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Abstract 

 The BaBar experiment at the Stanford Linear 
Accelerator Center (SLAC) is designed to perform a high 
precision investigation of the decays of the B-meson 
produced from electron-positron interactions. The 
experiment, started in May 1999, will generate 
approximately 300TB/year of data for 10 years. All of the 
data will reside in Objectivity databases accessible via the 
Advanced Multi-threaded Server (AMS). To date, over 
70TB of data have been placed in Objectivity/DB, making 
it one of the largest databases in the world. Providing 
access to such a large quantity of data through a database 
server is a daunting task. A full-scale testbed environment 
had to be developed to tune various software parameters 
and a fundamental change had to occur in the AMS 
architecture to allow it to scale past several hundred 
terabytes of data. Additionally, several protocol 
extensions had to be implemented to provide practical 
access to large quantities of data. This paper will describe 
the design of the database and the changes that we needed 
to make in the AMS for scalability reasons and how the 
lessons we learned would be applicable to virtually any 
kind of database server seeking to operate in the Petabyte 
region. 
 

1 The BABAR project 

 The High Energy Physics (HEP) community consists 
of many thousands of physicists and engineers around the 
world [6]. One of its largest HEP experiments, that has 
just entered production is called BABAR, and is 
headquartered at the Stanford Linear Accelerator Center 
(SLAC) in California. A central theme of its research 
program is detailed study of the difference between matter 
and antimatter. It was launched in May ’99 and is expected 
to continue running for at least the next 10 years. The 
project was constructed and is managed by a large 
international collaboration of physicists and engineers 
from 10 countries. 

The heart of the experiment is the BABAR detector 
attached to the PEP II linear accelerator, both located at 
SLAC. The detector has been designed to generate data at 
a rate of about 32MB/sec (or 3*108 physics events per year, 
or 100 events/sec). Other sources of persistent data include 
simulation processes as well as reconstruction and analysis 

jobs run by physicists. The estimated size of  
1-year’s worth of real and simulated data is 300TB, 
significantly exceeding the data generated by any other 
HEP project launched so far. 
 The data coming from the detector is stored 
persistently, and then "reconstructed" in near real-time: 
usually within eight hours of the data's collection. 
Reconstruction runs asynchronously with data taking on 
multiple computing nodes in a fully controlled 
environment. The output from the reconstruction process 
is then passed to physicists, who then analyze the data. 
Data analysis is performed in a non-controlled way, where 
physicists are allowed to read the data at any time and 
generate new persistent data. While real data is coming 
from the detector, simulated data is generated concurrently 
by multiple simulation processes and later compared with 
the outcome from the analysis jobs. All the data is kept 
locally at SLAC, mostly on tapes; part of the data is 
copied to several external institutes in Europe. 
 The software responsible for handling the BABAR data 
is mostly a homegrown system, exceeding 2.5 million of 
lines of code. Its capability spans many independent tasks, 
including:  
� storing live data (Data Acquisition System), 
� capturing conditions and configuration of the detector, 
� performing data reconstruction, data analysis and 

simulation, and 
� providing fast access to the data for over a hundred 

simultaneous users, often working remotely. 
 All components of the BABAR software, often quite 
independent, have one piece of software in common: the 
tier providing data persistency. Data access is handled by 
the BABAR Database System. Clearly, handling multiple 
terabytes of data is non-trivial; the software has to be very 
robust, well optimized, and it requires a lot of computing 
power. The BABAR software is already in production since 
the first data was taken in May’99, but it is still not 
completely optimized. The process of optimizing the 
system: choosing the right hardware configuration and 
tuning the software is an ongoing and very lively activity 
inside the BABAR Database Group.  Detailed information 
about the BABAR Project can be found in [2]. 
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2 The BABAR database system 

 The primary goal of the BABAR Database System is to 
provide data persistency for the BABAR experiment. In 
order to fulfil stringent project requirements, including: 
� robustness: continuous real-time data taking 
� high throughput: >30MB/sec 
� concurrency:  >100 simultaneous users 
� data distribution: 10 countries, 3 continents 
� heterogeneous environment: Sun Solaris, OSF, Linux, 

