Measurement of the $B^{0}-\bar{B}^{0}$ Oscillation Frequency with Inclusive Dilepton Events

B. Aubert, ${ }^{1}$ D. Boutigny, ${ }^{1}$ J.-M. Gaillard, ${ }^{1}$ A. Hicheur, ${ }^{1}$ Y. Karyotakis, ${ }^{1}$ J. P. Lees, ${ }^{1}$ P. Robbe, ${ }^{1}$ V. Tisserand, ${ }^{1}$ A. Palano, ${ }^{2}$ A. Pompili, ${ }^{2}$ G. P. Chen, ${ }^{3}$ J. C. Chen, ${ }^{3}$ N. D. Qi, ${ }^{3}$ G. Rong, ${ }^{3}$ P. Wang, ${ }^{3}$ Y. S. Zhu, ${ }^{3}$ G. Eigen, ${ }^{4}$ B. Stugu, ${ }^{4}$ G. S. Abrams, ${ }^{5}$ A. W. Borgland, ${ }^{5}$ A. B. Breon, ${ }^{5}$ D. N. Brown, ${ }^{5}$ J. Button-Shafer, ${ }^{5}$ R. N. Cahn, ${ }^{5}$ A. R. Clark, ${ }^{5}$ M. S. Gill, ${ }^{5}$ A. V. Gritsan, ${ }^{5}$ Y. Groysman, ${ }^{5}$ R. G. Jacobsen, ${ }^{5}$ R. W. Kadel, ${ }^{5}$ J. Kadyk, ${ }^{5}$ L. T. Kerth, ${ }^{5}$ Yu. G. Kolomensky, ${ }^{5}$ J. F. Kral, ${ }^{5}$ C. LeClerc, ${ }^{5}$ M. E. Levi, ${ }^{5}$ G. Lynch, ${ }^{5}$ P. J. Oddone, ${ }^{5}$ M. Pripstein, ${ }^{5}$ N. A. Roe, ${ }^{5}$
A. Romosan, ${ }^{5}$ M. T. Ronan,,${ }^{5}$ V. G. Shelkov, ${ }^{5}$ A. V. Telnov, ${ }^{5}$ W. A. Wenzel,,${ }^{5}$ P. G. Bright-Thomas, ${ }^{6}$ T. J. Harrison, ${ }^{6}$ C. M. Hawkes, ${ }^{6}$ D. J. Knowles, ${ }^{6}$ S. W. O'Neale, ${ }^{6}$ R. C. Penny, ${ }^{6}$ A. T. Watson, ${ }^{6}$ N. K. Watson, ${ }^{6}$ T. Deppermann, ${ }^{7}$ K. Goetzen, ${ }^{7}$ H. Koch, ${ }^{7}$ M. Kunze, ${ }^{7}$ B. Lewandowski, ${ }^{7}$ K. Peters, ${ }^{7}$ H. Schmuecker, ${ }^{7}$ M. Steinke, ${ }^{7}$ N. R. Barlow, ${ }^{8}$ W. Bhimji, ${ }^{8}$ N. Chevalier, ${ }^{8}$ P. J. Clark, ${ }^{8}$ W. N. Cottingham, ${ }^{8}$ B. Foster, ${ }^{8}$ C. Mackay, ${ }^{8}$ F. F. Wilson, ${ }^{8}$
K. Abe, ${ }^{9}$ C. Hearty, ${ }^{9}$ T. S. Mattison, ${ }^{9}$ J. A. McKenna, ${ }^{9}$ D. Thiessen, ${ }^{9}$ S. Jolly, ${ }^{10}$ A. K. McKemey, ${ }^{10}$ V. E. Blinov, ${ }^{11}$ A. D. Bukin, ${ }^{11}$ D. A. Bukin, ${ }^{11}$ A. R. Buzykaev, ${ }^{11}$ V. B. Golubev, ${ }^{11}$ V. N. Ivanchenko, ${ }^{11}$ A. A. Korol, ${ }^{11}$ E. A. Kravchenko, ${ }^{11}$ A. P. Onuchin, ${ }^{11}$ S. I. Serednyakov, ${ }^{11}$ Yu. I. Skovpen, ${ }^{11}$ V. I. Telnov, ${ }^{11}$ A. N. Yushkov, ${ }^{11}$ D. Best,,12 M. Chao, ${ }^{12}$ D. Kirkby, ${ }^{12}$ A. J. Lankford, ${ }^{12}$ M. Mandelkern, ${ }^{12}$ S. McMahon, ${ }^{12}$ D. P. Stoker, ${ }^{12}$ K. Arisaka, ${ }^{13}$ C. Buchanan, ${ }^{13}$ S. Chun, ${ }^{13}$ D. B. MacFarlane, ${ }^{14}$ S. Prell, ${ }^{14}$ Sh. Rahatlou, ${ }^{14}$ G. Raven, ${ }^{14}$ V. Sharma, ${ }^{14}$ C. Campagnari, ${ }^{15}$ B. Dahmes, ${ }^{15}$ P. A. Hart, ${ }^{15}$ N. Kuznetsova, ${ }^{15}$ S. L. Levy, ${ }^{15}$ O. Long, ${ }^{15}$ A. Lu, ${ }^{15}$ J. D. Richman, ${ }^{15}$ W. Verkerke, ${ }^{15}$ J. Beringer, ${ }^{16}$ A. M. Eisner, ${ }^{16}$ M. Grothe, ${ }^{16}$ C. A. Heusch, ${ }^{16}$ W. S. Lockman, ${ }^{16}$ T. Pulliam,,16 T. Schalk, ${ }^{16}$ R. E. Schmitz, ${ }^{16}$ B. A. Schumm, ${ }^{16}$ A. Seiden,,16 M. Turri, ${ }^{16}$ W. Walkowiak, ${ }^{16}$ D. C. Williams, ${ }^{16}$ M. G. Wilson, ${ }^{16}$ E. Chen, ${ }^{17}$ G. P. Dubois-Felsmann, ${ }^{17}$ A. Dvoretskii, ${ }^{17}$ D. G. Hitlin, ${ }^{17}$ S. Metzler, ${ }^{17}$ J. Oyang, ${ }^{17}$ F. C. Porter, ${ }^{17}$ A. Ryd, ${ }^{17}$ A. Samuel, ${ }^{17}$ M. Weaver, ${ }^{17}$ S. Yang, ${ }^{17}$ R. Y. Zhu, ${ }^{17}$ S. Devmal, ${ }^{18}$ T. L. Geld, ${ }^{18}$ S. Jayatilleke, ${ }^{18}$ G. Mancinelli, ${ }^{18}$ B. T. Meadows, ${ }^{18}$ M. D. Sokoloff, ${ }^{18}$ T. Barillari, ${ }^{19}$ P. Bloom, ${ }^{19}$ M. O. Dima, ${ }^{19}$ W. T. Ford, ${ }^{19}$ U. Nauenberg, ${ }^{19}$ A. Olivas, ${ }^{19}$ P. Rankin, ${ }^{19}$ J. Roy, ${ }^{19}$ J. G. Smith, ${ }^{19}$ W. C. van Hoek, ${ }^{19}$ J. Blouw, ${ }^{20}$ J. L. Harton, ${ }^{20}$ M. Krishnamurthy, ${ }^{20}$ A. Soffer, ${ }^{20}$ W. H. Toki, ${ }^{20}$ R. J. Wilson, ${ }^{20}$ J. Zhang, ${ }^{20}$ T. Brandt, ${ }^{21}$ J. Brose, ${ }^{21}$ T. Colberg, ${ }^{21}$ M. Dickopp, ${ }^{21}$ R. S. Dubitzky, ${ }^{21}$ A. Hauke, ${ }^{21}$ E. Maly, ${ }^{21}$ R. Müller-Pfefferkorn, ${ }^{21}$ S. Otto, ${ }^{21}$ K. R. Schubert, ${ }^{21}$ R. Schwierz, ${ }^{21}$ B. Spaan, ${ }^{21}$ L. Wilden, ${ }^{21}$ D. Bernard, ${ }^{22}$ G. R. Bonneaud, ${ }^{22}$ F. Brochard, ${ }^{22}$ J. Cohen-Tanugi, ${ }^{22}$ S. Ferrag, ${ }^{22}$ S. T'Jampens, ${ }^{22}$ Ch. Thiebaux, ${ }^{22}$ G. Vasileiadis, ${ }^{22}$ M. Verderi, ${ }^{22}$ A. Anjomshoaa, ${ }^{23}$ R. Bernet, ${ }^{23}$ A. Khan, ${ }^{23}$ D. Lavin, ${ }^{23}$ F. Muheim, ${ }^{23}$ S. Playfer, ${ }^{23}$ J. E. Swain, ${ }^{23}$ J. Tinslay, ${ }^{23}$ M. Falbo, ${ }^{24}$ C. Borean, ${ }^{25}$ C. Bozzi, ${ }^{25}$ S. Dittongo, ${ }^{25}$ L. Piemontese, ${ }^{25}$ E. Treadwell, ${ }^{26}$ F. Anulli, ${ }^{27, *}$ R. Baldini-Ferroli, ${ }^{27}$ A. Calcaterra, ${ }^{27}$ R. de Sangro, ${ }^{27}$ D. Falciai, ${ }^{27}$ G. Finocchiaro, ${ }^{27}$ P. Patteri, ${ }^{27}$ I. M. Peruzzi, ${ }^{27, *}$ M. Piccolo,,${ }^{27}$ Y. Xie, ${ }^{27}$ A. Zallo, ${ }^{27}$ S. Bagnasco, ${ }^{28}$ A. Buzzo, ${ }^{28}$ R. Contri, ${ }^{28}$ G. Crosetti, ${ }^{28}$ M. Lo Vetere, ${ }^{28}$ M. Macri, ${ }^{28}$ M. R. Monge, ${ }^{28}$ S. Passaggio, ${ }^{28}$ F. C. Pastore, ${ }^{28}$ C. Patrignani, ${ }^{28}$ M. G. Pia, ${ }^{28}$ E. Robutti, ${ }^{28}$ A. Santroni, ${ }^{28}$ S. Tosi, ${ }^{28}$ M. Morii, ${ }^{29}$ R. Bartoldus, ${ }^{30}$ R. Hamilton, ${ }^{30}$ U. Mallik, ${ }^{30}$ J. Cochran, ${ }^{31}$ H. B. Crawley, ${ }^{31}$ P.