theory actually includes some specific terms of the form (2.1). So, in this case our discussion will

refer to adding additional terms of this type beyond the terms which are already present in the

“standard” string theory.
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as g2
s in order to get a reasonable perturbation expansion7, and we defined h ≡ h̃/Q1Q5,

where apriori h̃ can have an arbitrary dependence on Q5 ∼ L2
AdS/l

2
s. This normalization

is natural from the dual CFT point of view, since at a generic point of the field theory

moduli space Q5/Q1 plays no special role, but the central charge is always proportional

to Q1Q5. On the string theory side a more natural choice might be h ≡ h̃′g2
6 = h̃′Q5/Q1

which differs from the choice above by Q2
5; we will see that indeed this choice will be more

natural when we discuss the flat space limit in §6.

The operators of the dual CFT are of the form

OI = ei(pIη+p̃Iη̃)PI(∂
nη, ∂̄ñη̃)ÔI , (2.4)

where PI(∂
nη, ∂̄ñη̃) denotes a polynomial in arbitrary derivatives of η, η̃, and where ÔI

is an operator in the coset obtained after dividing by the U(1) × U(1) bosonized by η, η̃.

It is important to emphasize that there is a particular correlation between the coset part

ÔI and the free part ei(pIη+p̃Iη̃)PI(∂
nη, ∂̄ñη̃) encoded in the set of operators which exist

in the CFT. In our main example where J and J̃ are part of the R-symmetry of the dual

CFT, different components of the spacetime supermultiplets in the undeformed theory have

different R-charges q, q̃. The deformation (2.3) breaks supersymmetry as it couples to these

different components according to their charges. These R-charges are SU(2) charges: we

thus have J(x)eipη(0) ∼ qeipη(0)/x where q is the SU(2) weight (integer or half integer)

of the operator. This means that the charges p, p̃ which exist in the theory scale as

p ∼ q/
√

4Q1Q5, p̃ ∼ q̃/
√

4Q1Q5. (2.5)

The simplicity of our deformation (2.1) allows us to determine explicitly the effect of

the deformation on correlation functions of the OI, starting from the basic Ward identities

J(x)J(0) ∼ 2Q1Q5

x2
,

J(x)eipη(0) ∼
√

4Q1Q5p

x
eipη(0).

(2.6)

One basic effect of the deformation is a shift in the dimension of charged operators

of the form Yp,p̃ ≡
√
Q1e

i(pη+p̃η̃) (for which we chose an arbitrary normalization such that

7 As just discussed, in AdS3 × S3 with NS charges the only place Q1 appears is in the string

coupling, so counting powers of Q1 is the same as counting powers of g6.
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Figure 1: The leading contribution, at order h̃g0
6, to the renormalization of

the dimension of charged operators Y±q,±q̃ (denoted by straight lines) by the

“double-trace” deformation JJ̃ (denoted by the slashed lines meeting at a
boundary point x).

the 2-point function scales as 1/g2
s). A simple computation gives

δh̃〈Yp,p̃(x,x̄)Y−p,−p̃(0)〉 =

Q1

∞∑

n=1

(4h̃)n

n!

∫ n∏

i=1

d2xi〈eipη(x)
n∏

i=1

∂η(xi)e
−ipη(0)〉〈eip̃η̃(x̄)

n∏

i=1

∂̄η̃(x̄i)e
−ip̃η̃(0)〉.

(2.7)

This expression is a power series in the “double-trace” coefficient h̃ and in the string

coupling g2
6 ∼ 1/Q1 (the latter statement follows from the form of (2.7) combined with

the scaling (2.5) of the charges). The corresponding diagrams on the gravity side are of

effective genus ≥ 1, with the first contribution arising at O(h̃g0
6) as depicted in figure 1.

Let us evaluate this explicitly at order h̃. Working out the correlators this reduces to

4Q1h̃pp̃

xp2/2x̄p̃2/2

∫
d2x1

∣∣∣∣
1

x1 − x
− 1

x1

∣∣∣∣
2

. (2.8)

This integral is logarithmically divergent when x1 approaches the other operators Y at x

and at 0 (the log divergence for large x1 cancels among the different terms in (2.8)). Let

us include a UV cutoff a, which cuts off the integrals such that for any other operator

insertion at x0, the range of x1 is bounded by |x1 − x0| ≥ a. Doing the integral in (2.8),

one then finds

δh̃〈Yp,p̃(x, x̄)Y−p,−p̃(0)〉 = 8πQ1h̃
pp̃

xp2/2x̄p̃2/2
log
|x|2
|a|2 . (2.9)
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The log |a|2 piece must be absorbed in a redefinition of the operators Yp,p̃ as is standard in

conformal perturbation theory [18] (see also the discussion of this in §3.1). Namely, here

Yp,p̃ → Yp,p̃ + (8πh̃ pp̃ log a) Yp,p̃. (2.10)

What remains amounts to a shift in the dimension of Y by

(−8πh̃pp̃,−8πh̃pp̃) (2.11)

to first order in h̃. Taking into account the scaling (2.5) of the charges, this shift is of order

h̃g2
6 (for small charges). It is easy to generalize this to general correlation functions.

One can similarly work out changes to correlators involving currents (and their de-

scendants) arising from our deformation. For example,

δh̃〈J(x)J(0)〉 =
∞∑

n=1

(
h̃

Q1Q5

)n
1

n!

∫ n∏

i=1

d2xi〈J(x)
n∏

i=1

J(xi)J(0)〉〈
n∏

i=1

J̃(x̄i)〉. (2.12)

Here only even n contributions survive. All these contributions are (since they involve n+1

contractions of J ’s) at order Q1 ∼ g−2
s , the same order as tree-level diagrams. This agrees

with the set of diagrams that contribute to (2.12) on the gravity side, which involve n+ 1

disconnected spheres (connected by insertions of the deformation). The first contribution,

at order h̃2, is given by

4Q1Q5h̃
2

∫
d2x1d

2x2
1

(x̄1 − x̄2)2

[
1

(x − x1)2

1

x2
2

+
1

(x − x2)2

1

x2
1

+
1

(x2 − x1)2

1

x2

]
. (2.13)

The last term here is related to a divergence in the vacuum amplitude,

δh̃〈1〉 =

∞∑

n=1

(
h̃

Q1Q5

)n
1

n!

∫ n∏

i=1

d2xi〈
n∏

i=1

J(xi)〉〈
n∏

i=1

J̃(x̄i)〉 =

= 2h̃2

∫
d2x1d

2x2
1

|x1 − x2|2
+ · · · ,

(2.14)

so it will cancel when we compute the properly normalized correlation function which

involves dividing by 〈1〉.
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The first two terms in (2.13) give identical finite results, adding up to

2 · 4Q1Q5h̃
2

∫
d2x1d

2x2
1

(x̄1 − x̄2)2

1

(x − x2)2

1

x2
1

=

= 8Q1Q5h̃
2

∫
d2x1d

2x2
∂

∂x̄2
(

1

x̄1 − x̄2
)
∂

∂x2
(

1

x − x2
)

1

x2
1

=

= 8Q1Q5h̃
2

∫
d2x1d

2x2
∂

∂x2
(

1

x̄1 − x̄2
)
∂

∂x̄2
(

1

x − x2
)

1

x2
1

=

= 32π2Q1Q5h̃
2

∫
d2x1d

2x2δ
(2)(x1 − x2)δ(2)(x − x2)

1

x2
1

=

=
32π2Q1Q5h̃

2

x2
.

(2.15)

If desired, one can always renormalize J by a multiplicative constant (depending on h̃)

which will cancel this correction and keep the same form of 〈J(x)J(0)〉.
Another example is

δh̃〈J(x)J̃ (0)〉 =

∞∑

n=1

(
h̃

Q1Q5

)n
1

n!

∫ n∏

i=1

d2xi〈J(x)

n∏

i=1

J(xi)〉〈J̃ (0)

n∏

i=1

J̃(x̄i)〉. (2.16)

Here only odd values of n contribute. For n = 1, this is

4Q1Q5h̃

∫
d2x1

1

(x − x1)2

1

x̄2
1

= −4Q1Q5h̃

∫
d2x1

∂

∂x1
(

1

x − x1
)
∂

∂x̄1
(

1

x̄1
) =

= −4Q1Q5h̃

∫
d2x1

∂

∂x̄1
(

1

x − x1
)
∂

∂x1
(

1

x̄1
) =

= 16π2Q1Q5h̃

∫
d2x1δ

(2)(x − x1)δ(2)(x) =

= 16π2Q1Q5h̃δ
(2)(x),

(2.17)

which is just a shift in the contact term between J and J̃. We can swallow this by redefining

the original contact term (the same will be true at higher orders as well).

