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Abstract

A natural calculus for describing the bound-state structure of relativistic compos-
ite systems in quantum field theory is the light-front Fock expansion which encodes
the properties of a hadrons in terms of a set of frame-independent n−particle wave-
functions. Light-front quantization in the doubly-transverse light-cone gauge has a
number of remarkable advantages, including explicit unitarity, a physical Fock expan-
sion, the absence of ghost degrees of freedom, and the decoupling properties needed
to prove factorization theorems in high momentum transfer inclusive and exclusive
reactions. A number of applications are discussed in these lectures, including semilep-
tonic B decays, two-photon exclusive reactions, diffractive dissociation into jets, and
deeply virtual Compton scattering. The relation of the intrinsic sea to the light-front
wavefunctions is discussed. Light-front quantization can also be used in the Hamil-
tonian form to construct an event generator for high energy physics reactions at
the amplitude level. The light-cone partition function, summed over exponentially-
weighted light-cone energies, has simple boost properties which may be useful for
studies in heavy ion collisions. I also review recent work which shows that the struc-
ture functions measured in deep inelastic lepton scattering are affected by final-state
rescattering, thus modifying their connection to light-front probability distributions.
In particular, the shadowing of nuclear structure functions is due to destructive in-
terference effects from leading-twist diffraction of the virtual photon, physics not
included in the nuclear light-cone wavefunctions.

1 Introduction

Progress in the development and testing of quantum chromodynamics will require
a detailed understanding of hadron processes at the amplitude level. For example,
exclusive B-meson decays depend critically on the wavefunction of the B as well as the
final-state hadronic wavefunctions. Spin correlations such as single-spin asymmetries
in hard QCD reactions, require an understanding of the phase structure of hadron
amplitudes, physics well beyond that contained in probability distributions.

One of the challenges of relativistic quantum field theory is to compute the wave-
functions of bound states, such as the amplitudes which determine the quark and
gluon substructure of hadrons in quantum chromodynamics. However, any extension
of the Heisenberg-Schrödinger formulation of quantum mechanics H|ψ〉 = i ∂

∂t
|ψ〉 =

E|ψ〉 to the relativistic domain has to confront seemingly intractable hurdles: (1)
quantum fluctuations preclude finite particle-number wavefunction representations;
(2) the charged particles arising from the quantum fluctuations of the vacuum con-
tribute to the matrix element of currents – thus knowledge of the wavefunctions alone
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is insufficient to determine observables; and (3) the boost of an equal-time wavefunc-
tion from one Lorentz frame to another not only changes particle number, but is as
complicated a dynamical problem as solving for the wavefunction itself.

In 1949, Dirac [1] made the remarkable observation that ordinary “instant” time
t is not the only possible evolution parameter. In fact, evolution in “light-front” time
τ = t + z/c = x+ has extraordinary advantages for relativistic systems, stemming
from the fact that 7 out of the 10 Poincare’ generators, including a Lorentz boost
K3, are kinematical (interaction-independent) when one quantizes a theory at fixed
light-front time.

The light-front fixes the initial boundary conditions of a composite system as its
constituents are intercepted by a light-wave evaluated on the hyperplane x+ = t+z/c.
In contrast, determining an atomic wavefunction at a given instant t = t0 requires
measuring the simultaneous scattering of Z photons on the Z electrons. In fact, the
Fock-state representation of bound states defined at equal light-cone time, i.e., along
the light-front, provides wavefunctions of fixed particle number which are independent
of the eigenstate’s four-momentum P µ. Furthermore, quantum fluctuations of the
vacuum are absent if one uses light-front time to quantize the system, so that matrix
elements such as the electromagnetic form factors only depend on the currents of the
constituents described by the light-cone wavefunctions. I will use here the notation
Aµ = (A+, A−, A⊥), where A± = A0 ± Az, and the metric is A · B = 1

2
(A+B− +

A−B+)− A⊥ · B⊥.
In Dirac’s “Front Form”, the generator of light-front time translations is P− = i ∂

∂τ
.

Boundary conditions are set on the transverse plane labelled by x⊥ and x− = z − ct.
See Fig. 1. Given the Lagrangian of a quantum field theory, P− can be constructed
as an operator on the Fock basis, the eigenstates of the free theory. Since each

particle in the Fock basis is on its mass shell, k− ≡ k0 − k3 =
k2
⊥+m2

k+ , and its energy
k0 = 1

2
(k++k−) is positive, only particles with positive momenta k+ ≡ k0+k3 ≥ 0 can

occur in the Fock basis. Since the total plus momentum P+ =
∑

n k
+
n is conserved, the

light-cone vacuum cannot have any particle content. The operatorHLC = P+P−−P 2
⊥,

the “light-cone Hamiltonian”, is frame-independent.
The Heisenberg equation on the light-front is

HLC |Ψ〉 = M2|Ψ〉 . (1)

This can in principle be solved by diagonalizing the matrix 〈n|HLC |m〉 on the free
Fock basis: [2] ∑

m

〈n|HLC |m〉 〈m|ψ〉 = M2 〈n|Ψ〉 . (2)

For example the interaction terms of QCD are illustrated in Fig. 2. The eigenvalues
{M2} of HLC = H0

LC + VLC give the squared invariant masses of the bound and
continuum spectrum of the theory. The light-front Fock space is the eigenstates of
the free light-front Hamiltonian; i.e., it is a Hilbert space of non-interacting quarks
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Figure 1: Dirac’s three forms of Hamiltonian dynamics. From Ref. [2].

and gluons, each of which satisfy k2 = m2 and k− =
m2+k2

⊥
k+ ≥ 0. The projections

{〈n|Ψ〉} of the eigensolution on the n-particle Fock states provide the light-front
wavefunctions. Thus solving a quantum field theory is equivalent to solving a coupled
many-body quantum mechanical problem:

[M2 −
n∑

i=1

m2
⊥i

xi
]ψn =

∑
n′

∫
〈n|VLC |n′〉ψn′ (3)

where the convolution and sum is understood over the Fock number, transverse mo-
menta, plus momenta, and helicity of the intermediate states. Here m2

⊥ = m2 + k2
⊥.

An essentially equivalent approach to light-front quantization, pioneered by Weinberg
[3, 4], is to evaluate the equal-time theory from the perspective of an observer moving
in the negative ẑ direction with arbitrarily large momentum Pz → −∞. The light-cone
fraction x = k+

p+ of a constituent can be identified with the longitudinal momentum

x = kz

P z in a hadron moving with large momentum P z. Light-front wavefunctions are
also related to momentum-space Bethe-Salpeter wavefunctions by integrating over
the relative momenta k− = k0 − kz since this projects out the dynamics at x+ = 0.