-A. Fischer, ${ }^{31}$ J. Lamsa, ${ }^{31}$ W. T. Meyer, ${ }^{31}$ E. I. Rosenberg, ${ }^{31}$ G. Grosdidier, ${ }^{32}$ C. Hast, ${ }^{32}$ A. Höcker, ${ }^{32}$ H. M. Lacker, ${ }^{32}$ S. Laplace, ${ }^{32}$ V. Lepeltier, ${ }^{32}$ A. M. Lutz, ${ }^{32}$ S. Plaszczynski, ${ }^{32}$ M. H. Schune, ${ }^{32}$ S. Trincaz-Duvoid, ${ }^{32}$ G. Wormser, ${ }^{32}$ R. M. Bionta, ${ }^{33}$ V. Brigljević, ${ }^{33}$ D. J. Lange, ${ }^{33}$ M. Mugge, ${ }^{33}$ K. van Bibber, ${ }^{33}$ D. M. Wright, ${ }^{33}$ A. J. Bevan, ${ }^{34}$ J. R. Fry, ${ }^{34}$ E. Gabathuler, ${ }^{34}$ R. Gamet, ${ }^{34}$ M. George, ${ }^{34}$ M. Kay, ${ }^{34}$ D. J. Payne, ${ }^{34}$ R. J. Sloane, ${ }^{34}$ C. Touramanis, ${ }^{34}$ M. L. Aspinwall, ${ }^{35}$ D. A. Bowerman, ${ }^{35}$ P. D. Dauncey, ${ }^{35}$ U. Egede, ${ }^{35}$ I. Eschrich, ${ }^{35}$
N. J. W. Gunawardane, ${ }^{35}$ J. A. Nash, ${ }^{35}$ P. Sanders, ${ }^{35}$ D. Smith, ${ }^{35}$ D. E. Azzopardi, ${ }^{36}$ J. J. Back, ${ }^{36}$ G. Bellodi, ${ }^{36}$ P. Dixon, ${ }^{36}$ P. F. Harrison, ${ }^{36}$ R. J. L. Potter, ${ }^{36}$ H. W. Shorthouse, ${ }^{36}$ P. Strother, ${ }^{36}$ P. B. Vidal,,${ }^{36}$ G. Cowan, ${ }^{37}$
S. George, ${ }^{37}$ M. G. Green, ${ }^{37}$ A. Kurup, ${ }^{37}$ C. E. Marker, ${ }^{37}$ P. McGrath, ${ }^{37}$ T. R. McMahon,,${ }^{37}$ S. Ricciardi, ${ }^{37}$ F. Salvatore, ${ }^{37}$ G. Vaitsas, ${ }^{37}$ D. Brown, ${ }^{38}$ C. L. Davis, ${ }^{38}$ J. Allison, ${ }^{39}$ R. J. Barlow, ${ }^{39}$ J. T. Boyd, ${ }^{39}$ A. C. Forti, ${ }^{39}$ J. Fullwood, ${ }^{39}$ F. Jackson, ${ }^{39}$ G. D. Lafferty, ${ }^{39}$ N. Savvas, ${ }^{39}$ J. H. Weatherall, ${ }^{39}$ J. C. Williams, ${ }^{39}$ A. Farbin, ${ }^{40}$ A. Jawahery, ${ }^{40}$ V. Lillard, ${ }^{40}$ J. Olsen, ${ }^{40}$ D. A. Roberts, ${ }^{40}$ J. R. Schieck, ${ }^{40}$ G. Blaylock, ${ }^{41}$ C. Dallapiccola, ${ }^{41}$ K. T. Flood, ${ }^{41}$ S. S. Hertzbach, ${ }^{41}$ R. Kofler, ${ }^{41}$ V. B. Koptchev, ${ }^{41}$ T. B. Moore, ${ }^{41}$ H. Staengle, ${ }^{41}$ S. Willocq, ${ }^{41}$ B. Brau, ${ }^{42}$ R. Cowan, ${ }^{42}$ G. Sciolla, ${ }^{42}$ F. Taylor, ${ }^{42}$ R. K. Yamamoto, ${ }^{42}$ M. Milek, ${ }^{43}$ P. M. Patel, ${ }^{43}$ F. Palombo, ${ }^{44}$
J. M. Bauer, ${ }^{45}$ L. Cremaldi, ${ }^{45}$ V. Eschenburg, ${ }^{45}$ R. Kroeger, ${ }^{45}$ J. Reidy, ${ }^{45}$ D. A. Sanders, ${ }^{45}$ D. J. Summers, ${ }^{45}$ J. Y. Nief, ${ }^{46}$ P. Taras, ${ }^{46}$ H. Nicholson, ${ }^{47}$ C. Cartaro, ${ }^{48}$ N. Cavallo, ${ }^{48, \dagger}$ G. De Nardo, ${ }^{48}$ F. Fabozzi, ${ }^{48}$ C. Gatto, ${ }^{48}$ L. Lista, ${ }^{48}$ P. Paolucci, ${ }^{48}$ D. Piccolo, ${ }^{48}$ C. Sciacca, ${ }^{48}$ J. M. LoSecco, ${ }^{49}$ J. R. G. Alsmiller, ${ }^{50}$ T. A. Gabriel, ${ }^{50}$ T. Handler, ${ }^{50}$ J. Brau, ${ }^{51}$ R. Frey, ${ }^{51}$ E. Grauges, ${ }^{51}$ M. Iwasaki, ${ }^{51}$ N. B. Sinev, ${ }^{51}$ D. Strom, ${ }^{51}$ F. Colecchia, ${ }^{52}$ F. Dal Corso, ${ }^{52}$ A. Dorigo, ${ }^{52}$ F. Galeazzi, ${ }^{52}$ M. Margoni, ${ }^{52}$ G. Michelon, ${ }^{52}$ M. Morandin, ${ }^{52}$ M. Posocco, ${ }^{52}$ M. Rotondo, ${ }^{52}$ F. Simonetto, ${ }^{52}$ R. Stroili, ${ }^{52}$ E. Torassa, ${ }^{52}$ C. Voci, ${ }^{52}$ M. Benayoun, ${ }^{53}$ H. Briand, ${ }^{53}$ J. Chauveau, ${ }^{53}$ P. David, ${ }^{53}$ Ch. de la Vaissière, ${ }^{53}$ L. Del Buono, ${ }^{53}$ O. Hamon, ${ }^{53}$ F. Le Diberder, ${ }^{53}$ Ph. Leruste, ${ }^{53}$ J. Ocariz, ${ }^{53}$ L. Roos, ${ }^{53}$ J. Stark, ${ }^{53}$ P. F. Manfredi, ${ }^{54}$ V. Re, ${ }^{54}$ V. Speziali, ${ }^{54}$ E. D. Frank, ${ }^{55}$ L. Gladney, ${ }^{55}$ Q. H. Guo, ${ }^{55}$ J. Panetta, ${ }^{55}$ C. Angelini, ${ }^{56}$ G. Batignani, ${ }^{56}$ S. Bettarini, ${ }^{56}$ M. Bondioli, ${ }^{56}$ F. Bucci, ${ }^{56}$ E. Campagna, ${ }^{56}$ M. Carpinelli, ${ }^{56}$ F. Forti, ${ }^{56}$ M. A. Giorgi, ${ }^{56}$ A. Lusiani, ${ }^{56}$ G. Marchiori, ${ }^{56}$ F. Martinez-Vidal, ${ }^{56}$ M. Morganti, ${ }^{56}$ N. Neri,,56 E. Paoloni, ${ }^{56}$ M. Rama, ${ }^{56}$ G. Rizzo, ${ }^{56}$ F. Sandrelli, ${ }^{56}$ G. Simi, ${ }^{56}$ G. Triggiani, ${ }^{56}$ J. Walsh, ${ }^{56}$ M. Haire, ${ }^{57}$ D. Judd, ${ }^{57}$ K. Paick, ${ }^{57}$ L. Turnbull, ${ }^{57}$ D. E. Wagoner, ${ }^{57}$ J. Albert, ${ }^{58}$ P. Elmer, ${ }^{58}$ C. Lu, ${ }^{58}$ V. Miftakov, ${ }^{58}$ S. F. Schaffner, ${ }^{58}$ A. J. S. Smith, ${ }^{58}$ A. Tumanov, ${ }^{58}$ E. W. Varnes, ${ }^{58}$ G. Cavoto, ${ }^{59}$ D. del Re, ${ }^{59}$ R. Faccini, ${ }^{14,}{ }^{59}$ F. Ferrarotto, ${ }^{59}$ F. Ferroni, ${ }^{59}$ E. Lamanna, ${ }^{59}$ M. A. Mazzoni, ${ }^{59}$ S. Morganti, ${ }^{59}$ G. Piredda, ${ }^{59}$ F. Safai Tehrani, ${ }^{59}$ M. Serra, ${ }^{59}$ C. Voena,,${ }^{59}$ S. Christ, ${ }^{60}$ R. Waldi, ${ }^{60}$ T. Adye, ${ }^{61}$ N. De Groot,,${ }^{61}$ B. Franek, ${ }^{61}$ N. I. Geddes, ${ }^{61}$ G. P. Gopal, ${ }^{61}$ S. M. Xella, ${ }^{61}$ R. Aleksan, ${ }^{62}$ S. Emery, ${ }^{62}$ A. Gaidot, ${ }^{62}$ S. F. Ganzhur, ${ }^{62}$ P.-F. Giraud, ${ }^{62}$ G. Hamel de Monchenault, ${ }^{62}$