By using exact formulas for correlators involving η and η̃, we can in principle calculate

explicitly the effects of the deformation on all operators (2.4) of the theory, including the

parts involving complicated descendants. It is worth emphasizing, however, that the set

of operators (2.4) has a lot of structure. The AdS/CFT correspondence maps all states in

global AdS to operators in the CFT, so operators of this form describe all possible bulk

excitations on the gravity side. The CFT charge q maps to the charge under the corre-

sponding gauge field on AdS3 (given by the integral of the gauge field around the boundary
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of AdS3 at fixed time in global coordinates). Clearly, there are many configurations with

total charges q, q̃; the information about the distribution of this charge in the bulk of the

spacetime is encoded in the details of the P Ô factors in the operator. It is interesting that

the formula (2.11) implies that the change in the dimension of operators (and, therefore,

the change in the energy of the corresponding states in global AdS) depends only on their

charge. However, in order to understand the effects of our deformation on the dynamics

of nontrivial distributions of charge in the bulk of the space, one needs to keep track of

the “fine structure” in the operators.

In particular, in §5, we will be interested in forces between separated D-branes in the

bulk of AdS3 × S3. Pairs of D0-branes in the bulk of AdS3 are not quite in stationary

states, as there are forces between them (which are small for large LAdS). Such a pair is

therefore described by a combination of operators (2.4) which does not form an eigenstate

of the dilatation operator in the dual CFT. This can be modeled by a sum of an operator

of particular dimension plus 1/LAdS times an operator or sum of operators of different

dimension. After the deformation, the correlation functions of the different terms scale in

different ways determined by their correlators with J, J̃ as in the simple examples worked

out above. The force term is still multiplied by a small coefficient, 1/LAdS, but its mag-

nitude will in general receive corrections. We will calculate this effect explicitly for some

D-branes in §5, and reproduce this general structure predicted by the dual CFT.

2.2. The Gravity Side

The general formalism described in [1] implies that deforming the CFT by a

“double-trace” operator of the form h
∫
d2xO1(x)O2(x) is described in string theory,

at least to leading order in h, by deforming the worldsheet action by the non-local

term h
∫
d2x

∫
d2z1V1(z1;x)

∫
d2z2V2(z2;x), where V1,2(z;x) are the vertex operators for

O1,2(x). In our case, as described in [9], the affine Lie algebra generated by J(x) in the

dual CFT is related to an affine Lie algebra generated by k(z) on the worldsheet. An

insertion of J(x) into a CFT correlation function is equivalent to an insertion of K(x)

defined by

K(x) = − 1

π

∫
d2zk(z)∂z̄Λ(z, z̄;x, x̄) (2.18)

in the string worldsheet, where Λ is a particular operator such that ∂z̄Λ(z, z̄;x, x̄) is a

primary operator of the worldsheet conformal algebra with dimension (0, 1), and also a

primary of the space-time conformal algebra with scaling dimension (1, 0). We wrote
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down the vertex operator for the bosonic string; in the case of the superstring (which is

the case we are interested in) there will be some additional terms in the expression above,

but they do not change our discussion and our semi-classical computations below so we

will not write them down explicitly.

If we choose coordinates on AdS3 such that the string-frame metric is of the form

ds2 = Q5(dφ2 + e2φdγdγ̄) (where the curvature in string units is −2/Q5), then we can

write an expression for Λ in terms of the worldsheet fields φ(z, z̄), γ(z, z̄) and γ̄(z, z̄), in

the semi-classical approximation, of the form

Λ(z, z̄;x, x̄) = − (γ̄ − x̄)e2φ

1 + |γ − x|2e2φ
. (2.19)

The deformation of the worldsheet Lagrangian corresponding to (2.3) is given by

δSworldsheet =
h̃

Q1Q5π2

∫
d2x

∫
d2z1

∫
d2z2k(z1)∂z̄1 Λ(z1, z̄1;x, x̄)k̃(z̄2)∂z2Λ̄(z2, z̄2;x, x̄).

(2.20)

The vertices (2.18) have many interesting properties that were analyzed in [9] and used

there to derive the Ward identities for the current J(x). Since ∂z̄k(z) = 0 except for delta

function contributions at the locations of other vertices, we can integrate by parts and

write (2.18) as a contour integral of kΛ on contours surrounding the insertion points of

vertex operators, and (if they exist) on boundaries of the worldsheet (note that there are

no singularities when the vertex operators in K(x) and K̃(x̄) approach each other). In

particular, the vertex operator K(x) (2.18) can be written in the form

K(x) =
∑

insertions,boundaries

∮
dz

2πi
k(z)Λ(z, z̄;x, x̄). (2.21)

This leads [9] to the Ward identity for correlators of K with charged fields. Let Wq(x) be

the integrated vertex operator corresponding to a primary of the J affine Lie algebra with

charge q, so that correspondingly it is a primary of the corresponding worldsheet affine Lie

algebra with charge q. Then, one finds [9]

〈K(x)
∏

i

Wqi (xi, x̄i)〉 =
∑

i

qi
x− xi

〈
∏

i

Wqi(xi, x̄i)〉 (2.22)

for closed string worldsheet correlation functions, reproducing the Ward identities of the

dual CFT. Many interesting operators (including J(x) itself) will not have this property of

being primaries of charge q and then we will have more complicated expressions for their

correlation functions, as discussed in §2.1.
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3. Effect of the Deformation on Closed String Amplitudes

Now, let us take some correlation function of closed string vertex operators in the

theory before the deformation, and consider the effect of the deformation on the correlation

function. In perturbation theory the effect of the deformation is given by the insertion

of some number of K(xi) and K̃(x̄i) vertex operators into the correlation function, and

integrations over xi. If the correlation function involves only primary fields we can then

easily compute it on the worldsheet using (2.22), and it is obvious that we reproduce the

CFT computations of the same correlation functions (2.7)-(2.17) described in §2.1.

Our deformation is exactly marginal and affects physics at all scales on the field theory

side, and we have introduced various changes to correlation functions of closed strings in

AdS3, so we might expect the bulk physics to be affected by the deformation, and perhaps

to become non-local (with a non-locality scale much bigger than the string scale). For the

case of a double-trace deformation in AdS5 various arguments for bulk non-locality were

given in [1]. However, in our case we need to be more careful because, as discussed above,

the vertex operators we deform by are total derivatives on the worldsheet, so it is not clear

that the deformation is really felt all over the worldsheet. Semiclassical worldsheets in

Euclidean AdS3 stretch all the way to the boundary, where the vertex operators describing

external states in the Feynman diagrams are inserted [10]. It is straightforward to check,

using the methods of [10], that the insertion of K(x) does not change the shape of the saddle

point configuration of the worldsheet near the vertex operator insertions at the boundary.

The worldsheet path integral of course involves integration over all worldsheet shapes, but

from [10] we see that the dominant (saddle point) contribution is one in which the Wq

insertions are at the boundary. As discussed above, further insertions of K(x) localize at

the same points on the worldsheet. Thus, in this special case where the vertex operators

we deform by are total derivatives, it seems that the only effect evident semiclassically on

Euclidean closed-string amplitudes is localized at the boundary of AdS space.

The case of more physical interest on the gravity side is the Lorentzian case, where

scattering events can take place in the bulk of the space. For the Lorentzian case we will

provide an indirect argument in §6, based on features of the flat space limit, that the effects

of our deformation are felt also in the bulk of the space and not just near the boundary.

The existence of non-supersymmetric shifts of charged closed string masses obtained

from the shifted dimensions (2.11), combined with the exact stability of the model, raises

the fascinating question of how to see the cancellation of the moduli potential directly
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on the gravity side of the correspondence. We will return to this question in §3.2 after

considering the divergence structure of the deformation on the gravity side.

3.1. Regularization of Divergences

In studying marginal deformations of CFTs in conformal perturbation theory, one

encounters divergences in calculating corrections to correlation functions, which can be

consistently regularized and absorbed in rescalings of the operators (see e.g. [18]). The

cutoff a we introduced in (2.9) and the rescaling (2.10) are an example of this procedure in

our case on the field theory side. We would now like to illustrate how this regularization is

described on the gravity side. This can be deduced by using the UV/IR correspondence.