HP, AIX,  
� very complex schema: ~600 persistent classes 
the system has no choice but to use cutting-edge, but 
somewhat uncertain, database technology. 
 Undoubtedly, commercial products introduce many 
new features and relieve the burden of writing low-level 
code. At the same time they always add further restrictions 
and complications, which rarely can be ignored. Although 
BABAR software is mostly homegrown, the underlying 
database and mass storage systems are both commercial 
products. The BABAR Database System is based on a 
combination of: 
� an Object Oriented Database System (ODBMS): 

Objectivity/DB, and 
� High Performance Storage System (HPSS). 
An Objectivity/DB based solution has been adopted at 
BABAR 5 years ago. During that time, Objectivity/DB 
appeared (and it still does) to be the only available OO 
system capable of scaling beyond a petabyte and fulfilling 
the other, very stringent requirements. Increasingly, many 
HEP experiments are using, or are going to use 
Objectivity/DB. However, it is worth mentioning, that 
BABAR was the first high-data volume experiment, which 
used Objectivity/DB in production.  
 In order to provide sufficient storage to physically 
store the databases, the BABAR System employs the HPSS 
Mass Storage System. With this system, databases can 
reside on disk while being read or written, or on 
inexpensive tape when they are inactive. Unfortunately, at 
the time HPSS was selected, it was available only on IBM 
platforms while Sun Solaris was the preferred BABAR 
platform. Since then, SLAC engineers ported the data 
transfer components of HPSS to Solaris so that the 
database performance characteristics could be maintained. 

3 Structuring the data 

3.1 Objectivity/DB storage hierarchy 

 The highest level in the Objectivity/DB logical storage 
hierarchy is the federated database, physically mapped by 
a single file containing a schema and a catalog of 
databases. Each database maps to a physical file. Each file 
consists of one or more logical structures called 
containers, which in turn contain basic persistent objects. 
Containers determine the physical clustering of data, and 
locking granularity. Federation integrity is guaranteed by 

the Objectivity/DB lock server process, which maintains 
transaction and lock tables. Usually there is only one lock 
server per federation, although Objectivity gives a choice 
of running more (Objectivity/DB Fault Tolerance Option). 
See [13] for further details. 

3.2 Multi-federation environment 

 Within BABAR, the Objectivity/DB System is used for 
keeping virtually all the experiment’s persistent data. 
Various parts of the experiment have quite different, often 
almost opposite, sets of requirements: 
1. Data Acquisition System (DAQ) demands almost 

immediate response time, and 24x7 reliability. In 
return its other requirements like level of concurrency 
or data volume are not very high. 

2. Online Prompt Reconstruction (OPR) requires very 
high level of concurrency currently reaching as many 
as 200 client nodes writing simultaneously to the same 
set of databases. Fortunately it runs in a completely 
controlled environment, which makes the maintenance 
much easier. 

3. Data Analysis is a world of physicists, who run their 
jobs in a completely unpredictable way; with no 
discernable simple pattern. The concurrency level is 
high, as well as the expected reliability; requiring 
scheduled database outages to perform necessary 
maintenance. 

 In order to provide everybody with the service they 
expect, the BABAR Database System has been broken into 
several independent pieces, and each major task such as 
DAQ, OPR or analysis has been assigned an independent 
federation. Each federation has been assigned a separate 
set of servers, including data servers and lock servers. 
Since locking is intrinsic to a federation, such a 
configuration entirely removes cross-federation 
dependencies. In addition there are multiple test 
federation. 
 In practice, the federations are not completely 
independent; some data still need to be shared/exchanged 
between them. Internally within SLAC data distribution 
strategy takes advantage of the HPSS catalog in 
minimizing the actual copying of databases between 
federations. For example, once a database generated by 
OPR has been migrated to HPSS, the catalog for the 
downstream federation can be updated, without the 
necessity for physically copying of the database between 
the appropriate servers. The staging procedures then 
support transfer of a database from tape to disk. 
 

3.3 Hardware 

Bulk of BABAR production runs on Sun machine. Some 
small external institutes use different platforms, namely 
Linux or OSF.  
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 The Veritas File System (VFS) is used on all data 
servers and some metadata servers, depending on access 
patterns and the quantity of data. VFS allows to build a 
large file system (e.g. 500 or 800TB) from many single 
disks. Maintenance of several large file systems is 
significantly simpler then hundreds of small ones. 
Additionally, the VFS is a journaled file system so that 
system reboot time is minimized after an outage; critical 
when using large file systems. 