W. Kozanecki, ${ }^{62}$ M. Langer, ${ }^{62}$ G. W. London, ${ }^{62}$ B. Mayer, ${ }^{62}$ B. Serfass, ${ }^{62}$ G. Vasseur, ${ }^{62}$ Ch. Yèche, ${ }^{62}$ M. Zito, ${ }^{62}$ M. V. Purohit,,${ }^{63}$ H. Singh, ${ }^{63}$ A. W. Weidemann, ${ }^{63}$ F. X. Yumiceva, ${ }^{63}$ I. Adam, ${ }^{64}$ D. Aston, ${ }^{64}$ N. Berger, ${ }^{64}$ A. M. Boyarski, ${ }^{64}$ G. Calderini, ${ }^{64}$ M. R. Convery, ${ }^{64}$ D. P. Coupal, ${ }^{64}$ D. Dong, ${ }^{64}$ J. Dorfan, ${ }^{64}$ W. Dunwoodie, ${ }^{64}$ R. C. Field, ${ }^{64}$ T. Glanzman, ${ }^{64}$ S. J. Gowdy, ${ }^{64}$ T. Haas, ${ }^{64}$ T. Himel, ${ }^{64}$ T. Hryn'ova, ${ }^{64}$ M. E. Huffer, ${ }^{64}$ W. R. Innes, ${ }^{64}$ C. P. Jessop, ${ }^{64}$ M. H. Kelsey, ${ }^{64}$ P. Kim, ${ }^{64}$ M. L. Kocian, ${ }^{64}$ U. Langenegger, ${ }^{64}$ D. W. G. S. Leith, ${ }^{64}$ S. Luitz, ${ }^{64}$ V. Luth, ${ }^{64}$ H. L. Lynch, ${ }^{64}$ H. Marsiske, ${ }^{64}$ S. Menke, ${ }^{64}$ R. Messner, ${ }^{64}$ D. R. Muller, ${ }^{64}$ C. P. O'Grady, ${ }^{64}$ V. E. Ozcan, ${ }^{64}$ A. Perazzo, ${ }^{64}$ M. Perl, ${ }^{64}$ S. Petrak, ${ }^{64}$ H. Quinn, ${ }^{64}$ B. N. Ratcliff, ${ }^{64}$ S. H. Robertson, ${ }^{64}$ A. Roodman, ${ }^{64}$ A. A. Salnikov, ${ }^{64}$ T. Schietinger, ${ }^{64}$ R. H. Schindler, ${ }^{64}$ J. Schwiening, ${ }^{64}$ A. Snyder, ${ }^{64}$ A. Soha, ${ }^{64}$ S. M. Spanier, ${ }^{64}$ J. Stelzer, ${ }^{64}$ D. Su, ${ }^{64}$ M. K. Sullivan, ${ }^{64}$ H. A. Tanaka, ${ }^{64}$ J. Va'vra, ${ }^{64}$ S. R. Wagner, ${ }^{64}$ A. J. R. Weinstein, ${ }^{64}$ W. J. Wisniewski, ${ }^{64}$ D. H. Wright, ${ }^{64}$ C. C. Young, ${ }^{64}$ P. R. Burchat, ${ }^{65}$ C. H. Cheng, ${ }^{65}$ T. I. Meyer, ${ }^{65}$ C. Roat, ${ }^{65}$ R. Henderson, ${ }^{66}$ W. Bugg, ${ }^{67}$ H. Cohn, ${ }^{67}$ J. M. Izen, ${ }^{68}$ I. Kitayama, ${ }^{68}$ X. C. Lou, ${ }^{68}$ F. Bianchi, ${ }^{69}$ M. Bona, ${ }^{69}$ D. Gamba, ${ }^{69}$ L. Bosisio, ${ }^{70}$ G. Della Ricca, ${ }^{70}$ L. Lanceri, ${ }^{70}$ P. Poropat, ${ }^{70}$ G. Vuagnin, ${ }^{70}$ R. S. Panvini, ${ }^{71}$ C. M. Brown, ${ }^{72}$ P. D. Jackson,,72 R. Kowalewski, ${ }^{72}$ J. M. Roney, ${ }^{72}$ H. R. Band, ${ }^{73}$ E. Charles, ${ }^{73}$ S. Dasu, ${ }^{73}$ A. M. Eichenbaum, ${ }^{73}$ H. Hu, ${ }^{73}$ J. R. Johnson, ${ }^{73}$ R. Liu, ${ }^{73}$ F. Di Lodovico, ${ }^{73}$ Y. Pan, ${ }^{73}$ R. Prepost, ${ }^{73}$ I. J. Scott, ${ }^{73}$ S. J. Sekula, ${ }^{73}$ J. H. von Wimmersperg-Toeller, ${ }^{73}$ S. L. Wu, ${ }^{73}$ Z. Yu, ${ }^{73}$ T. M. B. Kordich, ${ }^{74}$ and H. Neal ${ }^{74}$
(The BABAR Collaboration)
${ }^{1}$ Laboratoire de Physique des Particules, F-74941 Annecy-le-Vieux, France
${ }^{2}$ Università di Bari, Dipartimento di Fisica and INFN, I-70126 Bari, Italy
${ }^{3}$ Institute of High Energy Physics, Beijing 100039, China
${ }^{4}$ University of Bergen, Inst. of Physics, N-5007 Bergen, Norway
${ }^{5}$ Lawrence Berkeley National Laboratory and University of California, Berkeley, CA 94720, USA
${ }^{6}$ University of Birmingham, Birmingham, B15 2TT, United Kingdom
${ }^{7}$ Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
${ }^{8}$ University of Bristol, Bristol BS8 1TL, United Kingdom
${ }^{9}$ University of British Columbia, Vancouver, BC, Canada V6T 1Z1
${ }^{10}$ Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
${ }^{11}$ Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
${ }^{12}$ University of California at Irvine, Irvine, CA 92697, USA
${ }^{13}$ University of California at Los Angeles, Los Angeles, CA 90024, USA
${ }^{14}$ University of California at San Diego, La Jolla, CA 92093, USA
${ }^{15}$ University of California at Santa Barbara, Santa Barbara, CA 93106, USA
${ }^{16}$ University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, CA 95064, USA
${ }^{17}$ California Institute of Technology, Pasadena, CA 91125, USA
${ }^{18}$ University of Cincinnati, Cincinnati, OH 45221, USA
19
19 University of Colorado, Boulder, CO 80309, USA
20 Colorado State University, Fort Collins, CO 80523, USA
${ }^{21}$ Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
22 Ecole Polytechnique, F-91128 Palaiseau, France
${ }^{23}$ University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
24 Elon University, Elon University, NC 27244-2010, USA