On the gravity side, the first-order correction in a correlator like (2.7) is of the form

h̃

Q1Q5

∫
d2x1〈Wq,q̃(x, x̄)W−q,−q̃(0)K(x1)K̃(x̄1)〉. (3.1)

Anticipating that the result will be divergent, let us put an IR cutoff in space-time at

a finite value of φ, leaving the region φ < φc, and use the semiclassical analysis of the

worldsheet and of Λ. Taking into account the localization of K at the W insertions (2.21)

and the fact that
∮
k(z) dz2πi measures the charge, this becomes

δh̃〈WW 〉 =
h̃

Q1Q5

∫
d2x1qq̃

∣∣∣∣Λ1(x1)− Λ2(x1)

∣∣∣∣
2

〈WW 〉, (3.2)

where Λ1 and Λ2 refer to the semiclassical value of Λ at the positions of the two W

insertions (cut off at φc). For large φc we find

Λ1(x1) = − (x̄ − x̄1)

e−2φc + |x− x1|2
,

Λ2(x1) = − (−x̄1)

e−2φc + |x1|2
,

(3.3)

where we have replaced the γ coordinate of each insertion by its boundary value (x or

0 respectively) since the corrections to this value are subleading at large φc to the e−2φc

contribution we have included. Plugging (3.3) into (3.2) gives an x integral whose log

divergence at large x1 cancels among the various terms in (3.2) (just like in (2.8)). The

leading divergent behavior when x1 approaches the other insertions at x and 0, and as

φc →∞, is ∫
d2w

|w|2
(e−2φc + |w|2)2

∼ −2π log(e−2φc) = 4πφc. (3.4)
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Now that we have expressed the cutoff divergence in terms of gravity side quantities, we

can absorb this divergence into a rescaling of the vertex operators Wq,q̃ , corresponding

to the rescaling (2.10) we had on the field theory side. In string theory, we can further

translate this cutoff into a short-distance cutoff on the worldsheet using [10]. The IR cutoff

φc in the target space geometry corresponds to a cutoff

aworldsheet(h) = e−
φc
4h (3.5)

on the worldsheet near an insertion of a vertex operator corresponding to a scalar operator

of dimension h(= h̄) in the dual CFT.

Figure 2: Vacuum diagram at order h̃2g0
s . The insertions of the vertex

operators in the “double-trace” deformation are indicated by the pair of lines
with slashes joined at the boundary.

Figure 3: Modulus tadpole at order h̃2g0
s . The insertion of the vertex oper-

ator for the modulus field is indicated by the plain line.

There are also formal divergences in contributions to the vacuum amplitude in the

bulk. For example, the diagram in figure 2 has a logarithmic divergence (given by (2.14)).

These diagrams by themselves are not physically observable – they map to 〈1〉 in the CFT

which we should always choose to equal one. However, the ratio between any other diagram

and the sum of vacuum diagrams is observable. For example, we can look at the same

diagram probed by an external line as depicted in figure 3. This will be relevant for the

moduli potential, which we turn to next.

3.2. The Moduli Potential in String Perturbation Theory

As discussed above, when we deform the CFT which is dual to string theory on (say)

AdS3 × S3 × T 4 by a deformation (2.1) involving U(1)R currents, we explicitly break the
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space-time supersymmetry. From the space-time point of view we would naively expect to

generate a moduli potential in such a case, such that not every point in the original moduli

space would still give a stable background after the supersymmetry breaking. However, we

know that this does not happen in our case since the deformation in the CFT is exactly

marginal (independently of any of the other parameters of the CFT), so we expect to

have an exact non-supersymmetric background after the deformation with the isometries

of AdS3 for any value of the other moduli of the theory. We are using a slight abuse

of terminology here: since in general NLSTs do not have a local effective action, the

notion of a moduli potential may not persist. However, we can still ask whether all the

moduli of the original theory remain, and do not develop tadpoles even after we add the

supersymmetry breaking deformation. We have moduli operators O(I)
modulus(x, x̄) which

are of dimension (1, 1), and the vanishing of a term of order m in the fields in the original

“moduli potential” is manifested in the vanishing of the integrated correlation function

of m of these operators in the CFT8. From the dual CFT it is clear that this must still

be the case also after the deformation, and in this section we will see how this happens

from the point of view of string perturbation theory in the bulk (which gives part of the

contribution to the correlation functions in the full dual CFT).

In usual flat-space string theory, when we break supersymmetry we would expect to

have a non-zero torus vacuum amplitude. There, this amplitude is proportional to the

torus diagram with an insertion of the zero momentum dilaton, which is the worldsheet

manifestation of the fact that the vacuum energy in perturbative string theory is really a

potential for the dilaton. Our situation is different since the dilaton is a fixed scalar and

therefore massive. Thus, we would expect to generate a potential only for the other moduli

which actually correspond to massless fields on AdS3. In any case the vacuum diagram by

itself has no physical meaning, so we cannot use it to learn about supersymmetry breaking

in the bulk; the physical effects of the vacuum energy are encoded in the diagrams with

an external graviton or moduli line, which determine the curvature and moduli dynamics

generated by the vacuum energy.

In the case we are interested in here, the moduli involve the T 4 part of the worldsheet

8 The case m = 2 actually does not vanish; it is related to the propagator on the gravity

side, and diverges after we integrate over x. The vanishing of the quadratic term in the “moduli

potential” is accounted for by the dimension of the modulus operator, which corresponds to a

massless field on the gravity side.
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CFT; for most of the moduli the vertex operator corresponding to
∫
d2xOmodulus(x, x̄)

is simply
∫
d2z∂Xi∂̄Xj (the others come from the RR sector and our argument in the

next paragraph will apply to them as well). The leading correction to the moduli tadpole

after the deformation comes from figure 3. It is easy to see that this vanishes, because the

worldsheet correlation function on one of the spheres factorizes into a correlation function

involving the T 4 directions and one involving the AdS3 × S3 directions. The first factor

is just of the form 〈: ∂X i∂̄Xj :〉 where the X i are embedding coordinates of the string in

the T 4 directions. This vanishes.

Next, let us consider arbitrary diagrams contributing to the “moduli potential”, at a

general order in the perturbation theory in gs and h̃. Such a digram would have various

connected components, which are genus g surfaces with some number n of insertions of

J , ñ insertions of J̃, and m insertions of
∫
d2xO(I)

modulus(x, x̄) (where I labels the various

moduli fields). This subdiagram is a correlator in the original undeformed theory, of the

form

〈J(x1) . . . J(xn)J̃(x̄n+1) . . . J̃(x̄n+ñ)

∫
d2xO(1)

modulus . . .

∫
d2xO(m)

modulus〉genus g. (3.6)

If n = ñ = 0, the diagram is identical to a contribution to the “moduli potential” in the

undeformed supersymmetric theory, which cancels9. For the other diagrams which feel the

deformation and therefore the supersymmetry breaking, we note that the moduli of the

torus (which are the scalar fields on AdS3 we are discussing here) are uncharged under

the U(1) isometries generated by J and J̃ , and have a non-singular OPE with the current

operators. As discussed above, the vertex operators for J and J̃ are total derivatives on

the worldsheet which can be written as integrals around the other insertion points, and (as

in [9]) these integrals get no contributions near the moduli operators. Thus, ignoring the

picture changing operators inserted on the Riemann surface at higher genus, which include

terms from all sectors of the worldsheet CFT and can lead to additional singularities,

one would find that the correlation function (3.6) factorizes into the part involving J and

J̃ times the part involving the moduli, and the latter vanishes as argued above. This

calculation of the n + ñ + m-point function can be done equivalently in the dual CFT

description of the original theory, where it cancels by an exact factorization argument,

9 More precisely, this subdiagram is a particular term in the expansion of the CFT “moduli

potential” in powers of g2
s = Q5/Q1, but since the full correlation function vanishes every term in

its expansion must vanish as well.
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and one therefore deduces that the full calculation of the diagram including the picture

changing operators still leads to a cancellation. Thus we see also on the string theory side

that we do not produce a “moduli potential”, despite the absence of supersymmetry.

One might worry that there could be moduli which have a singular OPE with the

currents J or J̃. If we bosonize the currents as in section 2, then because the O(I)
modulus are

dimension (1, 1) operators in the dual CFT and they are uncharged under J, J̃, they could

only depend on η, η̃ by a factor of ∂η or ∂̄η̃. So, we can write these operators generally

as O(I)
modulus = O0 + ∂η(x)ÔR(x̄) + ÔL(x)∂̄ η̃(x̄) where O0 has a non-singular OPE with

the currents, ÔR is a dimension (0, 1) operator and ÔL is a dimension (1, 0) operator.

Note that the last two terms are actually “double-trace” operators, since ∂η is simply

proportional to J , and they do not correspond to scalar fields on AdS3. However, even

for moduli of this “double-trace” form we can argue that no tadpoles are generated after

our deformation. The same arguments above show that the effect of the deformation on

the tadpole for these operators must be proportional to the value of 〈ÔR(x̄)〉 or 〈ÔL(x)〉
in the original theory, which obviously vanishes.