4 Tuning the system - achieving scalability 

4.1 Unit of transfer 

 Tuning the system in order to achieve design 
scalability began long before the project officially started. 
One of the first important decisions impacting the 
performance was choosing a correct page size, the unit of 
disk and network transfer in Objectivity/DB. It is one of 
the very few parameters, which cannot be altered after a 
federation has been created. Currently Objectivity/DB 
restricts that value to be within 512 bytes and 64KB range. 
 Unfortunately, HPSS performs most efficiently with 
much larger transfer sizes – typically in the MB range. 
This is at conflict with many database systems, which 
prefer much smaller transfers, usually below 64KB. The 
solution that has been adopted is to “disk cache” files 
between the Objectivity/DB servers and HPSS. Transfers 
in and out of HPSS are performed in large chunks and thus 
we are able to get the expected performance out of the 
HPSS, and still use small transfer units for 
Objectivity/DB, which sees only the disk-resident files 
and is unaware of the HPSS mechanism behind.1 
 Clearly a too small page size results in many transfers, 
while a too large page size might increase the load on the 
network and the amount of unnecessary transferred data. 
After many tests, which were simulating behavior of real 
applications, it has been shown that on a Sun Solaris 
platform (the major BABAR production platform) a 16KB 
page size outperforms other choices almost by the factor 
of two. These tests were run before the start of the 
experiment, but after many months of running large-scale 
tests, we are starting to consider using a larger page size. 
We believe it might give some benefits we did not foresee 
in the past (see also discussion about the Veritas File 
System below). There are discussions in progress with 
Objectivity/DB, whether it would be possible to remove 
the 64K restriction. We probably might still be able to 
convert our federations to a larger page size by copying all 
of the data -- a very expensive process. Most likely we 
would try using a size in the range 256KB – 1MB. Of 
course, the conversion may not be feasible once we will 
have too much data, e.g. more then 1PB. 

                                                           
1 Objectivity/DB clients are always writing to the disk cache, and are not 
aware of HPSS. A specialized server, written at SLAC, controls transfers 
between the disk cache and the HPSS tapes.  

4.2 Testbed 

 Intensive work on improving performance began 
shortly after the project officially started. After more then 
half a year of testing and tuning the system, it is still an 
on-going and very live activity within BABAR Database 
Group. 
 The part of the system, which required tuning the 
most, was Online Prompt Reconstruction. According to 
the design, the ultimate goal was to reconstruct 100 
events/sec. When the BABAR project was launched, in May 
’99, the OPR software was able to achieve only 7-8 
events/sec, using 50 computing nodes. All attempts to 
increase the throughput by increasing the number of 
processing nodes were ending up with an even slower 
processing rate, mostly due to lock congestion, and other 
problems, waiting to be uncovered. The OPR was also the 
most convenient part of the system to focus the tests on, 
since it runs in a fully controlled environment. It was clear 
from the beginning, that once we learn where the 
problems were within OPR and understood the major 
bottlenecks, it would be relatively easy to apply that 
knowledge to the remaining parts of the system. 
 Two month after the project had officially started, a 
dedicated test bed was established. The goal was to 
improve the performance, and speed up the system as 
much as possible. A dedicated batch system consisting of 
100 processing nodes and several server nodes made up 
the testbed.2 All machines were of the same class as those 
used in production. Another 100-240 nodes were 
occasionally “borrowed” from the production farm 
augmenting the test farm to 340 nodes, whenever needed 
for an intensive test. 

4.3 Software optimization 

 Multiple optimization improvements were made inside 
our software. Running the tests and profiling the 
applications helped us to learn where most of the time is 
spent, and which pieces of the software need 
improvement. For instance we learned to avoid naming 
containers (whenever we can, of course). Naming a 
container involves an extra lock on a shared resource, and 
therefore can lead to significant performance loss, 
especially when thousands of containers are created in a 
relatively short period of time. 
 Another noticeable improvement was observed when 
we started to transiently cache database identifiers within 
a job, rather then keep referring to them by name. 
Referring by name involves a name lookup in the large 
database catalog. In Objectivity, the client performs the 
look-up so that the whole catalog needs to be transferred 
to the client before the look-up can be done. Avoiding the 

                                                           
2 100 client nodes: Sun Ultra 5 machines, with 256MB real memory, 
running Sun Solaris 2.6, 2 main server nodes: Sun 4500, with 1GB real 
memory, also running Sun Solaris 2.6 
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whole operation multiple times led to a significant 
improvement. 