${ }^{25}$ Università di Ferrara, Dipartimento di Fisica and INFN, I-44100 Ferrara, Italy
${ }^{26}$ Florida Aछ'M University, Tallahassee, FL 32307, USA
${ }^{27}$ Laboratori Nazionali di Frascati dell'INFN, I-00044 Frascati, Italy
${ }^{28}$ Università di Genova, Dipartimento di Fisica and INFN, I-16146 Genova, Italy
${ }^{29}$ Harvard University, Cambridge, MA 02138, USA
${ }^{30}$ University of Iowa, Iowa City, IA 52242, USA
${ }^{31}$ Iowa State University, Ames, IA 50011-3160, USA
${ }^{32}$ Laboratoire de l'Accélérateur Linéaire, F-91898 Orsay, France
${ }^{33}$ Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
${ }^{34}$ University of Liverpool, Liverpool L69 3BX, United Kingdom
${ }^{35}$ University of London, Imperial College, London, SW7 2BW, United Kingdom
${ }^{36}$ Queen Mary, University of London, E1 4NS, United Kingdom
${ }^{37}$ University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
${ }^{38}$ University of Louisville, Louisville, KY 40292, USA
${ }^{39}$ University of Manchester, Manchester M13 9PL, United Kingdom
${ }^{40}$ University of Maryland, College Park, MD 20742, USA
${ }^{41}$ University of Massachusetts, Amherst, MA 01003, USA
${ }^{42}$ Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, MA 02139, USA
${ }^{43}$ McGill University, Montréal, QC, Canada H3A $2 T 8$
${ }^{44}$ Università di Milano, Dipartimento di Fisica and INFN, I-20133 Milano, Italy
${ }^{45}$ University of Mississippi, University, MS 38677, USA
${ }^{46}$ Université de Montréal, Laboratoire René J. A. Lévesque, Montréal, QC, Canada H3C $3 J 7$
${ }^{47}$ Mount Holyoke College, South Hadley, MA 01075, USA
${ }^{48}$ Università di Napoli Federico II, Dipartimento di Scienze Fisiche and INFN, I-80126, Napoli, Italy
${ }^{49}$ University of Notre Dame, Notre Dame, IN 46556, USA
${ }^{50}$ Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
${ }^{51}$ University of Oregon, Eugene, OR 97403, USA
${ }^{52}$ Università di Padova, Dipartimento di Fisica and INFN, I-35131 Padova, Italy
${ }^{53}$ Universités Paris VI et VII, Lab de Physique Nucléaire H. E., F-75252 Paris, France
${ }^{54}$ Università di Pavia, Dipartimento di Elettronica and INFN, I- 27100 Pavia, Italy
${ }^{55}$ University of Pennsylvania, Philadelphia, PA 19104, USA
${ }^{56}$ Università di Pisa, Scuola Normale Superiore and INFN, I-56010 Pisa, Italy
${ }^{57}$ Prairie View A \mathcal{M} M University, Prairie View, TX 77446, USA
${ }^{58}$ Princeton University, Princeton, NJ 08544, USA
${ }^{59}$ Università di Roma La Sapienza, Dipartimento di Fisica and INFN, I-00185 Roma, Italy
${ }^{60}$ Universität Rostock, D-18051 Rostock, Germany
${ }^{61}$ Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
${ }^{62}$ DAPNIA, Commissariat à l'Energie Atomique/Saclay, F-91191 Gif-sur-Yvette, France
${ }^{63}$ University of South Carolina, Columbia, SC 29208, USA
${ }^{64}$ Stanford Linear Accelerator Center, Stanford, CA 94309, USA
${ }^{65}$ Stanford University, Stanford, CA 94305-4060, USA ${ }^{66}$ TRIUMF, Vancouver, BC, Canada V6T 2A3
${ }^{67}$ University of Tennessee, Knoxville, TN 37996, USA
${ }^{68}$ University of Texas at Dallas, Richardson, TX 75083, USA
${ }^{69}$ Università di Torino, Dipartimento di Fiscia Sperimentale and INFN, I-10125 Torino, Italy
${ }^{70}$ Università di Trieste, Dipartimento di Fisica and INFN, I-34127 Trieste, Italy
${ }^{71}$ Vanderbilt University, Nashville, TN 37235, USA
${ }^{72}$ University of Victoria, Victoria, BC, Canada V8W 3P6
${ }^{73}$ University of Wisconsin, Madison, WI 53706, USA
${ }^{74}$ Yale University, New Haven, CT 06511, USA