We can also give a direct space-time argument for the vanishing of the “moduli poten-

tial” after the deformation. On the gravity side, the vanishing of the “moduli potential”

after our deformation corresponds to the statement that in the original theory before the

deformation, the coupling of Chern-Simons gauge fields (which are the fields dual to J, J̃)

to the moduli remains zero quantum mechanically. This follows by gauge invariance from

the fact that the pure gauge modes A = dΛ (whose field strength vanishes) do not couple

only to each other or to the uncharged moduli fields at any order in perturbation theory

in the original background.

In any case, the result is that in our diagrammatic expansion, in perturbation theory

in h̃, the diagrams contributing potentially destabilizing contributions to the “moduli

potential” cancel by virtue of the vanishing of corresponding diagrams in the original

theory, which appear as subdiagrams in the deformed theory. It would be nice to gain a

more intuitive understanding in the bulk spacetime of how the loop diagrams involving

closed strings in the bulk, which have bose-fermi splitting (using (2.11), since the bosons

and fermions have different charges under U(1)R), manage to cancel in this theory. We will

return to this in §5.2 after studying some bulk effects, including supersymmetry breaking

effects, of D-branes in our theory in §5.

18



4. Effect of the Deformation on the Low-energy Action

In §3 we saw indications that when computing the n-point function in Euclidean space

of any set of vertex operators on the worldsheet, the contribution of the “double-trace”

deformation is localized at the boundaries of AdS. In this section we would like to discuss

this in the context of the low energy effective description, and to clarify from this point of

view where boundary terms arise. In the next section (§5) we will return to our analysis

of the effects of the deformation in string theory and the stable supersymmetry breaking

mechanism encoded in this model.

In general in a NLST, one would not expect a local gravity or supergravity action in

the infrared. In our present case, which is based on Chern-Simons gauge fields in 2 + 1

dimensions, some simplifications arise if we focus on the AdS3 part of the geometry10. In

particular, from [13,14,15] it follows that if we bosonize the currents as in section 2, then

the bulk Chern-Simons gauge fields which are dual to the CFT operators J and J̃ are given

by A =
√

4Q1Q5dη and Ã =
√

4Q1Q5dη̃ away from sources (where η and η̃ are defined on

all of AdS3 and their boundary value is given by the objects defined in section 2). Then,

one can realize our deformation 4h̃
∫
d2x∂η∂̄η̃ by a boundary term in the CS theory

δSSUGRA =
h̃

Q1Q5

∫

∂AdS3

A ∧ Ã. (4.1)

This prescription reproduces our perturbation expansion in h̃, as can be seen by

regarding (4.1) as part of the interaction Lagrangian in the gravity-side theory. Bringing

down powers of (4.1) in the path integral and contracting the boundary fields A∂ , Ã∂ in

(4.1) with bulk fields Ab, Ãb coming from insertions of interaction vertices from the bulk

Lagrangian, one obtains the bulk-boundary propagators implicit in the vertex operators

in (2.20). In particular, as we will see further in §5, we find significant effects of the

deformation in the bulk arising from this. These come from the fact that the AdS3 acts

like a finite box for some modes, and more generally from the fact that the boundary term

(4.1) is present throughout time. Note that (4.1) is not a local term in six dimensions,

as each of the fields appearing in (4.1) is actually in a particular spherical harmonic on

the S3, so writing this term down in the six dimensional action entails performing two

integrations over the S3. Thus, in the full theory this term is manifestly non-local at the

AdS curvature scale.

10 We thank J. Maldacena for emphasizing this aspect.
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In fact, writing the deformation in the form (4.1) is a special case of something we can

do in general to describe deformations in AdS/CFT. Let us work in Euclidean AdS space

with the standard coordinate system ds2 = (dr2 + dxµdxµ)/r2. In conformal perturbation

theory, if we deform the Lagrangian by a “single-trace” operator O of dimension ∆ which

is dual to a SUGRA field φ(x, r), δSCFT = h
∫
ddxO(x), then we need to insert into

the dual supergravity picture any number of boundary-to-bulk propagators of the field

φ, each with a coefficient h. One way to do this is to deform the SUGRA action by a

boundary term of the form δSSUGRA = limr→0 h
∫
ddxφ(x, r)rd−∆ , which reproduces the

same perturbation expansion because of the relation between the bulk-to-boundary and

bulk-to-bulk propagators, if we add this term without changing the boundary conditions

on the fields. However, usually this description is not very useful since the limit r → 0

is singular so we do not get a local deformation of the action, except in the case ∆ = d

of marginal deformations. For marginal deformations the effect of the added term at first

order in h is simply to change the bulk value of φ by a constant amount proportional to h, as

in the usual description. However, this violates the usual boundary condition for a massless

field (which sets its boundary value to a particular constant), so this formalism breaks

down also in this case (leading to singular configurations). In any case, this illustrates

that writing the deformation as a local boundary term does not preclude having large

effects of the deformation in the bulk.

Similarly, also for “double-trace” deformations by a product of two scalar operators, of

the form δSCFT = h̃
∫
ddxO1(x)O2(x), we can reproduce the perturbation theory in h̃ by

adding to the supergravity action δSSUGRA = limr→0 h̃
∫
ddxφ1(x, r)φ2(x, r)r2d−∆1−∆2 .

Again, this is not very useful since the added term generally has no good r → 0 limit,

and in particular this happens in the marginal case of ∆1 + ∆2 = d. However, if we

deform by vector fields instead of scalar fields, we get a power of r2d−2−∆1−∆2 instead

of the power we wrote above. In the case we are discussing in this paper (for which

d = 2,∆1 = ∆2 = 1) this power vanishes, so we simply reproduce the deformation (4.1),

which is perfectly well behaved. Note that, as described for instance in the discussion

around equation (A.19) of [15], we do not need to impose any boundary conditions on the

fields A, Ã, since by adding appropriate boundary terms we can set the relevant currents

to be chiral and anti-chiral by the equations of motion (the Euclidean action is of the form
k
2π

∫
AdS3

(A ∧ dA− Ã ∧ dÃ)− ik
4π

∫
∂AdS3

(A ∧ ∗A+ Ã ∧ ∗Ã), where the ∗’s are taken in the

boundary of AdS space). Thus, it is not necessary to change the boundary conditions after
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deforming by (4.1), and this term automatically reproduces the perturbation expansion in

the CFT which we described in section 2.

5. D-branes: Bulk Effects and SUSY Structure

In section 3 we studied closed string amplitudes in which the operators K(x), K̃(x̄) in-

volved in our deformation localized to the boundary of AdS3 (semiclassically). When the

worldsheet has boundaries on D-branes, K(x) gets additional contributions from these

boundaries, and these do not have to be at the boundary of AdS3. Thus, it seems

that D-brane physics in the bulk could be manifestly different after the deformation,

even in Euclidean space. Such physics could involve for instance D-instanton correc-

tions to correlation functions, D-branes localized in the bulk, or D3-branes wrapping an

AdS2 × S2 cycle in AdS3 × S3. D-branes in AdS3 have been studied for example in

[19,20,21,22,23,24,25,26,27,28,29,30].

Studying this requires us to be able to calculate correlation functions with (2.21)

inserted along the boundary. In general we do not know how to treat k(z) and Λ near

the boundaries of the worldsheet. However, in certain circumstances, Λ approaches an x-

dependent constant near the boundary, and we can calculate the effect of the deformation

explicitly. One such circumstance involves worldsheets which can be treated semiclassically.

In such a case we can simply replace Λ by the value of (2.19) at the locus in the target

space where the boundary of the worldsheet is mapped. Another involves D-branes which

preserve a diagonal subgroup of the SL(2) × SL(2) × SU(2) × SU(2) chiral algebra. In

these cases the symmetries determine the behavior of Λ near the worldsheet boundaries. A

third situation in which we have control is that of D-instantons on AdS3, which freeze the

worldsheet boundaries in all directions. Here again we can replace the worldsheet fields

γ, γ̄, φ appearing in (2.19) by their boundary values. We believe that a similar situation

may also occur for D0-branes on AdS3, at least with regard to emission of massless closed

strings whose worldsheets intersect the D-branes at a point (up to string scale fluctuations,

which may be canceled by ghosts, since they are just along the longitudinal time direction).