We can compare the light-front Fock expansion with the n-particle
Schrödinger momentum space wavefunction ψN(~pi) of a composite system is the pro-
jection of the exact eigenstate of the equal-time Hamiltonian on the n-particle states
of the non-interacting Hamiltonian, the Fock basis. It represents the amplitude for
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Figure 2: The front-form matrix of QCD interactions in light-cone gauge. Up to eight
constituents in a meson are shown. From Ref. [2] and H. C. Pauli.
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finding the constituents with three-momentum ~pi, orbital angular momentum, and
spin, subject to three-momentum conservation and angular momentum sum rules.

The constituents are on their mass shell, Ei =
√
~p2

i +m2
i but do not conserve energy∑n

i=1Ei > E =
√
~p2 +M2. However, in a relativistic quantum theory, a bound-state

cannot be represented as a state with a fixed number of constituents. For example,
the existence of gluons which propagate between the valence quarks necessarily im-
plies that the hadron wavefunction must describe states with an arbitrary number of
gluons. Thus a hadronic wavefunction must describe fluctuations in particle number
n, as well as momenta and spin. One has to take into account fluctuations in the
wavefunction which allow for any number of sea quarks, as long as the total quantum
numbers of the constituents are compatible with the overall quantum numbers of the
baryon.

It is especially convenient to develop the light-front formalism in the light-cone
gauge A+ = A0 + Az = 0. In this gauge the A− field becomes a dependent degree
of freedom, and it can be eliminated from the gauge theory Hamiltonian, with the
addition of a set of specific instantaneous light-front time interactions. In fact in
QCD(1 + 1) theory, this instantaneous interaction provides the confining linear x−

interaction between quarks. In 3 + 1 dimensions, the transverse field A⊥ propagates
massless spin-one gluon quanta with polarization vectors [5] which satisfy both the
gauge condition ε+λ = 0 and the Lorentz condition k · ε = 0. Thus no extra condition
on the Hilbert space is required.

In QCD, the wavefunction of a hadron describes its composition in terms of the
momenta and spin projections of quark and gluon constituents. For example, the
eigensolution of a negatively-charged meson QCD, projected on its color-singlet B =
0, Q = −1, Jz = 0 eigenstates {|n〉} of the free Hamiltonian HQCD

LC (g = 0) at fixed
τ = t− z/c has the expansion:

∣∣∣ΨM ;P+, ~P⊥, λ
〉

=
∑

n≥2,λi

∫
Πn

i=1

d2k⊥idxi√
xi16π3

16π3δ

1−
n∑
j

xj

 δ(2)

(
n∑
`

~k⊥`

)
∣∣∣n; xiP

+, xi
~P⊥ + ~k⊥i, λi

〉
ψn/M (xi, ~k⊥i, λi). (4)

The set of light-front Fock state wavefunctions {ψn/M} represent the ensemble of
quark and gluon states possible when the meson is intercepted at the light-front. The
light-front momentum fractions xi = k+

i /P
+
π = (k0 + kz

i )/(P
0 + P z) with

∑n
i=1 xi = 1

and ~k⊥i with
∑n

i=1
~k⊥i = ~0⊥ represent the relative momentum coordinates of the QCD

constituents and are independent of the total momentum of the state.
Remarkably, the light-front wavefunctions ψn/p(xi, ~k⊥i, λi) are independent of the

proton’s momentum P+ = P 0 + P z, and P⊥. Thus once one has solved for the light-
front wavefunctions, one can compute hadron matrix elements of currents between
hadronic states of arbitrary momentum. The actual physical transverse momenta
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are ~p⊥i = xi
~P⊥ + ~k⊥i. The λi label the light-front spin Sz projections of the quarks

and gluons along the quantization z direction. The spinors of the light-front for-
malism automatically incorporate the Melosh-Wigner rotation. The physical gluon
polarization vectors εµ(k, λ = ±1) are specified in light-cone gauge by the conditions
k · ε = 0, η · ε = ε+ = 0. The parton degrees of freedom are thus all physical; there
are no ghost or negative metric states.

The light-front representation thus provides a frame-independent, quantum-mechan-
ical representation of a hadron at the amplitude level, capable of encoding its multi-
quark, hidden-color and gluon momentum, helicity, and flavor correlations in the form
of universal process-independent hadron wavefunctions.

Angular momentum has simplifying features in the light-front formalism since
the projection Jz is kinematical and conserved. Each light-front Fock wavefunction
satisfies the angular momentum sum rule: Jz =

∑n
i=1 S

z
i +

∑n−1
j=1 l

z
j . The sum over

Sz
i represents the contribution of the intrinsic spins of the n Fock state constituents.

The sum over orbital angular momenta

lzj = −i

(
k1

j

∂

∂k2
j

− k2
j

∂

∂k1
j

)
(5)

derives from the n−1 relative momenta. This excludes the contribution to the orbital
angular momentum due to the motion of the center of mass, which is not an intrinsic
property of the hadron. The numerator structure of the light-front wavefunctions is
in large part determined by the angular momentum constraints.

If one imposes periodic boundary conditions in x− = t + z/c, then the plus mo-
menta become discrete: k+

i = 2π
L
ni, P

+ = 2π
L
K, where

∑
i ni = K [6, 7]. For a

given “harmonic resolution” K, there are only a finite number of ways positive in-
tegers ni can sum to a positive integer K. Thus at a given K, the dimension of
the resulting light-front Fock state representation of the bound state is rendered fi-
nite without violating Lorentz invariance. The eigensolutions of a quantum field
theory, both the bound states and continuum solutions, can then be found by nu-
merically diagonalizing a frame-independent light-front Hamiltonian HLC on a finite
and discrete momentum-space Fock basis. Solving a quantum field theory at fixed
light-front time τ thus can be formulated as a relativistic extension of Heisenberg’s
matrix mechanics. The continuum limit is reached for K → ∞. This formulation of
the non-perturbative light-front quantization problem is called “discretized light-cone
quantization” (DLCQ) [7]. Lattice gauge theory has also been used to calculate the
pion light-front wavefunction [8].