(Dated: December 31, 2001)
The $B^{0}-\bar{B}^{0}$ oscillation frequency has been measured with a sample of 23 million $B \bar{B}$ pairs collected with the BABAR detector at the PEP-II asymmetric B Factory at SLAC. In this sample, we select events in which both B mesons decay semileptonically and use the charge of the leptons to identify the flavor of each B meson. A simultaneous fit to the decay time difference distributions for oppositeand same-sign dilepton events gives $\Delta m_{d}=0.493 \pm 0.012$ (stat) ± 0.009 (syst) ps^{-1}.

PACS numbers: $13.25 . \mathrm{Hw}, 12.39 . \mathrm{Hg}$

A precise measurement of the $B^{0}-\bar{B}^{0}$ oscillation frequency Δm_{d} is of fundamental importance as a direct measure of the Cabibbo-Kobayashi-Maskawa (CKM) ma-
trix element $\left|V_{t d}\right|[1]$. When combined with measurements of the $B_{s}-\bar{B}_{s}$ oscillation frequency, it provides a stringent constraint on the Unitarity Triangle of the

CKM matrix.
In this Letter, we present a measurement of the time dependence of $B^{0}-\bar{B}^{0}$ mixing using data collected with the $B A B A R$ detector at the PEP-II asymmetric energy $e^{+} e^{-}$collider operated at or near the $\Upsilon(4 S)$ resonance. The data sample, recorded in the years 1999-2000, corresponds to an integrated luminosity of $20.7 \mathrm{fb}^{-1}$ on the $\Upsilon(4 S)$ resonance (on-resonance sample), and $2.6 \mathrm{fb}^{-1}$ collected 40 MeV below the $\Upsilon(4 S)$ resonance (off-resonance sample). $B \bar{B}$ pairs from the $\Upsilon(4 S)$ decay move along the high-energy beam direction (z) with a nominal Lorentz boost $\langle\beta \gamma\rangle=0.55$. Therefore, the two B decay vertices are separated by about $260 \mu \mathrm{~m}$ on average.

The measurement technique is based on the identification of events containing two leptons from semileptonic decays of B mesons. The flavor of the B mesons at the time of their decay is determined or "tagged" by the charge of the leptons. Thus, for $\Upsilon(4 S)$ resonance decays into $B^{0} \bar{B}^{0}$ pairs, neglecting backgrounds, opposite-sign $(+)$ and same-sign (-) lepton pairs correspond to unmixed and mixed events, respectively. Because the $B^{0} \bar{B}^{0}$ pair is in a coherent P-wave state, the time evolution of the B mesons is a function of the proper time difference Δt between the two B decays:

$$
\mathcal{S}_{ \pm}\left(\Delta t ; \Delta m_{d}\right)=\frac{e^{-|\Delta t| / \tau}}{4 \tau}\left(1 \pm \cos \Delta m_{d} \Delta t\right)
$$

where τ is the B^{0} lifetime $(\Delta \Gamma=0$ is assumed). The corresponding time-dependent asymmetry is $\left(\mathcal{S}_{+}(\Delta t)-\right.$ $\left.\mathcal{S}_{-}(\Delta t)\right) /\left(\mathcal{S}_{+}(\Delta t)+\mathcal{S}_{-}(\Delta t)\right)=\cos \Delta m_{d} \Delta t$.