4.4 The tuning process 

The list of knobs we tried to twiddle is very long. 
Practically, we tried to estimate the influence of every 
adjustment, which could have an influence on 
performance/scalability. As one could imagine, the total 
number of all possible permutations is too large to be fully 
explored. Instead, we attempted to understand how each 
change influenced the throughput, and applied one 
improvement on top of the previous one, making 
additional adjustments. 

Below are the major changes that gave visible 
performance improvements. 
1. Increase hard and soft file descriptor limit on all 

machines running Objectivity/DB Data Servers. 
Objectivity/DB opens multiple TCP connections 
between each client and a data server. If hundreds of 
clients start to connect to a server, it quickly runs out 
of default system resources (the default limit of open 
file descriptors on Unix is 1K, we are currently using 
8K). 

2. Veritas read/write performance. Due to large number 
of database files, which are read/written 
simultaneously, disk access is essentially random. 
Random write performance of a single VFS seems to 
be limited to ~8MB/sec in the configuration we are 
using3. Random read performance is close to 4MB/sec. 
Both quoted numbers were confirmed by running 
many independent tests (for example with and without 
Objectivity/DB). Multiple attempts to tune the VFS 
did not succeed. Probably part of the problem is 
connected with the small unit transfer (we are using a 
16K page size).  

3. Increase number of data servers / file systems. 
Initially, while we started to run tests on 50 nodes, two 
data servers with one file system on each were able to 
serve all the clients. While we were increasing the 
number of nodes to 100, and then to 200, we had to 
add more file systems in order to be able to keep up 
with the data.  

4. Running multiple Objectivity/DB Data Servers per 
host. Until recently, the Objectivity/DB data server 
was a single-threaded process. Starting 4 servers 
instead of one gave a very significant performance 
boost. A major recent improvement was the release of 
a multi-threaded data server.  

5. Balancing data across multiple servers. It is important 
to put relatively the same load on each file system. By 
sorting data across file systems per type, we were able 
to improve both read and write performance. Because 
we are constantly changing configurations, we found 
this model a bit difficult to maintain (e.g. different data 

                                                           
3 For more details about the VFS configuration please refer to [17] 

types have different sizes, and the ratio between then is 
changing). We developed a new model, which allows 
us to balance the load based on clients, e.g. if data is 
written to 6 file systems, we are redirecting each 1/6 of 
clients to a separate file system. The new model 
simplifies the process of re-balancing the load 
significantly, especially when a new file system or a 
new set of clients is added to the system. 

6. Pre-sizing containers. Objectivity/DB gives multiple 
choices during the creation of containers, for example 
a user can specify the initial number of pages and/or 
container percentage growth. Creating containers close 
to their final size proved to be much better then 
starting off with a small container and increasing its 
size while it is being filled. The behavior is connected 
with the way Objectivity/DB extends containers and 
locks their internal structures. 

7. Cache size. Each client writes persistent data into 
databases, and occasionally commits transaction. Data 
is usually not written to disk immediately when the 
write occurs. Instead it is cached in client memory 
(Objectivity/DB cache) until the transaction is 
committed/aborted. If there is not enough space in the 
cache, some data has to be pushed to disk before the 
end of a transaction. If we create the cache large 
enough to hold all of the data written between 
transactions then actual physical writes occur only 
during a commit. We discovered this is a worthwhile 
optimization. Writing more data in one chunk is more 
efficient in terms of overall throughput of the system 
then writing data constantly in small pieces. On the 
other hand, if the cache is too large then cache look-up 
speed decreases, degrading overall performance. In 
effect, cache size depends on transaction length, 
described in the next point. 