Our goal is to understand the effect of our deformation on the physics of the D-

branes. This requires studying worldsheets with boundaries and insertions of (2.20). From

the localization of K to a contour integral around each boundary, we see that in the above

cases where Λ approaches some constant Λi(x, x̄) at the i’th boundary, the expression for

K reduces to
∑
i Λi

∮
i
dz
2πik(z), where the sum goes over the disconnected boundaries of the
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worldsheet. The contour integral produces the charge qi of the closed string channel state

emitted by the D-brane. Thus, the effect of the deformation on a diagram with particular

charges qi floating through it is to multiply the diagram by

exp(
h̃

Q1Q5

∫
d2x

∑

i,j

qiΛi(x, x̄)q̃j Λ̄j(x, x̄)). (5.1)

Using the fact that the closed string vertices depend on qi simply through a factor of eiqiθ

(if we choose θ to be an angular variable along the isometry generated by J) and on q̃i

similarly through a factor of eiq̃i θ̃, one can show that (in the case of constant Λ) all string

diagrams involving D-branes sitting at positions (θk, θ̃k) are multiplied by an insertion of

the form

exp(− h̃

Q1Q5

∫
d2x

∑

k,l

Λk(x, x̄)Λ̄l(x, x̄)
∂

∂θk

∂

∂θ̃l
), (5.2)

where here the sum goes over the different D-branes in the background and we are assuming

that none of the D-branes lie at fixed points of the isometries (since the θ’s are ill-defined

there).

φ φ
θ θ θ θ

1 2
1 1 2 2

∼ ∼

Figure 4: Annulus contribution to the force between D-branes at order h̃g2
s.

For disk diagrams, with no charged closed string insertions, the deformation has no

effect since no charge can be emitted by the boundary state (nothing can absorb it, and

the contour integral above can be shrunk to zero size). Therefore, the leading contribution

in all our calculable cases of D-brane interactions could arise from diagrams at order g2
sh̃.

One such contribution is the annulus with one insertion of the deformation operator, as

depicted in figure 4. Other contributions at the same order come from diagrams where
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the “double-trace” wedge connects two otherwise disconnected annuli. We can calculate

all these diagrams equivalently using (2.20) or (4.1).11

In some cases this contribution will vanish. For example, when Λ takes the same value

on both boundaries of the annulus, then the sum over i (or over j) in (5.1) vanishes by

charge conservation. This cancellation occurs for each closed string charge sector sepa-

rately. The path integral involves a sum over all closed strings propagating between the

two boundaries, and in particular a sum over all the possible closed string charges. Thus,

another source of cancellation can arise (for example) when we deform by the U(1) currents

inside the SU(2)×SU(2), if the D-branes are not separated on the S3, since then the sum

over positive and negative qi (and/or q̃j) cancels (for a generic position of the D-branes

which is not a fixed point of the isometries). If we separate the D-branes on the S3 this

cancellation is avoided by having different qi and q̃j-dependent spherical harmonics ap-

pearing in the closed string wavefunctions emanating from the separated branes. However,

when these separated D-branes contribute to instanton effects, one integrates in spacetime

over their positions on the S3, yielding again a cancellation. In particular, this cancellation

would occur in calculating instanton corrections to the “moduli potential” which we know

from the dual CFT must cancel. We will discuss this further in §5.2.

We will mostly be interested in studying the effects of supersymmetry breaking on

the bulk D-branes. In the original background, there are D-branes which break all the

supersymmetry and therefore have 16 fermionic zero modes on their worldvolume from

the broken supercharges, and there are other branes which break half the supersymmetry

11 For example, we can use (4.1) to calculate the diagram in figure 4 as follows. Let us denote

by Q(y) the charged field propagating in the closed string channel, with charges q and q̃ under

our two U(1)’s. The amplitude is

〈B1|
∫
d3yq : AµQ∂

µQ(y) :

∫
d3y′ : q̃ÃνQ∂

νQ(y′) :
h̃

Q1Q5

∫

∂

: A ∧ Ã : |B2〉, (5.3)

where |B1〉 and |B2〉 are boundary states corresponding to the two D-branes, projected onto the

sector with charges q and q̃, and where we have pulled down from the action three interaction

terms: two cubic couplings between charged fields and the Chern-Simons gauge field, and the

boundary term (4.1). All of the fields here can be contracted with each other (or in the case

of two of the Q’s, with the boundary states). The contraction between the bulk Aµ(y) and the

boundary A∂ gives the bulk-boundary propagator encoded in the vertex operator (2.18), and

similarly for Ã. This yields the diagram in figure 4.
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and have eight fermionic zero modes. We find that all these zero modes can be (and

presumably are) lifted at order h̃g2
s from the diagram of figure 4. This is a local bulk signal

of supersymmetry breaking, in contrast to the closed string sector where no such effect

arose semiclassically in the Euclidean case. We will also study vacuum annulus diagrams,

which indicate the effect of the deformation on forces between D-branes. The picture that

emerges (at least at leading order in h̃) is that the D-branes do not sit in supermultiplets

after the deformation, but because of the integration over spacetime collective coordinates,

they do not contribute destabilizing instanton effects.

5.1. Localized Bulk D-branes

The AdS3×S3×T 4 background arises as the near-horizon limit of fundamental strings

parallel to NS 5-branes wrapped on T 4. We can imagine putting in additional particle-like

D-branes in this background – say, in type IIB, D1-branes or D3-branes wrapped around

the 1-cycles and 3-cycles of the T 4. Before we took the near-horizon limit, these D-branes

were attracted to the F1-NS5 system, and they could form a bound state whose energy was

the square root of the sum of the energies squared of the separate systems (which is the

BPS bound; the bound state is supersymmetric). If the F1-NS5 system is wrapped on a

circle, the additional D-branes have a finite contribution to its energy, while if it is on a line

they do not contribute to it. Thus, after taking the near-horizon limit, we find [17] that in

Poincaré coordinates there is no lower bound on the mass of D-branes, but there is such a

bound in global coordinates. This bound, which is proportional to the number of D-branes

squared, appears even though the D-branes break all the supersymmetry; it is related to

the original supersymmetries of the F1-NS5 system which are non-linearly realized. In

any case, at weak coupling it is easy to see that such D-branes in AdS3 × S3 × T 4 have a

mass which is much larger than the lower bound (this is fortunate since, for small D-brane

number when we can ignore back-reaction, the mass grows linearly with the number of

D-branes), they break supersymmetry completely, and one expects to have generic forces

between them in the bulk (which at large distances arise from the exchange of massless

particles). Moreover, these branes are not static in the bulk of AdS3, but rather follow the

geodesics for massive particles. In our coordinate system this means they are attracted

towards smaller values of φ. This motion is insignificant at time scales much smaller than

LAdS, and in our discussion we will assume we are dealing with such time scales and we

will ignore it. In addition to such branes which are D0-branes on AdS3, we could also

consider D-instantons on AdS3, such as the type IIB D-instanton or Euclidean D-branes
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wrapped on cycles of the T 4. These also completely break the supersymmetry.

Let us consider the annulus contribution of figure 4 in the case that the two boundaries

are localized on AdS3. We place the D-branes, or the boundaries of the annulus, at

positions yi = {γi, γ̄i, φi} on AdS3 and θi, θ̃i on the two circles on the S3 corresponding to

J and J̃ , where i = 1, 2 labels the two branes. We will use the semiclassical equation for

Λ,

Λi = Λi,semiclassical = − (γ̄i − x̄)e2φi

1 + |γi − x|2e2φi
. (5.4)

For D-instantons, the boundary of the worldsheet cannot fluctuate since there are Dirichlet

conditions in all directions. In this case we also find that the semiclassical expression (5.4)

agrees with the expression for Λ in [24], where it was found for a particular boundary

condition that near the boundary an operator Φ1, which is related to the operator Λ

by ∂x̄Λ = πΦ1, goes to a constant times 1/(1 + |x|2)2 as we approach the boundary12.

This leads to Λ → x̄/(1 + |x|2), which exactly agrees with our expression above for an

instanton positioned at γ = γ̄ = φ = 0, which is the instanton corresponding to the

boundary conditions discussed in [24] (other instantons can be generated from this by

SL(2) transformations). In the case of D0-branes, the boundary of the worldsheet can

fluctuate in at most one (timelike) direction. We expect this longitudinal fluctuation to be

cancelled by ghosts (and in the case of heavy winding mode exchange, to be suppressed

regardless).