The DLCQ method has been used extensively for solving one-space and one-time
theories [2], including applications to supersymmetric quantum field theories [9] and
specific tests of the Maldacena conjecture [10]. There has been progress in system-
atically developing the computation and renormalization methods needed to make
DLCQ viable for QCD in physical spacetime. For example, John Hiller, Gary Mc-
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Cartor, and I [11] have shown how DLCQ can be used to solve 3+1 theories despite
the large numbers of degrees of freedom needed to enumerate the Fock basis. A key
feature of our work is the introduction of Pauli Villars fields to regulate the UV diver-
gences and perform renormalization while preserving the frame-independence of the
theory. A recent application of DLCQ to a 3+1 quantum field theory with Yukawa
interactions is given in Ref. [11]. There has also been important progress using the
transverse lattice, essentially a combination of DLCQ in 1+1 dimensions together with
a lattice in the transverse dimensions [12, 13, 14]. One can also define a truncated
theory by eliminating the higher Fock states in favor of an effective potential [15].
Spontaneous symmetry breaking and other nonperturbative effects associated with
the instant-time vacuum are hidden in dynamical or constrained zero modes on the
light-front. An introduction is given in Refs. [16, 17].

Because of their Lorentz invariance, it is particularily easy to write down exact
expressions for matrix elements of currents and other local operators, even the cou-
plings of gravitons. In fact as I discuss in Section 3, one can show that the anomalous
gravito-magnetic moment B(0), analogous to F2(0) in electromagnetic current in-
teractions, vanishes identically for any system, composite or elementary [18]. This
important feature which follows in general from the equivalence principle, is obeyed
explicitly in the light-front formalism.

The set of light-front wavefunctions provide a frame-independent, quantum-mechan-
ical description of hadrons at the amplitude level capable of encoding multi-quark and
gluon momentum, helicity, and flavor correlations in the form of universal process-
independent hadron wavefunctions. Matrix elements of spacelike currents such as
the spacelike electromagnetic form factors have an exact representation in terms of
simple overlaps of the light-front wavefunctions in momentum space with the same
xi and unchanged parton number [19, 20, 21]. The measurement and interpretation
of the basic parameters of the electroweak theory and CP violation depends on an
understanding of the dynamics and phase structure of B decays at the amplitude
level. The light-front Fock representation is specially advantageous in the study of
exclusive B decays. For example, we can write down an exact frame-independent
representation of decay matrix elements such as B → D`ν from the overlap of n′ = n
parton conserving wavefunctions and the overlap of n′ = n− 2 from the annihilation
of a quark-antiquark pair in the initial wavefunction [22]. The handbag contribu-
tion to the leading-twist off-forward parton distributions measured in deeply virtual
Compton scattering have a similar light-front wavefunction representation as overlap
integrals of light-front wavefunctions [23, 24]. I will review this application in Sections
3 and 4.

Factorization theorems have recently been proven which allow one to rigorously
compute certain types of exclusive B decays in terms of the light-front wavefunctions
and distribution amplitudes of B meson and the final state hadrons. The proofs are
similar to those used in the analysis of exclusive amplitudes involving large momentum
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transfer. I review this topic in Section 5 and 6.

In principle, the light-front wavefunctions contain fluctuations of states with arbi-
trary number of quark and gluon partons. For example, contains higher Fock states
such as uudss > and uudcc > which are intrinsic to the physics of the proton itself;
i.e., they are multi-connected to the valence quarks and are not generated by gluon
splitting. A rigorous analysis of the momentum fraction and spin carried by intrinsic
heavy quarks recently been given by Franz et al [25]. These quantities scale nominally
as 1/m2

Q in non-Abelian gauge theory, in striking contrast to the 1/m4
Q scaling which

follows from the Euler-Heisenberg Lagrangian in QED. In general, the intrinsic sea in
the proton is asymmetric between the Q(x) and Q(x) distributions, in contrast to the
near symmetry of quark and antiquark distributions generated by DGLAP evolution.

The fact that the B meson contains Fock states with intrinsic strangeness and
charm leads to a number of new phenomena in exclusive B decays. In particular,
since the charm quarks can facilitate weak interactions, one can evade the CKM
hierarchy. Susan Gardner and I have shown that the color octet intrinsic charm Fock
components of the B meson can give significant modifications of standard predictions
for channels such as B → ρπ. I will review this in Section 8.

The quark and gluon probability distributions qi(x,Q) and g(x,Q) of a hadron can
be computed from the absolute squares of the light-front wavefunctions, integrated
over the transverse momentum up to the resolution scale Q. All helicity distributions
are thus encoded in terms of the light-front wavefunctions. The DGLAP evolution of
the structure functions can be derived from the high k⊥ properties of the light-front
wavefunctions. Thus given the light-front wavefunctions, one can compute [5] all of
the leading twist helicity and transversity distributions measured in polarized deep
inelastic lepton scattering. For example, the helicity-specific quark distributions at
resolution Λ correspond to

qλq/Λp(x,Λ) =
∑
n,qa

∫ n∏
j=1

dxjd
2k⊥j

16π3

∑
λi

|ψ(Λ)
n/H(xi, ~k⊥i, λi)|2 (6)

×16π3δ

(
1−

n∑
i

xi

)
δ(2)

(
n∑
i

~k⊥i

)
δ(x− xq)δλ,λqΘ(Λ2 −M2

n) ,

where the sum is over all quarks qa which match the quantum numbers, light-front
momentum fraction x, and helicity of the struck quark. Similarly, the transversity
distributions and off-diagonal helicity convolutions are defined as a density matrix of
the light-front wavefunctions. This defines the LC factorization scheme [5] where the
invariant mass squared M2

n =
∑n

i=1 (k2
⊥i +m2

i )/xi of the n partons of the light-front
wavefunctions is limited to M2

n < Λ2.

However, it is not true that the leading-twist structure functions Fi(x,Q
2) mea-

sured in deep inelastic lepton scattering are identical to the quark and gluon distri-
butions. For example, it is usually assumed, following the parton model, that the F2
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structure function measured in neutral current deep inelastic lepton scattering is at
leading order in 1/Q2 simply F2(x,Q

2) =
∑

q e
2
qxq(x,Q

2), where x = xbj = Q2/2p · q
and q(x,Q) can be computed from the absolute square of the proton’s light-front
wavefunction. I will report on recent work by Paul Hoyer, Nils Marchal, Stephane
Peigne, Francesco Sannino, and myself which shows that this standard identification
is wrong. In particular, the shadowing corrections related to the Gribov-Glauber
mechanism, the interference effects of leading twist diffractive processes in nuclei are
separate effects in deep inelastic scattering, are not computable from the bound state
wavefunctions of the target nucleon or nucleus.

Remarkably, it is now possible to measure the light-front wavefunctions of a rela-
tivistic hadron by diffractively dissociating it into jets whose momentum distribution
is correlated with the valence quarks’ momenta [26, 27, 28, 29]. At high energies each
light-front Fock state interacts distinctly; e.g., Fock states with small particle num-
ber and small impact separation have small color dipole moments and can traverse
a nucleus with minimal interactions. This is the basis for the predictions for “color
transparency” in hard quasi-exclusive [30, 31] and diffractive reactions [27, 28, 29].
QCD color transparency thus tests a fundamental ansatz of QCD, that hadronic inter-
actions are a manifestation of gauge interactions. The E791 experiment has recently
provided a remarkable confirmation of this consequence of QCD color transparency, a
key property of LCWFs and the gauge field interactions in QCD. The new EVA spec-
trometer experiment E850 at Brookhaven has also reported striking effects of color
transparency in quasi-elastic proton-proton scattering in nuclei [32]. I will review this
important development in Section 7.