8. Tuning & randomizing transaction length. Since we 
start all of the clients at the same time, the jobs tend to 
synchronize, and try to commit at the same time. Each 
commit is associated with a lot of data being 
transferred at one time and increased lock traffic. The 
only solution to that problem is to force jobs to do the 
commit asynchronously4. We are currently 
randomizing transaction granularities per client, each 
client is allowed to use value within +/-50% of 
preferred length.  

9. Dependencies on NFS/AFS. Although it is not directly 
a database issue, it is still worth mentioning that 
reducing dependencies on AFS or NFS brought a lot of 
benefits. Whenever one starts hundreds of clients, 
neither NFS nor AFS perform well. Using local file 
system is always preferred (if possible). 

                                                           
4 The formula used to pseudo-randomize transaction granularity: X +/- 
50% of (process ID%X), where X is the transaction granularity (in sec). 
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4.5 Physics analysis 

 Similar improvements are gradually being applied to 
physics analysis. Of particular importance is the 
combination of the number of database servers, the 
number of CPUs per server, and the number of file 
systems per server. Significant tune-ups have also been 
applied to the code. Performance optimizations in the 
analysis programs themselves have resulted in 
improvements from 35 events/sec to 2k events/sec for one 
particular benchmark where events are selected on the 
basis of so-called tag filters. 

5 Database internals 

 Objectivity/DB is an object-oriented database system. 
Data in C++ objects are grouped together on pages of up 
to 64K in size and written to disk into logical containers 
(the locking granularity) that are segments of a standard 
file. A file may contain up to 32,768 containers. Files are 
grouped together to form a federation. There can be up to 
32,7578 files in a single federation. A federation is 
essentially a single database in Objectivity/DB and 
applications, given the appropriate access permissions, can 
access any object in any file within a federation. 
 Access to files is via the operating system’s file system 
interface (i.e., native access), through the Network File 
System (NFS), or through a specialized file server called 
the Advanced Multi-threaded Server (AMS). A 
combination of methods may be used as long as any 
particular file is accessed through only one interface. 
 Each file is limited by the constraints imposed by the 
host operating system. For most systems, a database file 
can be 264 bytes in length. Thus, a complete database (i.e., 
single federation) can hold up to 280 bytes of directly 
addressable data, a prodigious amount of information. 
Because of the various supported access modes, such a 
large amount of information should be efficiently handled. 
 Unfortunately, while it is possible to create databases 
of such size, it is extremely difficult to access that amount 
of data using standard methods. First, file systems, or even 
combinations of file systems, cannot scale to 280 bytes. 
Secondly, spreading the data amongst many servers and 
using NFS to access the data is problematic since large-
scale NFS access does not perform sufficiently well. This 
leaves AMS access as the only viable alternative for such 
large databases.  
 The AMS is a specialized file server akin to an NFS 
server. A client makes a TCP connection to the AMS and 
then reads and writes database pages that can be up to 64K 
bytes in length. Unlike NFS, the AMS provides 
additionally functionality such as database replication and 
partitioning. While such functionality is not strictly 
necessary to support large databases; the protocol that the 
AMS uses is necessary. Unfortunately, the AMS suffers 
the same limitations as any file server; it is bound by the 

limits imposed by the underlying file system. If the file 
system cannot scale, the AMS cannot make up for it. 

With this in mind, we undertook a significant 
restructuring of the AMS to allow us to enhance it to the 
point that any constraints were due to the underlying 
operating system. Originally, the AMS was a single 
monolithic server, like many database servers today. It 
was clear that unless we were able to independently focus 
on the various aspects of a database server we would not 
be able to make scalability modifications. Thus, the first 
major change was to re-architect the server into three 
separate components: 
1. The AMS protocol layer, 
2. The Objectivity Open File System (OOFS) layer (the 

logical file system), 
3. The Objectivity Open Storage System (OOSS) (the 

physical file system). 
 The protocol layer is responsible for appropriately 
responding to requests using a highly efficient network 
protocol. The vast majority of requests require the server 
to read, write, or manipulate files. This is done through the 
OOFS that presents a logical file system to the protocol 
layer and is responsible for creating and deleting directory 
and file objects. The OOFS is a virtual file system and 
depends on the OOSS layer to actually implement a 
physical file system. From the OOFS perspective, the 
OOSS simply creates interface objects to directories and 
files. 