For simplicity let us take the two boundaries at γi = γ̄i = 0 and place the D-branes at

points on S3 which are not fixed points of the isometries corresponding to J and J̃. Note

that by charge conservation along the diagram, q1 = −q2 = q, q̃1 = −q̃2 = q̃. Working at

first order in h̃, plugging (5.4) into (5.1), we obtain a contribution of the form

Aq,q̃ =
h̃

Q1Q5

∫
d2xqq̃

∣∣∣∣
x̄e2φ1

1 + |x|2e2φ1
− x̄e2φ2

1 + |x|2e2φ2

∣∣∣∣
2

G
(0)
q,q̃(θi, yi) (5.5)

to the annulus amplitude arising from closed strings exchanged with particular U(1) ×
U(1) charges (q, q̃), where G(0) gives the annulus contribution without our “double-trace”

insertion. The angular dependence of this contribution is of the form

ei(q1θ1+q̃1θ̃1)ei(q2θ2+q̃2 θ̃2) = eiq(θ1−θ2)eiq̃(θ̃1−θ̃2), (5.6)

12 In fact, in [24] various different possible boundary conditions were discussed, which give

somewhat different behaviors of Φ1 near the boundary. From an analysis of the symmetries of the

problem it seems clear that the form of Φ1 above must be the one corresponding to D-instantons,

though this is not what is claimed in [24].
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due to the wavefunctions of the closed strings at the two ends of the annulus. These

contributions (5.6) explicitly break the symmetry which would otherwise exist between

positive and negative values of (q, q̃). Note that in the absence of these contributions (for

instance, if θ1 = θ2 or θ̃1 = θ̃2), the contributions from positive and negative q, q̃ in (5.5)

would cancel when we sum over the different charge sectors.

The x integral in (5.5) can be performed, yielding the result

Aq,q̃ =
h̃G

(0)
q,q̃

Q1Q5
qq̃
(
−2 + 2(φ1 − φ2) coth(φ1 − φ2)

)
. (5.7)

For fixed nonzero separations θ12, θ̃12, this contribution survives the sum over q, q̃. This

result constitutes a contribution to the force between D-branes (or in the D-instanton

case, to the instanton action) which is present in the bulk of AdS. Because of the power of

1/LAdS implicit in the φ12 contributions, with our current scalings this force disappears

in the flat space limit LAdS → ∞, which is the same limit in which the AdS3-induced

tadpoles for the positions of the D-branes disappear. It therefore agrees nicely with the

type of contribution expected from the CFT side. In the next section we will discuss

another scaling for h̃ in which these contributions in fact survive in the flat space limit.

We can similarly calculate contributions from the other diagrams at order h̃g2
s , in-

volving two annuli connected by the deformation. For the D-instanton case, this leads to

a similar contribution to (5.7); now we have four charges characterizing the diagram, (q, q̃)

flowing through one annulus and (q′, q̃′) flowing through the other, and the result is

Aq,q̃,q′,q̃′ =
h̃G

(0)
q,q̃G

(0)
q′,q̃′

Q1Q5
(qq̃′ + q′q̃)

(
−2 + 2(φ1 − φ2) coth(φ1 − φ2)

)
. (5.8)

These contributions thus give different φ, γ, γ̄, θ, θ̃-dependence than the one we calculated

above.

A very similar calculation predicts the lifting of the worldvolume fermion zero modes

(Goldstinos) of the pair of D-branes. Before our “double-trace” deformation is turned on,

space-time supersymmetry (in the absence of D-branes) is unbroken and the system of

D-branes sits in a long multiplet and has 16 fermionic zero modes which are responsible

for creating its superpartners. Let us denote the fermion zero modes on the i’th brane

χi, χ̄i. Before the “double-trace” deformation, the quadratic terms for these fields on the

worldvolume of the pair of branes are of the form

(χ̄1 − χ̄2)(χ1 − χ2), (5.9)
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Figure 5: Annulus contribution to the mass of D-brane worldvolume
fermions at order h̃g2

s .

so that the overall combinations χ1 + χ2 are massless13. The issue is then whether the

contributions in figure 5, which are the leading corrections to the fermion masses, produce

the same combination of quadratic terms, preserving the masslessness of χ1 +χ2, or not. It

is easy to convince oneself that there is no reason why the order h̃ amplitude should produce

a result proportional to the combination (5.9). This is because the charges propagating in

the closed string channel of the diagram are different for diagrams with one fermion on each

boundary (which contribute masses χ̄1χ2, χ̄2χ1) relative to those with two fermions on a

13 We are being schematic here, and ignoring the various indices of the fermions and the de-

pendence of the massless combinations on the positions of the D-branes.
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single boundary (which contribute masses χ̄1χ1, χ̄2χ2). The first two diagrams in figure 5,

with two fermions inserted at a single boundary of the annulus, yield a contribution of the

form (5.5) with a sum over integer q, q̃. The last two, with fermions on different boundaries,

have fermionic closed strings propagating in the diagram, so (when the deformation involves

the U(1)R currents) they involve a sum over half-integer q, q̃. Therefore, we do not expect

the combination (5.9) where the two types of diagrams are weighted the same to persist

at order h̃, and we expect all fermion zero modes to be lifted.

Thus, we have determined a bulk supersymmetry breaking effect of our NLST de-

formation in this system, at the level of forces between D-branes in the theory and their

worldvolume action.

5.2. Nonperturbative Nonrenormalization in Nonsupersymmetric Non-local String Theory

As we explained above, an interesting feature of our deformation is that it breaks

supersymmetry without introducing destabilizing tadpoles for moduli. From the field

theory side, this is an exact statement. It is interesting therefore to explore how this

phenomenon arises on the gravity side, given that we have just manifested bulk SUSY

breaking effects in the D-brane sector.

In order to do this, there is a step remaining in the calculation. D-branes contribute

to the “moduli potential” via virtual loops and instanton effects, which require a second

quantized spacetime description. In such a calculation, (5.7) can represent a correction

to the instanton action. The effect of the instanton on physical quantities in spacetime is

obtained by a spacetime path integral including integrals over all the fermionic and bosonic

zero modes. The fermionic zero modes, which before the deformation caused the amplitude

to vanish, are now lifted. However, the bosonic zero modes, including the positions θi, θ̃i,

remain. Although we get a contribution for each value of θi, θ̃i as discussed above, the

integral over these zero modes of (5.7) cancels due to the phases (5.6). Similarly, the

diagrams we computed in (5.8) cancel after integration over the positions unless q = −q ′

and q̃ = −q̃′, and the remaining amplitudes cancel when we sum over the possible values

of q because of a cancellation between positive and negative q’s.

At this order, this provides a satisfying resolution to the problem of how the gravity

side manages to avoid generating a “moduli potential” despite the supersymmetry breaking

introduced by the deformation (and the absence of fermion zero modes). The D-branes ex-

perience non-local SUSY breaking forces in the bulk, but these effects cancel in computing
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their virtual and instantonic contributions to other physical observables via a cancellation

in the integration over bosonic zero modes θ, θ̃.

We can apply this result from the D-brane sector to get more intuition, at least heuris-

tically, for the cancellation of the “moduli potential” in the closed string sector discussed

in §3.2. A diagram with charged closed strings running in loops would naively seem to con-

tribute to the “moduli potential” once the deformation which splits their masses according

to (2.11) is turned on. However, at the worldsheet level we have seen that semiclassi-

cally (in Euclidean space) the vertex operators K, K̃ localize on boundaries and charged

vertex operator insertions, introducing factors of the form (5.1) into the contributions of

individual worldsheets with charges q, q̃ propagating from boundaries or vertex operator

insertions. The moduli are uncharged, so from the worldsheet point of view it is clear that

the closed string “moduli potential” still cancels also after the deformation.

...

...

Figure 6: Degenerating Riemann surface contributing cancelling contribu-
tions to the “moduli potential”.

However, we can dissect the closed string diagrams in a way that provides a little more

intuition for how the naive spacetime intuition fails in this non-local theory. Consider a

Riemann surface Σ which has degenerated into separate Riemann surfaces Σi connected

by a set of thin tubes, as in figure 6. The ends of the tubes can be approximated by local

operator insertions Tij(z, z̄) on the Σi. The K and K̃ insertions on each Σi then localize

on the insertions Tij , and for diagrams in which the closed strings propagating in the long

thin tubes are charged, one gets a contribution from this.

Semiclassically, at order h̃, one therefore gets an insertion of the form (5.1) where

the Λi, Λ̄j ’s are the values of Λ, Λ̄ at the positions of the ends of the long thin tubes.

Generically, a semiclassical analysis will not be valid, but in some circumstances (such as

when the strings propagating in the Σi are very heavy from say winding or momentum
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along the T 4) it will be. In any case it gives a useful heuristic picture of how cancellations

might occur in spacetime similarly to the case of D-branes. Namely, the contribution to

the “moduli potential” again involves integrating over the positions θ, θ̃ of the insertion

points of the tubes, giving a cancellation at order h̃.

It is not obvious from the point of view described in this section what happens to the

D-brane corrections to the “moduli potential” on the gravity side at higher orders in h̃ or in

gs. The field theory side again predicts no contributions to the “moduli potential”. There

are several diagrams at order h̃2 which must therefore cancel if the duality is correct.