The CLEO collaboration has verified the scaling and angular predictions for hard
exclusive two-photon processes such as γ∗γ → π0 and γγ → π+π−. The L3 experi-
ment at LEP at CERN has also measured a number of exclusive hadron production
channels in two-photon processes, providing important constraints on baryon and
meson distribution amplitudes and checks of perturbative QCD factorization. These
processes are particularly sensitive to the meson distribution amplitudes, the non-
perturbative wavefunctions which control hard QCD exclusive processes, information
essential for progress in interpreting exclusive B decays. New data from CLEO (Paar,
et al.) for γγ → π+π+ +K+K− at W =

√
s > 2.5 GeV. is in striking agreement with

the perturbative QCD prediction given by Lepage and myself. Moreover, the angular
distribution shows a striking transition to the predicted QCD form as W is raised.
The γ∗γ → π0 results are in close agreement with the scaling and normalization of
the PQCD prediction, provided that the pion distribution amplitude φπ(x,Q) is close
to the x(1 − x) form, the asymptotic solution to the evolution equation. In Section
6 I review the theory and emphasized the need for more such meson pair production
data, particularly measurements of ratios and angular dependencies which are partic-
ularly sensitive to the meson and baryon distribution amplitudes [5], φM(x,Q), and
φB(xi, Q). These quantities specify how a hadron shares its longitudinal momentum
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among its valence quarks; they control virtually all exclusive processes involving a
hard scale Q, including form factors, Compton scattering and photoproduction at
large momentum transfer, as well as the decay of a heavy hadron into specific final
states [33, 34].

The discretized light-front quantization method developed by H.C. Pauli and my-
self [35] is a powerful technique for finding the non-perturbative solutions of quantum
field theories. The basic method is to diagonalize the light-front Hamiltonian in a
light-front Fock basis defined using periodic boundary conditions in x− and x⊥. The
method preserves the frame-independence of the Front form. The DLCQ method is
now used extensively to solve one-space and one-time theories, including supersym-
metric theories. New applications of DLCQ to supersymmetric quantum field theories
and specific tests of the Maldacena conjecture have recently been given by Pinsky and
Trittman.

There has been progress recently in systematically developing the computation
and renormalization methods needed to make DLCQ viable for QCD in physical
spacetime. Recently John Hiller, Gary McCartor and I have shown how DLCQ can
be used to solve 3+1 theories despite the large numbers of degrees of freedom needed to
enumerate the Fock basis [11]. A key feature of our work, is the introduction of Pauli
Villars fields in order to regulate the UV divergences and perform renormalization,
again while preserving the frame-independence of the theory. Further discussion will
be given in Section 9. A review of DLCQ and its applications is given in Ref. [36].
There also has been important progress using the transverse lattice, essentially a
combination of DLCQ in i+1 dimensions together with a lattice in the transverse
space.

Models of the light-front wavefunction are important in the absence of exact so-
lutions. A simple but potentially useful model developed by Dae Sung Hwang and
myself is discussed in Section 10.

The interaction Hamiltonian of QCD in light-cone gauge can be derived by sys-
tematically applying the Dirac bracket method to identify the independent fields
[37]. It contains the usual Dirac interactions between the quarks and gluons, the
three-point and four-point gluon non-Abelian interactions plus instantaneous light-
front-time gluon exchange and quark exchange contributions

Hint = −g ψi
γµAµ

ijψj

+
g

2
fabc (∂µA

a
ν − ∂νA

a
µ)AbµAcν

+
g2

4
fabcfadeAbµA

dµAcνA
eν

−g
2

2
ψ

i
γ+ (γ⊥

′
A⊥′)ij 1

i∂−
(γ⊥A⊥)jk ψk
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−g
2

2
j+

a

1

(∂−)2
j+

a (7)

where
j+

a = ψ
i
γ+(ta)

ijψj + fabc(∂−Abµ)Acµ . (8)

In light-front time-ordered perturbation theory, a Green’s functions is expanded
as a power series in the interactions with light-front energy denominators

∑
initial k

−
i −∑

intermediate k
−
i + iε replacing the usual energy denominators. [For a review see Ref.

[38].] In general each Feynman diagram with n vertices corresponds to the sum of n!
time-ordered contributions. However, in light-front-time-ordered perturbation theory,
only those few graphs where all k+

i ≥ 0 survive. In addition the form of the light-front

kinetic energies is rational: k− =
k2
⊥+m2

k+ , replacing the nonanalytic k0 =
√
~k2 +m2

of equal-time theory. Thus light-front-time-ordered perturbation theory provides a
viable computational method where one can trace the physical evolution of a process.
The integration measures are only three-dimensional d2k⊥dx; in effect, the k− integral
of the covariant perturbation theory is performed automatically.

Alternatively, one derive Feynman rules for QCD in light-cone gauge, thus allow-
ing the use of standard covariant computational tools and renormalization methods
including dimensional regularization. Prem Srivastava and I [37] have recently pre-
sented a systematic study of light-front-quantized gauge theory in light-cone gauge
using a Dyson-Wick S-matrix expansion based on light-front-time-ordered products.
The gluon propagator has the form

〈
0| T (Aa

µ(x)Ab
ν(0)) |0

〉
=

iδab

(2π)4

∫
d4k e−ik·x Dµν(k)

k2 + iε
(9)

where we have defined

Dµν(k) = Dνµ(k) = −gµν +
nµkν + nνkµ

(n · k) − k2

(n · k)2
nµnν . (10)

Here nµ is a null four-vector, gauge direction, whose components are chosen to be
nµ = δµ

+, nµ = δµ−. Note also

Dµλ(k)D
λ

ν(k) = Dµ⊥(k)D⊥
ν(k) = −Dµν(k),

kµDµν(k) = 0, nµDµν(k) ≡ D−ν(k) = 0,

Dλµ(q)Dµν(k)Dνρ(q
′) = −Dλµ(q)Dµρ(q′). (11)

The gauge field propagator iDµν(k)/(k
2 + iε) is transverse not only to the gauge

direction nµ but also to kµ, i.e., it is doubly-transverse. This leads to appreciable
simplifications in the computations in QCD. For example, the coupling of gluons to
propagators carrying high momenta is automatic. The absence of collinear divergences
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in irreducible diagrams in the light-cone gauge greatly simplifies the leading-twist
factorization of soft and hard gluonic corrections in high momentum transfer inclusive
and exclusive reactions [5] since the numerators associated with the gluon coupling
only have transverse components. The renormalization factors in the light-cone gauge
are independent of the reference direction nµ. Since the gluon only has physical
polarization, its renormalization factors satisfy Z1 = Z3. Because of its explicit
unitarity in each graph, the doubly-transverse gauge is well suited for calculations
identifying the “pinch” effective charge [39, 40].