Having split the server into these three replaceable 
components allowed us to independently optimize each 
layer as well as try various file systems with different 
scalability and performance characteristics. The following 
sections explain the types of optimizations we performed 
in order to scale the system to be able to handle petabytes 
of data and hundreds of simultaneous users. 

5.1 Physical layer optimizations 

The most significant undertaking in the OOSS was the 
use of a Mass Storage System (MSS) to back-end a high 
performance file system. The implementation at SLAC 
used the High Performance Storage System (HPSS) as the 
MSS and the Veritas file system as the disk cache.  

The use of an MSS allowed us practically an unlimited 
amount of storage since any less-used databases would be 
automatically migrated to tape. Databases on tape would 
be migrated back into the file system, as needed. Thus, 
while the amount of online space was limited, the total 
amount of accessible space was practically unlimited. 
Since HPSS is capable of handling 264 bytes per file and 
over 232 files, it easily matched the limits imposed by 
Objectivity/DB,  

The Veritas file system allowed us to have multiple 
terabyte RAID caches so that we could always keep a 
sufficient amount of highly used data (i.e., the current 
database working set) online. Furthermore, Veritas has 
various performance options such as linear space pre-
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allocation to significantly speed access. A crucial aspect of 
the Veritas file system is its journaling feature, an absolute 
necessity when dealing with extremely large file systems. 
After an operating system failure, the file system need 
only scan a short log of a few megabytes to recover file 
system information; minimizing reboot time. 

We also implemented another critical optimization we 
call file descriptor partitioning. While subtle in nature it 
significantly reduces CPU utilization. In order to 
understand why this is the case it is necessary to consider 
what happens during the course of system operations. 

When a client makes a connection to the AMS, the 
server opens a network socket that causes the operating 
system to allocate a file descriptor in order to handle the 
socket. Practically all Unix operating systems allocate the 
lowest numbered file descriptor, and this is where the 
problem occurs. Typically, a client request will cause a 
file to be opened with the consequence of yet another file 
descriptor to be allocated for the file. The file remains 
open while the socket connection is used. This means that 
as the system runs, socket file descriptors are interleaved 
with socket file descriptors; at worst, the interleaving is 
one to one. When the server needs to wait for socket 
activity, only half of the file descriptors are eligible to be 
waited on. Thus, the system performs needless work of 
masking out interleaved non-socket file descriptors. This 
happens several hundred times a second as the server 
fields new network requests. 

File descriptor partitioning simply moves descriptors 
allocated to files to the top of the file descriptor 
numbering space. Then, all socket file descriptors are 
compacted in a sequential range at the low end of the 
numbering space. This greatly reduces the amount of 
processing needed to wait for network activity. The saved 
CPU time can be devoted to handling additional clients. 

5.2 Logical layer optimizations 

The logical layer is responsible for presenting a virtual 
file system to the protocol layer. This layer encompasses 
all file processing that does not involve the physical 
storage of data (e.g., performance monitoring and 
security). The layer provided many opportunities to 
enhance scalability without impacting the physical 
handling of the files nor the semantics of the database 
protocol. 

The most significant enhancement was file interface 
reuse. When a client opens a file, the OOFS requests that 
the OOSS supply an interface object to the file. In many 
cases, another client is already using the same file and, 
consequently, has an interface to it. With this in mind, the 
OOFS searches all allocated interfaces to see if an existing 
interface can be used for the new request. If a suitable one 
is found, it is reused. In practice, up to two interfaces may 
be allocated to a file: one for read and another for update. 
The appropriate interface is chosen based on the open 

mode requested by the client. An interface object is 
deleted only after all uses of the interface cease. 

File interface reuse allows the handling of a significant 
additional number of client requests because the memory 
load on the system is substantially decreased. 
Furthermore, it is less likely that the operating system’s 
file descriptor limit will be reached, thus enhancing 
scalability. 