This simple picture is modified by the effects of detector resolution and the presence of backgrounds. The most important background, about 50% of the sample, is due to $B^{+} B^{-}$events, which are not removed by the event selection critieria. The fraction of $B^{+} B^{-}$events is determined from the data itself in order to reduce systematic uncertainties. Other non-negligible backgrounds are leptons from the $b \rightarrow c \rightarrow \ell$ decay chain (cascade decays), which are also the main source of wrong tags, and hadrons that are misidentified as leptons. Signal and background probability density functions (PDF) for opposite- and same-sign events are included as additional terms in the full PDF. The corresponding likelihood function, combining opposite- and same-sign dilepton events, is maximized to determine Δm_{d}.

The BABAR detector is described in detail elsewhere [2]. Charged particle tracking is provided by a 5-layer, double-sided silicon vertex tracker (SVT) and a 40layer drift chamber (DCH), both operating inside a 1.5 T super-conducting solenoidal magnet. The $\mathrm{CsI}(\mathrm{Tl})$ electromagnetic calorimeter (EMC) detects photons and electrons. Particle identification is provided by a ringimaging Cherenkov detector (DIRC) and specific ionization measurements $\mathrm{d} E / \mathrm{d} x$ in the DCH . Muons are identified with the instrumented flux return (IFR), segmented to contain resistive plate chambers.

Events are selected by requiring more than 5 reconstructed charged tracks, at least 3 of which must originate from the interaction region and be reconstructed in the DCH. Continuum the normalized second Fox-Wolfram moment [3] be less than 0.4 and the event aplanarity be greater than 0.01 . Two-photon events, as well as residual radiative Bhabha events with a large amount of missing energy, are rejected by requiring the invariant mass squared of the event to be greater than $20 \mathrm{GeV}^{2} / c^{4}$.

Electrons are selected by requirements on the ratio of the energy deposited in the EMC to the momentum measured in the DCH , the lateral shape of the energy deposition in the EMC, and $\mathrm{d} E / \mathrm{d} x$ in the DCH. Muons are identified on the basis of the energy in the EMC, as well as the strip multiplicity, track continuity and penetration depth in the IFR. Lepton candidates consistent with the kaon hypothesis as measured in the DIRC are rejected. Electron (muon) selection efficiencies and misidentification rates at high momentum are about 92% (75\%) and 0.15% (3\%), respectively.

Photon conversions are rejected by combining each electron candidate with all other oppositely-charged electron candidates in the event, selected with looser criteria, and applying requirements on the invariant mass and distance of closest approach of the pair in the transverse plane and along the beam direction. Leptons from J / ψ and $\psi(2 S)$ decays are identified by pairing them with all other oppositely-charged candidates of the same lepton species, selected with looser criteria, and rejecting the whole event if any combination has an invariant mass within the J / ψ or $\psi(2 S)$ mass regions.

Events with at least two leptons are retained and the two highest momentum leptons in the $\Upsilon(4 S)$ rest frame are used in the following.

The two lepton tracks and a beam spot constraint are used in a vertex fit to find the primary vertex of the event in the transverse plane. The positions of closest approach of the two tracks to this vertex in the transverse plane are computed and their z coordinates are denoted as z_{1} and z_{2}, where the subscripts 1 and 2 refer to the highest and second highest momentum leptons in the $\Upsilon(4 S)$ rest frame. The difference Δz is defined as $\Delta z=z_{1}-z_{2}$. The time difference Δt is computed from Δz and the nominal boost as $\Delta t=\Delta z /\langle\beta \gamma\rangle c$.

The modeling of the resolution function \mathcal{R} is a crucial element of the Δm_{d} measurement. To improve the Δz (and therefore Δt) resolution, reduce the fraction of incorrectly measured tracks, and minimize related systematic uncertainties, charged tracks are required to satisfy the following criteria. Lepton candidates must have a distance of closest approach (DOCA) with respect to the nominal beam position of less than 1 cm in the transverse plane and less than 6 cm along the beam direction, at least 12 hits in the DCH , at least four z-coordinate hits in the SVT, a momentum in the range between 0.7 and $2.5 \mathrm{GeV} / c$ in the $\Upsilon(4 S)$ rest frame and between 0.5
and $5.0 \mathrm{GeV} / c$ in the laboratory frame, and a polar angle in the range between 0.5 and 2.6 radians in the laboratory frame. The total error on Δz, computed on an event-by-event basis, is required to be less than $175 \mu \mathrm{~m}$. The vertex fit constrains the lepton tracks to originate from the same point in the transverse plane, thereby neglecting the non-zero flight length for B mesons. As a consequence, the Δz resolution function is Δz dependent, becoming worse at higher $|\Delta z|$. Neglecting this Δz dependence introduces a small bias, discussed below. Vertex studies with leptonic J / ψ decays show that the Δt resolution function for signal events can be appropriately modeled with the sum of three Gaussian distributions in both data and Monte Carlo simulation.

The separation between direct leptons and background from cascade decays is achieved with a neural network that combines five discriminating variables for each event and provides two outputs, one for each lepton, chosen to vary between 0 for cascade leptons and 1 for direct leptons. The discriminating variables are the momenta of the two leptons, their opening angle, the total visible energy, and the missing momentum of the event. All variables are computed in the $\Upsilon(4 S)$ rest frame. The first two variables are very powerful in discriminating between direct and cascade leptons. The third efficiently removes direct-cascade lepton pairs from the same B decay and further reduces contributions from photon conversions. An optimization study based on the minimization of the total error on Δm_{d} leads to the requirement that both neural network outputs be greater than 0.8.

The numbers of selected on-resonance and offresonance events are 99010 and 428, respectively. The combined effect of all requirements gives a direct dilepton purity and efficiency of about 83% and 9%, respectively, based on Monte Carlo simulation. Semileptonic B decays in the Monte Carlo simulation have been modeled separately for each charm meson involved. A parametrization of HQET form factors [4] is used for $B \rightarrow D^{*} \ell \nu$, the Goity-Roberts model [5] is used for $B \rightarrow D^{(*)} \pi \ell \nu$, while the ISGW2 model [6] is used for $B \rightarrow D \ell \nu$ and $B \rightarrow D^{* *} \ell \nu$. The measured branching fractions for decays to $D^{* *}$ and $D^{(*)} \pi$ states are fixed to their world averages [7] and unmeasured processes have rates that are inferred on the basis of isospin arguments. Events from $B \bar{B}$ decays are grouped in three topologies, each of which is assigned its own PDF with different Δt dependence and tagging properties.