The running coupling constant and QCD β function have also been computed at
one loop in the doubly-transverse light-cone gauge [37]. It is also possible to effectively
quantize QCD using light-front methods in covariant Feynman gauge [41].

A remarkable advantage of light-front quantization is that the vacuum state | 0〉 of
the full QCD Hamiltonian evidently coincides with the free vacuum. The light-front
vacuum is effectively trivial if the interaction Hamiltonian applied to the perturbative
vacuum is zero. Note that all particles in the Hilbert space have positive energy
k0 = 1

2
(k+ + k−), and thus positive light-front k±. Since the plus momenta

∑
k+

i is
conserved by the interactions, the perturbative vacuum can only couple to states with
particles in which all k+

i = 0; i.e., so called zero-mode states. In the case of QED, a
massive electron cannot have k+ = 0 unless it also has infinite energy. In a remarkable
calculation, Bassetto and collaborators [42] have shown that the computation of the
spectrum of QCD(1 + 1) in equal time quantization requires constructing the full
spectrum of non perturbative contributions (instantons). In contrast, in the light-
front quantization of gauge theory, where the k+ = 0 singularity of the instantaneous
interaction is defined by a simple infrared regularization, one obtains the correct
spectrum of QCD(1 + 1) without any need for vacuum-related contributions.

In the case of QCD(3+1), the momentum-independent four-gluon non-Abelian
interaction in principle can couple the perturbative vacuum to a state with four
collinear gluons in which all of the gluons have all components kµ

i = 0, thus hinting
at role for zero modes in theories with massless quanta. In fact, zero modes of auxiliary
fields are necessary to distinguish the theta-vacua of massless QED(1+1) [17, 43, 44],
or to represent a theory in the presence of static external boundary conditions or
other constraints. Zero-modes provide the light-front representation of spontaneous
symmetry breaking in scalar theories [45].

There are other applications of the light-front formalism:

1. The distribution of spectator particles in the final state in the proton fragmen-
tation region in deep inelastic scattering at an electron-proton collider are encoded in
the light-front wavefunctions of the target proton. Conversely, the light-front wave-
functions can be used to describe the coalescence of comoving quarks into final state
hadrons.

2. The light-front wavefunctions also specify the multi-quark and gluon correla-
tions of the hadron. Despite the many sources of power-law corrections to the deep
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inelastic cross section, certain types of dynamical contributions will stand out at
large xbj since they arise from compact, highly-correlated fluctuations of the proton
wavefunction. In particular, there are particularly interesting dynamical O(1/Q2)
corrections which are due to the interference of quark currents; i.e., contributions
which involve leptons scattering amplitudes from two different quarks of the target
nucleon [46].

3. The higher Fock states of the light hadrons describe the sea quark structure
of the deep inelastic structure functions, including “intrinsic” strangeness and charm
fluctuations specific to the hadron’s structure rather than gluon substructure [47, 48].
Ladder relations connecting state of different particle number follow from the QCD
equation of motion and lead to Regge behavior of the quark and gluon distributions
at x→ 0 [49].

4. The gauge- and process-independent meson and baryon valence-quark distribu-
tion amplitudes φM(x,Q), and φB(xi, Q) which control exclusive processes involving
a hard scale Q, including heavy quark decays, are given by the valence light-front
Fock state wavefunctions integrated over the transverse momentum up to the reso-
lution scale Q. The evolution equations for distribution amplitudes follow from the
perturbative high transverse momentum behavior of the light-front wavefunctions
[38].

5. Proofs of factorization theorems in hard exclusive and inclusive reactions are
greatly simplified since the propagating gluons in light-cone gauge couple only to
transverse currents; collinear divergences are thus automatically suppressed.

6. The deuteron form factor at high Q2 is sensitive to wavefunction configura-
tions where all six quarks overlap within an impact separation b⊥i < O(1/Q). The
leading power-law fall off predicted by QCD is Fd(Q

2) = f(αs(Q
2))/(Q2)5, where,

asymptotically, f(αs(Q
2)) ∝ αs(Q

2)5+2γ [50, 51]. In general, the six-quark wavefunc-
tion of a deuteron is a mixture of five different color-singlet states. The dominant
color configuration at large distances corresponds to the usual proton-neutron bound
state. However at small impact space separation, all five Fock color-singlet compo-
nents eventually evolve to a state with equal weight, i.e., the deuteron wavefunction
evolves to 80% “hidden color” [51]. The relatively large normalization of the deuteron
form factor observed at large Q2 hints at sizable hidden-color contributions [52]. Hid-
den color components can also play a predominant role in the reaction γd→ J/ψpn
at threshold if it is dominated by the multi-fusion process γgg → J/ψ [53]. Hard
exclusive nuclear processes can also be analyzed in terms of “reduced amplitudes”
which remove the effects of nucleon substructure.

Light-front wavefunctions are thus the frame-independent interpolating functions
between hadron and quark and gluon degrees of freedom. Hadron amplitudes are com-
puted from the convolution of the light-front wavefunctions with irreducible quark-
gluon amplitudes. More generally, all multi-quark and gluon correlations in the bound
state are represented by the light-front wavefunctions. The light-front Fock represen-
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tation is thus a representation of the underlying quantum field theory. I will discuss
progress in computing light-front wavefunctions directly from QCD in Sections 9 and
10.

Light-front quantization can also be used in the Hamiltonian form to construct an
event generator for high energy physics reactions at the amplitude level. The light-
front partition function, summed over exponentially-weighted light-front energies,
has simple boost properties which may be useful for studies in heavy ion collisions. I
discuss these topics in Sections 14 and 15.

2 Other Theoretical Tools

In addition to the light-front Fock expansion, a number of other useful theoretical
tools are available to eliminate theoretical ambiguities in QCD predictions:

(1) Conformal symmetry provides a template for QCD predictions [54], leading to
relations between observables which are present even in a theory which is not scale
invariant. For example, the natural representation of distribution amplitudes is in
terms of an expansion of orthonormal conformal functions multiplied by anomalous
dimensions determined by QCD evolution equations [55, 56, 57]. Thus an important
guide in QCD analyses is to identify the underlying conformal relations of QCD
which are manifest if we drop quark masses and effects due to the running of the
QCD couplings. In fact, if QCD has an infrared fixed point (vanishing of the Gell-
Mann-Low function at low momenta), the theory will closely resemble a scale-free
conformally symmetric theory in many applications.