These cancellations may be nontrivial, analogous to two and higher loop cancellations

of protected quantities in supersymmetric theories which do not follow from any simple

counting of Bose-Fermi degeneracies. In our case, the only symmetry principle we have

so far identified to enforce the cancellation is the duality (namely, the exact marginality

of the deformation on the field theory side), and it would be nice to obtain a more direct

argument applicable for arbitrary h̃ on the gravity side.

6. The Flat Space Limit

It is interesting to contemplate NLST’s arising in backgrounds other than AdS. One

way to try to construct such backgrounds is to consider the flat space limit of the AdS

realizations we have so far. It seems that we should not expect such a limit to make

sense, since our deformation is maximally non-local on the S3, and induces correlations at

distances of the order of the AdS scale that go to infinity in the flat limit, leading to failure

of the standard conditions for unitarity. This is related to the fact that in taking the flat

limit one focuses on one small region of the S3, and the other regions which are correlated

with it in the original theory go off to infinity. In this section we will show that there

is a scaling of h̃ which gives finite contributions when one takes the LAdS/ls → ∞ flat

space limit of the results derived in the previous section, and also gives a finite non-local

deformation of the worldsheet action in the same limit. However, we have not been able

to find sensible vertex operators in the resulting theory, so it is not clear if the flat space

limit defines a sensible (unitary) NLST or not.

6.1. Definition of the Flat Space Limit

The flat space limit of AdS3 backgrounds with NS-NS charges involves taking Q1

and Q5 to infinity with a fixed ratio Q5/Q1 = g2
6. Since the AdS3 string metric goes as
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ds2 = Q5(dφ2 + e2φdγdγ̄), the relation between φ and a flat space coordinate Xφ is of

the form φ ' Xφ/
√
Q5. Thus, if we wish to keep Xφ constant (which is the simplest

possibility) we need to take φ → 0 when we take the flat space limit. Similarly, when we

expand around some particular generic point on AdS3×S3, the angular coordinates on the

S3 are related to flat space coordinates by θ ' Xθ/
√
Q5, θ̃ ' Xθ̃/

√
Q5, and the charges

q, q̃ become momenta p, p̃ in the Xθ,Xθ̃ directions, where p = q/
√
Q5, p̃ = q̃/

√
Q5.

Consider for example (5.7). In the flat space limit this result reduces to

h̃

Q1Q5
q1q̃1G0

4

3
(φ1 − φ2)2 =

h̃

Q1Q5
p1p̃1G0

4

3
(Xφ1 −Xφ2)2. (6.1)

Therefore if h̃ is constant, independent of Q5, then this effect disappears in the limit (we

are assuming that the amplitude G0 before the deformation has a finite flat-space limit).

We want the effect to actually depend in the flat space limit only on g2
6 = Q5/Q1. Thus,

we need to take h̃→∞ as

h̃ = h̃0Q
2
5, (6.2)

where h̃0 is constant, and then we get a finite surviving contribution in this limit.

Let us denote the position of one brane by X and the other by Y . Then, because of

the factors (5.6) and (6.1), the order h̃ contribution to the annulus diagram for a particular

closed string s exchanged in the flat space limit is proportional to

∂Xθ∂Xθ̃Ds(X − Y ), (6.3)

where Ds(X−Y ) is the contribution of this mode to the exchange force and we only wrote

down the dependence on Xθ,Xθ̃ (for a graviton exchange diagram Ds is the position-space

propagator between the D-branes). In the flat space limit, the sum over charges q, q̃ turns

into a continuous integral over momenta p, p̃ in the Xθ,Xθ̃ directions. This washes out

the supersymmetry breaking effects, which arise from the distinction between sums over

q, q̃ ∈ ZZ and sums over q, q̃ ∈ ZZ + 1/2. So the force between flat space BPS branes will

cancel when all the contributions are added in (since the added contributions will still be

supersymmetric), but for branes and anti-branes the force discussed above will persist in

the limit.

It is instructive to spell out more explicitly the form of the vertex K(x) appearing in

the deformation (2.20) in the flat space limit. Taking the limit as in (6.2), with h̃ scaling

as Q2
5, the deformation is

δSws = h̃0g
2
6

∫
d2xK(x)K̃(x̄). (6.4)
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Taking the limit as above, one finds (from (2.18) and (2.19))

K(x) → 1

π

∫
d2z∂zXθ

[ −2x̄

(1 + |x|2)2
∂z̄Xφ +

1

(1 + |x|2)2
∂z̄Xγ̄ −

x̄2

(1 + |x|2)2
∂z̄Xγ

]
, (6.5)

where Xφ =
√
Q5φ,Xγ =

√
Q5γ,Xγ̄ =

√
Q5γ̄ are the flat space coordinates descending

from the AdS3 coordinates as discussed above, and similarly for K̃(x̄). This linear com-

bination of ∂z̄X
µ descends from a longitudinal (formally pure gauge) vector potential in

AdS3, and does not have fermionic pieces as a result14. In the flat space limit, K(x) is an

integrated physical vertex operator for a tensor field in spacetime at zero momentum.

Plugging (6.5) into (6.4) and performing the integral over x, we obtain

δSws ∝ h̃0g
2
6

∫
d2z1

∫
d2z2

[
2
(
∂z1Xθ∂z̄1Xφ

)(
∂z̄2Xθ̃∂z2Xφ

)

+
(
∂z1Xθ∂z̄1Xγ̄

)(
∂z̄2Xθ̃∂z2Xγ

)
+
(
∂z1Xθ∂z̄1Xγ

)(
∂z̄2Xθ̃∂z2Xγ̄

)]
.

(6.6)

Note that the coefficients in front of the three terms are exactly those which give an SO(3)

rotational invariance in the Xφ,Xγ ,Xγ̄ directions, as expected in the flat space limit (in

the Lorentzian case this will become SO(1, 2)).

Thus we obtain a deformation of the general form (1.1) which persists in flat space.

The deformation we have discovered is very simple: it consists of a sum of bilocal products

of linear combinations of zero-momentum off-diagonal graviton and NS B-field vertex op-

erators. Since they are total derivatives, these vertex operators localize to the boundaries

of the worldsheet or to other operator insertions. The NS B-field decouples from closed

strings, and the off-diagonal metric couples to modes with momentum along the Xθ and

Xθ̃ directions.

6.2. Observables in the Flat Space Limit ?

We would like to study whether the theory we obtain in this limit is sensible. To do so

it is important to formulate and study the behavior of physical observables in this theory.

Because of the relative simplicity of the theory (6.6), we can investigate this question rather

explicitly. We will consider two types of candidate observables, using two techniques for

analyzing the deformed theory. The first arises by considering familiar flat space vertex

operators inserted into the path integral with the bilocal contribution to the action (6.6).

14 We thank D. Kutasov for a discussion on this point.
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The second, described in §6.3, arises by considering a different but equivalent presentation

of the theory, in terms of a Lagrange multiplier which renders the action Gaussian, and

considering a particular set of non-local insertions in the path integral which are natural in

this formalism. In both cases, because of the non-locality of the underlying theory, we will

find in the end no separately renormalizable constituents in a given amplitude; instead

we will be left with a rather unpredictive situation in which each amplitude must be

independently renormalized. This is presumably related to the problems one expects with

unitarity when taking a limit which keeps only a region much smaller than the non-locality

scale.

In the first approach we calculate correlation functions of vertex operators in the flat

space limit by inserting powers of (6.6) to obtain the effect of our deformation, and we

find that this leads to divergences. Consider for example a correlator of n vertex operators

Vpj ∼ eipj·X . Let us compute the order h̃0 correction to this correlator coming from the

first term of our deformation (6.6). It is given by

h̃0

∫ n∏

k=1

d2wkd
2z1d

2z2〈
n∏

j=1

eipj ·X(wj,w̄j)∂Xθ ∂̄Xφ(z1, z̄1)∂Xφ∂̄Xθ̃(z2, z̄2)〉 ∼

∼ h̃0

∫ n∏

k=1

d2wkd
2z1d

2z2

n∏

i,j=1

|wij|pi·pj/2·

·
[ n∑

i=1

pθi
z1 −wi

][ n∑

i=1

pφi
z̄1 − w̄i

][ n∑

i=1

pφi
z2 − wi

][ n∑

i=1

pθ̃i
z̄2 − w̄i

]
.

(6.7)

The last four factors come from contractions of the zero-momentum vertex operators in

the deformation with those of the n vertex operators whose correlation function we are

calculating. The integrals over z1 and z2 diverge when a zero-momentum vertex operator

hits an eipX on the worldsheet. In ordinary flat space string theory, this divergence is a

standard pole in the S-matrix arising from the fact that when a zero-momentum particle

combines with a momentum p particle to produce a momentum p particle, the latter is still

on-shell and gives a pole (this can be seen explicitly by continuing the zero momentum

vertex operators to nonzero momentum q and expanding in small q). We would like

to understand the meaning of this divergence in our application, where this correlator

describes the shift of the correlation function of vertex operators Vpi under the NLST

deformation.