Direct dilepton events are described by the convolution of an oscillatory term for neutral B decays, or an exponential function for charged B decays, with the resolution function \mathcal{R} :

$$
\mathcal{S}^{n(c)}=\frac{e^{-|\Delta t| / \tau_{n(c)}}}{4 \tau_{n(c)}}\left(1 \pm D_{\mathrm{sig}}^{n(c)} \xi_{n(c)}\right) \otimes \mathcal{R}
$$

for neutral (n) and charged (c) events, where $\tau_{n(c)}$ is the B meson lifetime, $\xi_{n}=\cos \Delta m_{d} \Delta t$ and $\xi_{c}=1$, and
$D_{\text {sig }}^{n(c)} \approx 0.95$ are correction factors that account for the (small) fraction of wrongly tagged direct dilepton events. These events are due to hadrons from the B vertex that are misidentified as leptons or leptons from the decay of resonances (e.g., events where only one lepton comes from a J / ψ) produced at the B vertex. Both of these sources give almost random tagging and, in the absence of such events, $D_{\text {sig }}^{n(c)}$ would be exactly 1. A small fraction of events where a lepton originates from the $b \rightarrow \tau^{-} \rightarrow \ell^{-}$ decay chain have the same charge correlation as signal events and are also included in the signal topology. Neglecting the τ lepton lifetime introduces a negligible bias on the Δm_{d} measurement.

Opposite B cascade (OBC) events, 9% of the selected sample, contain one lepton from a $b \rightarrow \ell$ decay and the other from the $b \rightarrow c \rightarrow \ell$ decay chain of the companion B meson. These events are the main source of wrong tags. Their PDFs are modeled by the convolution of Δt dependent terms of a form similar to the signal with a resolution model that takes into account the effect of the charmed meson lifetimes by convoluting three Gaussians with a single-sided exponential decay distribution. Since both short-lived D^{0} and D_{s}, and long-lived D^{+}mesons are involved in cascade decays, the global OBC PDFs are written as

$$
\mathcal{C}_{\mathrm{OBC}}^{n(c)}=\frac{e^{-|\Delta t| / \tau_{n(c)}}}{4 \tau_{n(c)}} \sum_{i} f_{i}^{n(c)}\left(1 \pm D_{\mathrm{OBC}}^{i, n(c)} \xi_{n(c)}\right) \otimes \mathcal{R}_{\mathrm{OBC}}^{i}
$$

where the index i runs over the short- and long-lived charm meson components. This parameterization of OBC events significantly reduces the related systematic uncertainty. The two resolution functions $\mathcal{R}_{\text {OBC }}^{i}$ allow for different effective charm lifetimes and parameters of the three Gaussians, since the resolution function depends on the B and D flight lengths. Due to the different decay processes involved, the relative fractions $f_{i}^{n(c)}$ of short- and long-lived charm mesons are also different in neutral and charged B events. If particle identification were perfect and cascade leptons originated only from the $b \rightarrow c \rightarrow \ell^{+}$process, then flavor tagging would always be wrong and the factors $D_{\text {OBC }}^{i, n(c)}$ would be exactly -1 . Hadron misidentification (PID) and resonance decays, as well as leptons originating from the $b \rightarrow c \bar{c}\left(\rightarrow \ell^{-}\right) s$ chain, give a fraction of right tags (15\%) even in the OBC topology. These two processes have been factorized by writing $D_{\text {OBC }}^{i, n(c)}=D_{\text {PID }}^{i, n(c)} \cdot D_{b \rightarrow c \bar{c} s}^{i, n(c)}$ and assuming no correlation between the two terms.

Same B cascade (SBC) events, 4% of the selected sample, contain two leptons from a single B meson, obtained via the decay chain $b \rightarrow c \ell^{-} \bar{\nu}$, with $c \rightarrow x \ell^{+} \nu$. SBC events are insensitive to mixing and, in the case of perfect particle identification and in the absence of resonances,
would always give opposite-sign leptons. The PDFs are

$$
\mathcal{C}_{\mathrm{SBC}}^{n(c)}=\frac{e^{-|\Delta t| / \tau_{\mathrm{SBC}}^{n(c)}}}{4 \tau_{\mathrm{SBC}}^{n(c)}}\left(1 \pm D_{\mathrm{SBC}}^{n(c)}\right), \otimes \mathcal{R}
$$

where $\tau_{S B C}^{n(c)}$ are effective lifetimes and $D_{\text {SBC }}^{n(c)}$ are corrections for wrong tags in the SBC topology. The resolution \mathcal{R} is taken to be the same as for signal events, with no significant bias on the final result.

A small residual background remains (0.3% of the total sample) where both leptons are from an unrecognized J / ψ decay. These are described by a term $\Psi=\delta(\Delta t) \otimes \mathcal{R}$, whose normalization is obtained from simulation. Events where one lepton originates from a cascade decay and the other from a B decay to τ or to a resonance, and events where both leptons come from cascade decays, (0.3% of the total sample) are assigned the OBC event topology with no significant bias on Δm_{d}.

The fraction $f_{\text {cont }}=3.4 \%$ and Δt dependence of the continuum background are determined from offresonance data. The Δt dependence is parameterized for opposite- and same-sign leptons as $\mathcal{Q}_{ \pm}=$ $\tau_{\text {cont }}^{-1} e^{-\tau_{\text {cont }}|\Delta t|} f_{ \pm}$, with $f_{+}+f_{-}=1$.

The full likelihood function is the product of likelihoods for opposite- and same-sign events, which can be schematically written as

$$
\begin{aligned}
\mathcal{L}= & \left(1-f_{\text {cont }}\right)\left(1-f_{J / \psi}\right)[\\
& \left(1-f_{c}\right)\left(f_{\text {sig }}^{n} \mathcal{S}^{n}+f_{\mathrm{OBC}}^{n} \mathcal{C}_{\mathrm{OBC}}^{n}+f_{\mathrm{SBC}}^{n} \mathcal{C}_{\mathrm{SBC}}^{n}\right)+ \\
& \left.+f_{c}\left(f_{\mathrm{sig}}^{c} \mathcal{S}^{c}+f_{\mathrm{OBC}}^{c} \mathcal{C}_{\mathrm{OBC}}^{c}+f_{\mathrm{SBC}}^{c} \mathcal{C}_{\mathrm{SBC}}^{c}\right)\right]+ \\
& +\left(1-f_{\text {cont }}\right) f_{J / \psi} \Psi+f_{\text {cont }} \mathcal{Q}
\end{aligned}
$$

where the J / ψ term and its relative abundance $f_{J / \psi}$ are present for opposite-sign events only, and $f_{\text {sig }}^{n(c)}=$ $\left(1-f_{\mathrm{OBC}}^{n(c)}-f_{\mathrm{SBC}}^{n(c)}\right)$. The fraction f_{c} of charged B events in the selected sample and the OBC fraction f_{OBC}^{n} in neutral B events are extracted from the fit. The OBC fraction f_{OBC}^{c} in charged B events is scaled with f_{OBC}^{n} according to the value of the ratio $f_{\mathrm{OBC}}^{c} / f_{\mathrm{OBC}}^{n}$ determined with the Monte Carlo simulation. The SBC fractions are computed for simulated events and fixed in the fit. The various parameters for the OBC resolution functions are taken from a fit to Monte Carlo events. The factor $D_{\text {PID }}^{c}\left(D^{0}, D_{s}\right)$ is fitted and all the other corrections for wrong tags scale with $D_{\text {PID }}^{c}\left(D^{0}, D_{s}\right)$ according to ratios determined with simulated events.