(2) Commensurate scale relations [58, 59] are perturbative QCD predictions which
relate observable to observable at fixed relative scale, such as the “generalized Crewther
relation” [60], which connects the Bjorken and Gross-Llewellyn Smith deep inelastic
scattering sum rules to measurements of the e+e− annihilation cross section. Such
relations have no renormalization scale or scheme ambiguity. The coefficients in the
perturbative series for commensurate scale relations are identical to those of conformal
QCD; thus no infrared renormalons are present [54]. One can identify the required
conformal coefficients at any finite order by expanding the coefficients of the usual
PQCD expansion around a formal infrared fixed point, as in the Banks-Zak method
[40]. All non-conformal effects are absorbed by fixing the ratio of the respective mo-
mentum transfer and energy scales. In the case of fixed-point theories, commensurate
scale relations relate both the ratio of couplings and the ratio of scales as the fixed
point is approached [54].

(3) αV and Skeleton Schemes. A physically natural scheme for defining the QCD
coupling in exclusive and other processes is the αV (Q2) scheme defined from the
potential of static heavy quarks. Heavy-quark lattice gauge theory can provide highly
precise values for the coupling. All vacuum polarization corrections due to fermion
pairs are then automatically and analytically incorporated into the Gell Mann-Low
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function, thus avoiding the problem of explicitly computing and resumming quark
mass corrections related to the running of the coupling [61]. The use of a finite
effective charge such as αV as the expansion parameter also provides a basis for
regulating the infrared nonperturbative domain of the QCD coupling. A similar
coupling and scheme can be based on an assumed skeleton expansion of the theory
[39, 40].

(4) The Abelian Correspondence Principle. One can consider QCD predictions as
analytic functions of the number of colors NC and flavors NF . In particular, one can
show at all orders of perturbation theory that PQCD predictions reduce to those of
an Abelian theory at NC → 0 with α̂ = CFαs and N̂F = 2NF/CF held fixed [62].
There is thus a deep connection between QCD processes and their corresponding
QED analogs.

3 Applications of Light-Front Wavefunctions to

Current Matrix Elements

The light-front Fock representation of current matrix elements has a number of simpli-
fying properties. The space-like local operators for the coupling of photons, gravitons
and the deep inelastic structure functions can all be expressed as overlaps of light-
front wavefunctions with the same number of Fock constituents. This is possible since
one can choose the special frame q+ = 0 [19, 20] for space-like momentum transfer
and take matrix elements of “plus” components of currents such as J+ and T++.
No contributions to the current matrix elements from vacuum fluctuations occur.
Similarly, given the local operators for the energy-momentum tensor T µν(x) and the
angular momentum tensor Mµνλ(x), one can directly compute momentum fractions,
spin properties, and the form factors A(q2) and B(q2) appearing in the coupling of
gravitons to composite systems [18].

In the case of a spin-1
2

composite system, the Dirac and Pauli form factors F1(q
2)

and F2(q
2) are defined by

〈P ′|Jµ(0)|P 〉 = u(P ′)
[
F1(q

2)γµ + F2(q
2)

i

2M
σµαqα

]
u(P ) , (12)

where qµ = (P ′ − P )µ and u(P ) is the bound state spinor. In the light-front formal-
ism it is convenient to identify the Dirac and Pauli form factors from the helicity-
conserving and helicity-flip vector current matrix elements of the J+ current [21]:〈

P + q, ↑
∣∣∣∣∣J+(0)

2P+

∣∣∣∣∣P, ↑
〉

= F1(q
2) , (13)

〈
P + q, ↑

∣∣∣∣∣J+(0)

2P+

∣∣∣∣∣P, ↓
〉

= −(q1 − iq2)
F2(q

2)

2M
. (14)
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The magnetic moment of a composite system is one of its most basic properties. The
magnetic moment is defined at the q2 → 0 limit,

µ =
e

2M
[F1(0) + F2(0)] , (15)

where e is the charge andM is the mass of the composite system. We use the standard
light-front frame (q± = q0 ± q3):

q = (q+, q−, ~q⊥) =

(
0,
−q2

P+
, ~q⊥

)
,

P = (P+, P−, ~P⊥) =

(
P+,

M2

P+
,~0⊥

)
, (16)

where q2 = −2P · q = −~q2
⊥ is 4-momentum square transferred by the photon.

The Pauli form factor and the anomalous magnetic moment κ = e
2M
F2(0) can

then be calculated from the expression

−(q1 − iq2)
F2(q

2)

2M
=
∑
a

∫
d2~k⊥dx

16π3

∑
j

ej ψ
↑∗
a (xi, ~k

′
⊥i, λi)ψ

↓
a(xi, ~k⊥i, λi) , (17)

where the summation is over all contributing Fock states a and struck constituent
charges ej. The arguments of the final-state light-front wavefunction are

~k′⊥i = ~k⊥i + (1− xi)~q⊥ (18)

for the struck constituent and

~k′⊥i = ~k⊥i − xi~q⊥ (19)

for each spectator. Notice that the magnetic moment must be calculated from the
spin-flip non-forward matrix element of the current. In the ultra-relativistic limit
where the radius of the system is small compared to its Compton scale 1/M , the
anomalous magnetic moment must vanish [21]. The light-front formalism is consistent
with this theorem.

The form factors of the energy-momentum tensor for a spin- 1
2

composite are
defined by

〈P ′|T µν(0)|P 〉 = u(P ′)
[
A(q2)γ(µP

ν)
+B(q2)

i

2M
P

(µ
σν)αqα

+C(q2)
1

M
(qµqν − gµνq2)

]
u(P ) , (20)

where qµ = (P ′ − P )µ, P
µ

= 1
2
(P ′ + P )µ, a(µbν) = 1

2
(aµbν + aνbµ), and u(P ) is the

spinor of the system. One can also readily obtain the light-front representation of the
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A(q2) and B(q2) form factors of the energy-tensor Eq. (20) [18]. In the interaction
picture, only the non-interacting parts of the energy momentum tensor T++(0) need
to be computed: 〈

P + q, ↑
∣∣∣∣∣T++(0)

2(P+)2

∣∣∣∣∣P, ↑
〉

= A(q2) , (21)

〈
P + q, ↑

∣∣∣∣∣T++(0)

2(P+)2

∣∣∣∣∣P, ↓
〉

= −(q1 − iq2)
B(q2)