Another enhancement is called redundant sync 
elimination. This is another subtle optimization that 
requires the consideration of a running system. When a 
large number of users are using the database, a large 
portion of those users may be updating a single file. These 
updates can occur in parallel because a single file may be 
composed of multiple containers and the locking 
granularity is container-based, parallel updates are 
allowed. When a client commits an update, the AMS is 
requested to perform a file synchronization to make sure 
that all data is written to disk before the transaction 
completes. In order to reduce system overhead, the OOFS 
tracks whether or not there has been an intervening write 
to the file since the last synchronization. If a write has 
been performed, the synchronization occurs. However, if 
no intervening write has been performed, which is likely 
when many users are updating the same file, the 
synchronization is skipped since it is not necessary. This 
optimization substantially reduces system overhead under 
heavy loads. 

The final optimization is called file interface time-out. 
This optimization has been used by many other databases 
to conserve system resources. Simply put, whenever an 
allocated interface object has not been used for a 
substantial amount of time (e.g., a user has stopped a 
program for a long time with the debugger), the OOFS 
will delete the interface object. The interface object will 
be automatically re-created when the next request for a file 
associated with a deleted interface object is received. This 
optimization is most useful for highly interactive clients in 
test-mode scenarios. 

5.3 Protocol enhancements 

There were three critical enhancements that we needed 
to make to the database protocol in order to ensure 
scalability with adequate performance. The first was the 
addition of an Opaque Information Protocol (OIP). Using 
OIP, a client can transfer OOFS and OOSS specific 
information to the AMS. The AMS does not inspect the 
information (i.e., it is opaque) but merely forwards it to 
the OOFS layer that can inspect it and, in turn, forward it 
to the OOSS layer. 

OIP allows a client to relay application specific 
information that may be implementation dependent. For 
instance, an application can inform the OOSS on access 
patterns (i.e., sequential or random) as well as anticipated 
file size when creating or adding to a database. Such 
information is important when trying to optimize the 
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placement of a file. While one can argue that such 
information can be inferred by the system, it not feasible 
to do so with any great assurance in a very large-scale 
database environment. In short, the best information is 
known by the application. 

Another enhancement was the addition of Deferred 
Request Protocol (DRP). This enhancement is crucial to 
accommodating high latency file systems, such as Mass 
Storage Systems. Consider the case where a client opens a 
database that resides on tape. When this happens, the tape 
must be mounted and the database copied to the disk 
cache before the client can use the database. Such an 
operation can be quite lengthy, taking anywhere from a 
minute or so to almost half an hour, depending on the size 
of the database. Under normal conditions, such a delay 
would cause the client to abandon the request and try 
another database server under the assumption that the 
original server had failed. Of course, the easiest bypass is 
to not use time-outs on requests. However, this prevents 
the detection of true failures. 

With DRP, the OOSS layer can relay the anticipated 
time to request completion to the OOFS layer which, in 
turn, tunnels the information back to the client via the 
AMS protocol. The client can then wait the specified 
amount of time and retry the request. The solution 
elegantly handles high latency requests without impacting 
server failure detection. 

Finally, when considering massively large databases 
and distributed clients, it is unlikely that any one server 
can handle the load. Indeed, such databases require 
multiple servers to adequately handle the amount of data 
as well as the potential number of users. The normal 
method of handling this situation is to statically partition 
or fully replicate the database among many servers. In 
practice, neither solution works well when accessing a 
massively large database. Therefore, we chose to 
implement a Request Redirect Protocol (RRP). 

RRP allows a server to redirect a client request to 
another server that can better handle the request. The 
decision is made by the server and can include any 
number of criteria such as server load, database 
availability, number of users, or even the best network 
routing relative to the client’s location. Redirection is not 
a new concept. Many web servers use redirection for load 
balancing. However, to our knowledge this is the first time 
server-mediated redirection will be used for load 
balancing a commercial database system. 

Another interesting aspect of RRP is that it allows for 
asynchronous database replication. In this scenario, only 
currently “hot” portions of a database are dynamically 
replicated. Coupled with a Mass Storage System, such as 
HPSS, that has point-to-point data transfer operations, 
dynamic asynchronous replication can achieve massive 
scalability while maintaining high levels of performance. 
In fact, dynamic asynchronous replication is likely the 
only practical replication strategy for petabyte-sized 
databases. 

5.4 Concluding the scalability tests 

Creation of the testbed started to pay off practically 
from the first day. After 1 month of running the tests and 
tuning the system, we were able to double the throughput,; 
and the improvements were immediately fed into the 
production system. Currently the improvements, compared 
to the point we started, exceed 600%.  