To summarize, the values for $\Delta m_{d}, f_{c}, f_{\mathrm{OBC}}^{n}$, $D_{\text {PID }}^{c}\left(D^{0}, D_{s}\right), f_{D^{0}, D_{s}}^{n}$, and the widths and relative fractions of the Gaussian components for the signal resolution are determined in the likelihood fit. The B meson lifetimes are fixed to the values quoted in [7].

The result of a binned maximum likelihood fit to the data sample with the requirement $|\Delta t|<12 \mathrm{ps}$ yields $\Delta m_{d}=0.488 \pm 0.012 \mathrm{ps}^{-1}$ and $f_{c}=0.554 \pm 0.014$. Figure 1a and 1b show the Δt distributions for opposite-

FIG. 1: Distributions of decay time difference for (a) oppositesign and (b) same-sign dilepton events; (c) asymmetry between opposite- and same-sign dilepton events. Points are data and the lines correspond to the fit result.
and same-sign dilepton events, respectively, along with the result of the fit. Figure 1c shows the resulting asymmetry as a function of Δt. The widths of the three Gaussians for the signal resolution function are 0.55 ± 0.09, 1.06 ± 0.23 and $4.8 \pm 0.7 \mathrm{ps}$, and the corresponding fractions of events are $76 \%, 22 \%$ and 2%. The probability to obtain a worse fit is 65%, evaluated with an ensemble of data-sized experiments that are generated with a parameterized simulation based on the observed total PDF. The global fit is also performed on a sample from full Monte Carlo simulation, where the fitted results for parameters are consistent with generated values.

The fit result is found to be stable and consistent under a variety of choices for free parameters, where fixed values obtained from Monte Carlo simulation are substituted.

A summary of the systematic uncertainties is given in Table I, where the total is estimated to be $0.0087 \mathrm{ps}^{-1}$. The most important contributions are due to the B meson lifetimes, the Δt resolution function, and the modeling of OBC events. Varying the B meson lifetimes within their known errors [7] contributes an uncertainty of $0.0064 \mathrm{ps}^{-1}$ on Δm_{d}.

The systematic error due to the uncertain knowledge of the resolution function for OBC events is estimated by varying the parameters within their errors from the fit to simulated events, including the effect of correlations. A possible scale uncertainty between data and simulation is estimated by allowing a conservative increase of 20% in the OBC resolution width. The overall uncertainty due

TABLE I: Summary of systematic uncertainties

Source	$\sigma\left(\Delta m_{d}\right) \mathrm{ps}^{-1}$
B lifetimes	0.0064
OBC resolution/lifetimes	0.0026
Δt dependence of resolution	0.0043
z scale and SVT alignment	0.0020
OBC fractions/wrong tags	0.0020
Hadron misidentification	0.0010
J / ψ fraction	0.0003
Continuum parameterization	0.0009
Binned fit bias	0.0006
Beam energy uncertainty	0.0005
Total	0.0087

to the OBC resolution function is $0.0026 \mathrm{ps}^{-1}$. The impact of our treatment for the Δt dependence of both the signal and OBC resolution functions and the boost approximation has been studied with large parameterized Monte Carlo samples, which are based on the observed dependence in full simulation. Neglecting the Δt dependence results in a bias for Δm_{d} of $-0.0045 \mathrm{ps}^{-1}$. The fit result has been corrected to account for this bias and a corresponding systematic error of $0.0043 \mathrm{ps}^{-1}$ is assigned. Knowledge of the absolute z scale of the detector and the residual uncertainties in the SVT local alignment give a combined error of $0.0020 \mathrm{ps}^{-1}$.

Systematic effects due to the limited knowledge of the parameters of the OBC PDF, which are taken from simulated events, are greatly reduced by fitting the fractions of OBC and the short-lived charm component in neutral B events. The remaining systematic uncertainty $\left(0.0020 \mathrm{ps}^{-1}\right)$ is estimated by varying the otherwise fixed charm-related parameters (the amount of $D_{s}, f_{D^{0}, D_{s}}^{c}$ and the various fractions of cascades) by 10%, both coherently and in independent directions. This is a conservative range, given our present knowledge of the physics processes involved.

The ratios between the various wrong-tag factors due to hadron misidentification (PID) are conservatively varied by 30% in the fit. The maximum effect is obtained when the signal and cascade PID wrong-tag corrections are varied in opposite directions. In this case, the total systematic error is $0.0010 \mathrm{ps}^{-1}$.

The uncertainty on the fraction of J / ψ is 30%, which contributes an error on Δm_{d} of $0.0003 \mathrm{ps}^{-1}$. The effective lifetime, the fraction of same-sign events, and the fraction of continuum events are varied independently,
giving a combined systematic error of $0.0009 \mathrm{ps}^{-1}$. The dependence of the fit result on the number of bins has been estimated with a parameterized Monte Carlo simulation. A shift of $-0.0006 \mathrm{ps}^{-1}$ in Δm_{d} is observed and a corresponding correction applied with a systematic error of $0.0006 \mathrm{ps}^{-1}$. The uncertainty (0.1%) on the absolute scale of the beam energies gives an error of $0.0005 \mathrm{ps}^{-1}$ on Δm_{d}.

In conclusion, the neutral B meson oscillation frequency has been measured with an inclusive dilepton sample to be

$$
\Delta m_{d}=0.493 \pm 0.012(\text { stat }) \pm 0.009(\text { syst }) \mathrm{ps}^{-1}
$$

This result is the single most precise measurement to date and is consistent with a recent $B A B A R$ measurement with a fully reconstructed B^{0} sample [8].

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF (Germany), INFN (Italy), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the Swiss NSF, A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation.

* Also with Università di Perugia, Perugia, Italy
\dagger Also with Università della Basilicata, Potenza, Italy
[1] N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963); M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
[2] BABAR Collaboration, B. Aubert et al., SLAC-PUB-8569, hep-ex/0105044, to appear in Nucl. Instr. and Methods.
[3] C.G. Fox, S. Wolfram, Nucl. Phys. B149, 413 (1979).
[4] CLEO Collaboration, J.E. Duboscq et al., Phys. Rev. Lett. 76, 3898 (1996).
[5] J.L. Goity and W. Roberts, Phys. Rev. D51, 3459 (1995).
[6] D. Scora and N. Isgur, Phys. Rev. D52, 2783 (1995).
[7] Particle Data Group, D.E. Groom et al., Eur. Phys. J. C15, 1 (2000).
[8] BABAR Collaboration, B. Aubert et al., SLAC-PUB-9061, to be submitted to PRL.