2M
. (22)

The A(q2) and B(q2) form factors Eqs. (21) and (22) are similar to the F1(q
2) and

F2(q
2) form factors Eqs. (13) and (14) with an additional factor of the light-front

momentum fraction x = k+/P+ of the struck constituent in the integrand. The B(q2)
form factor is obtained from the non-forward spin-flip amplitude. The value of B(0)
is obtained in the q2 → 0 limit. The angular momentum projection of a state is given
by

〈
J i
〉

=
1

2
εijk

∫
d3x

〈
T 0kxj − T 0jxk

〉
= A(0)

〈
Li
〉

+ [A(0) +B(0)]u(P )
1

2
σiu(P ) . (23)

This result is derived using a wave-packet description of the state. The 〈Li〉 term
is the orbital angular momentum of the center of mass motion with respect to an
arbitrary origin and can be dropped. The coefficient of the 〈Li〉 term must be 1;
A(0) = 1 also follows when we evaluate the four-momentum expectation value 〈P µ〉.
Thus the total intrinsic angular momentum Jz of a nucleon can be identified with the
values of the form factors A(q2) and B(q2) at q2 = 0 :

〈Jz〉 =
〈

1

2
σz
〉

[A(0) +B(0)] . (24)

The anomalous moment coupling B(0) to a graviton can in fact be shown to
vanish for any composite system. This remarkable result, first derived by Okun and
Kobzarev [63, 64, 65, 66, 67], follows directly from the Lorentz boost properties of
the light-front Fock representation [18].

Dae Sung Hwang, Bo-Qiang Ma, Ivan Schmidt, and I [18] have recently shown that
the light-front wavefunctions generated by the radiative corrections to the electron in
QED provides a simple system for understanding the spin and angular momentum
decomposition of relativistic systems. This perturbative model also illustrates the
interconnections between Fock states of different number. The model is patterned
after the quantum structure which occurs in the one-loop Schwinger α/2π correction
to the electron magnetic moment [21]. In effect, we can represent a spin- 1

2
system as

a composite of a spin-1
2

fermion and spin-one vector boson with arbitrary masses. A
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Figure 3: Exact representation of electroweak decays and time-like form factors in
the light-front Fock representation.

similar model has been used to illustrate the matrix elements and evolution of light-
front helicity and orbital angular momentum operators [68]. This representation of
a composite system is particularly useful because it is based on two constituents but
yet is totally relativistic. We can then explicitly compute the form factors F1(q

2)
and F2(q

2) of the electromagnetic current, and the various contributions to the form
factors A(q2) and B(q2) of the energy-momentum tensor.

Another remarkable advantage of the light-front formalism is that exclusive semilep-
tonic B-decay amplitudes such as B → A`ν can also be evaluated exactly [22]. The
time-like decay matrix elements require the computation of the diagonal matrix ele-
ment n → n where parton number is conserved, and the off-diagonal n + 1 → n − 1
convolution where the current operator annihilates a qq′ pair in the initial B wave-
function. See Fig. 3. This term is a consequence of the fact that the time-like
decay q2 = (p` + pν)

2 > 0 requires a positive light-front momentum fraction q+ > 0.
Conversely for space-like currents, one can choose q+ = 0, as in the Drell-Yan-West
representation of the space-like electromagnetic form factors. However, as can be seen
from the explicit analysis of the form factor in a perturbative model, the off-diagonal
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convolution can yield a nonzero q+/q+ limiting form as q+ → 0. This extra term
appears specifically in the case of “bad” currents such as J− in which the coupling
to qq fluctuations in the light-front wavefunctions are favored. In effect, the q+ → 0
limit generates δ(x) contributions as residues of the n+1 → n−1 contributions. The
necessity for such “zero mode” δ(x) terms has been noted by Chang, Root and Yan
[69], Burkardt [70], and Ji and Choi [71].

The off-diagonal n + 1 → n − 1 contributions give a new perspective for the
physics of B-decays. A semileptonic decay involves not only matrix elements where
a quark changes flavor, but also a contribution where the leptonic pair is created
from the annihilation of a qq′ pair within the Fock states of the initial B wavefunc-
tion. The semileptonic decay thus can occur from the annihilation of a nonvalence
quark-antiquark pair in the initial hadron. This feature will carry over to exclusive
hadronic B-decays, such as B0 → π−D+. In this case the pion can be produced from
the coalescence of a du pair emerging from the initial higher particle number Fock
wavefunction of the B. The D meson is then formed from the remaining quarks after
the internal exchange of a W boson.

In principle, a precise evaluation of the hadronic matrix elements needed for B-
decays and other exclusive electroweak decay amplitudes requires knowledge of all of
the light-front Fock wavefunctions of the initial and final state hadrons. In the case
of model gauge theories such as QCD(1+1) [72] or collinear QCD [73] in one-space
and one-time dimensions, the complete evaluation of the light-front wavefunction is
possible for each baryon or meson bound-state using the DLCQ method. It would be
interesting to use such solutions as a model for physical B-decays.

4 Light-front Representation of Deeply Virtual

Compton Scattering

The virtual Compton scattering process dσ
dt

(γ∗p → γp) for large initial photon virtu-
ality q2 = −Q2 has extraordinary sensitivity to fundamental features of the proton’s
structure. Even though the final state photon is on-shell, the deeply virtual process
probes the elementary quark structure of the proton near the light front as an ef-
fective local current. In contrast to deep inelastic scattering, which measures only
the absorptive part of the forward virtual Compton amplitude ImTγ∗p→γ∗p, deeply
virtual Compton scattering allows the measurement of the phase and spin structure
of proton matrix elements for general momentum transfer squared t. In addition, the
interference of the virtual Compton amplitude and Bethe-Heitler wide angle scatter-
ing Bremsstrahlung amplitude where the photon is emitted from the lepton line leads
to an electron-positron asymmetry in the e±p→ e±γp cross section which is propor-
tional to the real part of the Compton amplitude [74, 75, 76]. The deeply virtual
Compton amplitude γ∗p → γp is related by crossing to another important process
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γ∗γ → hadron pairs at fixed invariant mass which can be measured in electron-photon
collisions [77].