Currently the only real limitation we observe in OPR is 
the lock server CPU saturation. The Objectivity/DB lock 
server is a single-threaded process and whenever we run 
>200 clients it uses almost 100% CPU. Attempts to run 
the lock server on a faster CPU or on a multi-CPU 
machine5 did not solve the problem. It is expected, that the 
next two Objectivity/DB releases, (first due in a few 
weeks) will take care of this problem. 
 On the analysis site, we do not see problems with the 
lock server. Instead, jobs seem to be more I/O bound. 
Most of the problems come from the fact, that the access 
to the data is purely random. Even if each job accesses the 
data sequentially, given the total number of users and jobs, 
the access quickly becomes random. The main focus in the 
near future is going to be on the access de-randomization 
and pre-fetching the data combined with client-side 
caching. 

5.5 Future improvements 

 Within several months after the experiment started the 
BABAR detector was able to generate data with a speed 
significantly exceeding its design. In the near future the 
efficiency of the detector is going to be doubled, though it 
was not initially anticipated. In the current situation, 
further optimizations will be necessary for the software to 
keep up with the incoming data.  

We already can identify several changes that could be 
easily made and improve the performance of the system. 
They include: 
� Increase the number of file systems and data servers. 
� An improved lock server. 
� Introduction of read-only databases. It should reduce 

lock server traffic since no locks would be required to 
read read-only databases; thus improving reference 
database performance. 

 We expect it will be possible to at least double the 
throughput relative to current values within next several 
months. 

6 Conclusions 

The BABAR Database System is responsible for 
persistent storage of, and access to the data. Given the 
volume of data, which is likely to enter the petabyte region 
in three years, the system is intrinsically very complex and 
requires a lot of computing power. Currently, the major 

                                                           
5 second CPU can other tasks, e.g. network transfers. 

December 2001



- 8 - 

focus is on improving the performance and scalability of 
the system. 

Tuning the system is an on-going process. After the 
first 5 months of work, we were able to increase the 
throughput from ~8Hz up to 130Hz. At the same time 
scalability has been improved from ~50 nodes to over 200 
nodes. Most likely the processing farm will be expanded 
up to 300-350 nodes in the near future, with a 
corresponding increase in throughput requirements. The 
performance tests will continue for at least the next few 
months. 
 Additionally, our ability to independently optimize and 
enhance specific portions of the AMS was a direct result 
of our chosen layered architecture. It’s a true “plug and 
play” architecture where one can mix and match various 
critical internal database services in order to achieve the 
required scalability and performance. In retrospect, we 
were very pleased with the result. Not only did it speed the 
development of new processing algorithms, but it also 
trivialized the deployment of such algorithms. 
 We were also pleased with our optimization in the 
OOFS and OOSS layers. A fully optimized AMS uses 
25% less CPU time than an AMS that has no such 
optimizations -- significant savings in resource utilization. 
This directly translates into our ability to handle a 40TB 
database with over 3,000 active database sessions. We 
expect that with additional improvements we can achieve 
a 50% increase in overall performance. 
 Of course, neither the architecture nor the optimization 
would have been of practical use without the protocol 
enhancements. While we could have devised bypasses for 
Mass Storage System latency, request optimization, load 
balancing and replication, the solutions would have been 
awkward, at best. We feel that the key to smooth 
integration of scalability optimizations in the AMS relied 
on the protocol enhancements. 
 We feel that none of the optimizations and 
enhancements presented here is particularly tied to 
Objectivity/DB. Any type of database server can benefit 
by simply choosing a layered architecture, optimizing 
each layer relative to its function, and allowing generic 
processing information (e.g., time delays, server location, 
etc.) to be passed through the protocol either for action by 
the client or by the server. While the advice sounds 
simple, our experience shows that the implementation is 
not. For very large databases however, the benefits far 
exceed the required effort. 

Objectivity/DB, one of the very few commercial 
systems used within the BABAR software, proved to be a 
very robust and reliable system, which can be effectively 
deployed in a large production system, able to handle 
many terabytes of data along with hundreds of 
simultaneous clients.  
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