Let us first regularize this divergence. If we put a short-distance cutoff on the world-
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sheet analogous to (3.5) in the AdS case, namely letting other operators approach only to

a distance aj from Vj , we find that we need to redefine :

[∏

j

∫
d2wjVj(wj)

]
→
[∏

j

∫
d2wjVj(wj)

](
1−
∑

l,k

h̃0g
2
6p
θ
l p
φ
l log|ãl|2pθ̃kp

φ
k log|ãk|2

)
, (6.8)

where ã is proportional to a and absorbs some subleading contributions. This shift cancels

the divergence above at leading order in h̃0. Note that the shift we need for the product of

vertex operators is not equal to the product of the shifts we need for each vertex operator

separately. This would not occur in a local worldsheet string theory. However, since

in a NLST the worldsheet Lagrangian is non-local, it may be necessary to consider as

observables the full set of multilocal excitations of the theory, since attempting to consider

only local vertex operators would generically fail under quantum corrections.

Unfortunately, this prescription appears to render the theory unpredictive as far as

these observables go, since one must renormalize separately each physical process rather

than obtaining predictions for physical processes arising from a finite number of renormal-

izations of constituent fields and couplings. It is therefore unclear whether the theory is

renormalizable in the appropriate sense, because each combination of vertex operators is a

new multilocal operator in the theory and one therefore has to input an infinite amount of

information to define the set of observables. Because of this issue, our results on the flat

space limit are inconclusive (though we think intriguing) and we hope to improve our un-

derstanding of the proper physical constraints on this sort of theory in general backgrounds

in future work.

We started with a theory in which the non-locality scale is of the order of the AdS

curvature radius LAdS, and this goes to infinity in the flat space limit. It would be very

interesting to figure out what (if any) are the appropriate observables in such a non-local

theory, that can give meaningful physical amplitudes. Of course it is worth emphasizing

that with h̃ scaling independently of Q5, we would obtain conventional flat space string

theory in the limit. In usual flat space string theory we can define observables by S-

matrix elements describing particles which are much farther from each other than the

characteristic non-locality scale. These observables give well-defined correlation functions.

In the flat space NLST’s we constructed in this section we have seen that this fails, so some

other types of observables are needed in order to get physical predictions. In the AdS case

the consistency of our NLST constructions was guaranteed by the consistency of the dual

conformal field theory, but it is not clear what are the consistency conditions for flat space
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NLST’s. Thus, in the absence of predictions for physical observables we cannot say if the

theories we constructed in this section are consistent (e.g. if they are unitary) or not.

Although they may render the question of the existence of a useful flat space limit

questionable, the above divergences do teach us something significant about the AdS3

model that is our main focus in this paper. In §3, we saw that the vertex operators

involved in Euclidean closed string amplitudes localize to the boundary of AdS. The

nontrivial (divergent) answers we find in the closed string sector after taking the flat space

limit here indicate that there was bulk physics in the closed string sector in AdS. In

particular, as we have seen in some detail, the flat space limit does not leave us with a

consistent S-matrix, which should have been the case if all of the effects of the deformation

were at the boundary. This provides evidence that the effects of the deformation, and in

particular the non-locality of the theory, permeate the bulk of AdS space, as expected from

the marginality of the deformation, despite the fact that we can write the deformation as

a boundary term (4.1).

Note from (6.7) that we see the non-local effects in the flat space limit only for corre-

lators including vertex operators with nonzero momentum along what used to be the S3

directions: pθ 6= 0 6= pθ̃. This is consistent with our expectations from the form of the

deformation (4.1) that the 6d theory is non-local even though the effect on the 3d action

is a local boundary term.

6.3. Another Set of Non-local Operators in NLST

Despite the above complications, one might hope that the physics simplifies in terms

of some other natural subset of observables. There is a way of presenting the theory (6.6)

(and more generally the theories (1.1)) which simplifies the analysis considerably, and

which suggests another set of multilocal operators in the theory.

Consider the worldsheet path integral for the theory (6.6), written as a Gaussian using

Lagrange multipliers λ (and ignoring the fermionic fields which play no role) :

ZNLST =

∫
dλ

∫
[DX]e−

∫
d2z∂XµGµν(λ)∂̄Xν

e−
1

2H̃
λθφλθ̃φ− 1

H̃
(λθγ̄λθ̃γ+λθγλθ̃γ̄), (6.9)

where H̃ ∝ h̃0g
2
6 and where

Gµν(λ)dxµdxν = ηµνdx
µdxν + λθφdx

θdxφ + . . . , (6.10)

where . . . are other similar terms involving the other λ’s. By integrating over λ one can see

that equation (6.9) gives a description of the theory equivalent to the bilocal description of
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(6.6), but now the worldsheet path integral is Gaussian. This is similar to what arises in

wormhole physics [31,32,33] and it would be interesting to explore further the conceptual

interpretation of this mathematical trick.

This method seems potentially useful, particularly in our flat space limit where it

renders the partition function Gaussian. As discussed in section 5 of [1] one can also

employ this method in the AdS/CFT case, but generically in AdS/CFT it is not trivial

to implement either on the gravity side or on the field theory side of the correspondence.

Naively it simplifies the analysis to one involving only “single-trace” deformations, but

in fact this is complicated on both sides of the duality. On the field theory side, the

“single-trace” operators in question are relevant operators, and one would be attempting

to integrate over the corresponding scale-dependent couplings. This involves a sum over

field theories with different parameters, whose physical interpretation is unclear. On the

gravity side, these relevant perturbations deform the geometry dramatically. In terms of

the worldsheet string theory, the BRST-invariance condition for vertex operators changes

as a function of λ, an issue we will also encounter in our flat space analysis here.

Considering just the closed string sector, which feels only the symmetric part of Gµν ,

we can change variables to Y µ(z, z̄) ≡ Eµν (λ)Xν (z, z̄), where the matrix E is defined by

Eρµ(λ)ηρσE
σ
ν (λ) = Gµν(λ). Then, the path integral becomes

∫
dλ

∫
[DY ]

∏

z

[detE(λ)]−1e−
1

2H̃
λθφλθ̃φ− 1

H̃
(λθγ̄λθ̃γ+λθγλθ̃γ̄)e

−
∫
d2z∂Y µηµν∂̄Y

ν

. (6.11)

Here the λ dependence is only in the Jacobian (and in the Gaussian), which is in this flat

space situation independent of the embedding coordinates Y (z, z̄).

Now let us consider observables (correlation functions of vertex operators). A new set

of multilocal operators in the X variables are the simple operators

Vk[Y ] ≡ eik·Y . (6.12)

In terms of X, these vertex operators vary with λ so as to preserve conformal invariance

in the path integral for arbitrary λ. We can insert these into the integrand of (6.11), and

divide by the vacuum path integral (6.11) to normalize. This reproduces the correlators

of momentum modes for ordinary flat space string theory.

These momentum modes (6.12) of Y are highly non-local when expressed in terms

of X (in the original formulation of the theory without λ). In general, when we map a

product of the Vk[Y ] operators to the X variables it will not map into the product of
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the maps of these operators. So in terms of X there is still no S-matrix with amplitudes

determined by renormalizations of operators describing separated excitations. However it

is true here that there is a set of multilocal amplitudes (insertions of products of operators

(6.12)) which are naturally determined by the standard renormalizations of (6.12) in the

Y variables, and which produce results isomorphic to the flat space S-matrix.

A similar analysis using the (6.9) prescription can be performed in AdS3 × S3 × T 4,

with similar results arising at leading order in h̃. The observables analogous to (6.12)

there reproduce the standard AdS correlators in the original undeformed supersymmetric

background. Again they are non-local and non-locally renormalized in terms of the physical

variables φ, γ, γ̄, θ, θ̃. The meaning of these observables is unclear, since the physics of the

CFT does seem to depend on h̃. It is tempting to speculate that these objects could

realize a hidden non-local supersymmetry in the system which explains the vanishing of

the “moduli potential”, while as we have seen the physics in terms of the ordinary variables

exhibits broken supersymmetry.

In general, it is important to clarify what are the conditions for physically consistent

NLST models, both for conceptual interest and with regard to the potential for applica-

tions. In particular, it would be very interesting to develop more realistic models that

have the exact stability after supersymmetry breaking that we have found in the AdS3

backgrounds studied in this paper.
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