To leading order in 1/Q, the deeply virtual Compton scattering amplitude
γ∗(q)p(P ) → γ(q′)p(P ′) factorizes as the convolution in x of the amplitude tµν for
hard Compton scattering on a quark line with the generalized Compton form factors
H(x, t, ζ), E(x, t, ζ), H̃(x, t, ζ), and Ẽ(x, t, ζ) of the target proton [64, 65, 78, 79, 80,
81, 82, 83, 84, 85, 86, 87]. Here x is the light-front momentum fraction of the struck
quark, and ζ = Q2/2P · q plays the role of the Bjorken variable. The square of the

four-momentum transfer from the proton is given by t = ∆2 = 2P ·∆ = − (ζ2M2+~∆2
⊥)

(1−ζ)

, where ∆ is the difference of initial and final momenta of the proton (P = P ′ + ∆).
We will be interested in deeply virtual Compton scattering where q2 is large compared
to the masses and t. Then, to leading order in 1/Q2, −q2

2PI ·q = ζ . Thus ζ plays the
role of the Bjorken variable in deeply virtual Compton scattering. For a fixed value
of −t, the allowed range of ζ is given by

0 ≤ ζ ≤ (−t)
2M2


√√√√1 +

4M2

(−t) − 1

 . (25)

The form factor H(x, t, ζ) describes the proton response when the helicity of the pro-
ton is unchanged, and E(x, t, ζ) is for the case when the proton helicity is flipped.
Two additional functions H̃(x, t, ζ), and Ẽ(x, t, ζ) appear, corresponding to the de-
pendence of the Compton amplitude on quark helicity.

Recently, Markus Diehl, Dae Sung Hwang and I [23] have shown how the deeply
virtual Compton amplitude can be evaluated explicitly in the Fock state represen-
tation using the matrix elements of the currents and the boost properties of the
light-front wavefunctions. For the n→ n diagonal term (∆n = 0), the arguments of

the final-state hadron wavefunction are x1−ζ
1−ζ

, ~k⊥1− 1−x1

1−ζ
~∆⊥ for the struck quark and

xi

1−ζ
, ~k⊥i + xi

1−ζ
~∆⊥ for the n− 1 spectators. We thus obtain formulae for the diagonal

(parton-number-conserving) contribution to the generalized form factors for deeply
virtual Compton amplitude in the domain [85, 84, 88] ζ ≤ x1 ≤ 1:

√
1− ζf1 (n→n)(x1, t, ζ) −

ζ2

4
√

1− ζ
f2 (n→n)(x1, t, ζ)

=
∑
n, λ

n∏
i=1

∫ 1

0
dxi(i6=1)

∫
d2~k⊥i

2(2π)3
δ

1−
n∑

j=1

xj

 δ(2)

 n∑
j=1

~k⊥j


×ψ↑ ∗

(n) (x
′
i,
~k′⊥i, λi) ψ

↑
(n)(xi, ~k⊥i, λi)(

√
1− ζ)1−n, (26)

√
1− ζ

(
1 +

ζ

2(1− ζ)

)
(∆1 − i∆2)

2M
f2 (n→n)(x1, t, ζ)
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Figure 4: Light-front time-ordered contributions to deeply virtual Compton scatter-
ing. Only the contributions of leading twist in 1/q2 are illustrated. These contribu-
tions illustrate the factorization property of the leading twist amplitude.
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=
∑
n, λ

n∏
i=1

∫ 1

0
dxi(i6=1)

∫
d2~k⊥i

2(2π)3
δ

1−
n∑

j=1

xj

 δ(2)

 n∑
j=1

~k⊥j


×ψ↑ ∗

(n) (x
′
i,
~k′⊥i, λi) ψ

↓
(n)(xi, ~k⊥i, λi)(

√
1− ζ)1−n, (27)

where  x′1 = x1−ζ
1−ζ

, ~k′⊥1 = ~k⊥1 − 1−x1

1−ζ
~∆⊥ for the struck quark,

x′i = xi

1−ζ
, ~k′⊥i = ~k⊥i + xi

1−ζ
~∆⊥ for the (n− 1) spectators.

(28)

A sum over all possible helicities λi is understood. If quark masses are neglected, the
currents conserve helicity. We also can check that

∑n
i=1 x

′
i = 1,

∑n
i=1

~k′⊥i = ~0⊥.
For the n + 1 → n − 1 off-diagonal term (∆n = −2), consider the case where

partons 1 and n + 1 of the initial wavefunction annihilate into the current leaving
n − 1 spectators. Then xn+1 = ζ − x1, ~k⊥n+1 = ~∆⊥ − ~k⊥1. The remaining n − 1
partons have total momentum ((1 − ζ)P+,−~∆⊥). The final wavefunction then has

arguments x′i = xi

1−ζ
and ~k′⊥i = ~k⊥i + xi

1−ζ
~∆⊥. We thus obtain the formulae for the

off-diagonal matrix element of the Compton amplitude in the domain 0 ≤ x1 ≤ ζ :

√
1− ζf1 (n+1→n−1)(x1, t, ζ) −

ζ2

4
√

1− ζ
f2 (n+1→n−1)(x1, t, ζ)

=
∑
n, λ

∫ 1

0
dxn+1

∫
d2~k⊥1

2(2π)3

∫
d2~k⊥n+1

2(2π)3

n∏
i=2

∫ 1

0
dxi

∫
d2~k⊥i

2(2π)3

×δ
1−

n+1∑
j=1

xj

 δ(2)

n+1∑
j=1

~k⊥j

 [
√

1− ζ]1−n

×ψ↑ ∗
(n−1)(x

′
i,
~k′⊥i, λi) ψ

↑
(n+1)({x1, xi, xn+1 = ζ − x1},

{~k⊥1, ~k⊥i, ~k⊥n+1 = ~∆⊥ − ~k⊥1}, {λ1, λi, λn+1 = −λ1}), (29)

√
1− ζ

(
1 +

ζ

2(1− ζ)

) (∆1 − i∆2)

2M
f2 (n+1→n−1)(x1, t, ζ)

=
∑
n, λ

∫ 1

0
dxn+1

∫
d2~k⊥1

2(2π)3

∫
d2~k⊥n+1

2(2π)3

n∏
i=2

∫ 1

0
dxi

∫
d2~k⊥i

2(2π)3

×δ
1−

n+1∑
j=1

xj

 δ(2)

n+1∑
j=1

~k⊥j

 [
√

1− ζ]1−n
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×ψ↑ ∗
(n−1)(x

′
i,
~k′⊥i, λi) ψ

↓
(n+1)({x1, xi, xn+1 = ζ − x1},

{~k⊥1, ~k⊥i, ~k⊥n+1 = ~∆⊥ − ~k⊥1}, {λ1, λi, λn+1 = −λ1}), (30)

where i = 2, 3, · · · , n label the n− 1 spectator partons which appear in the final-state
hadron wavefunction with

x′i =
xi

1− ζ
, ~k′⊥i = ~k⊥i +

xi

1− ζ
~∆⊥ . (31)

We can again check that the arguments of the final-state wavefunction satisfy
∑n

i=2 x
′
i =

1,
∑n

i=2
~k′⊥i = ~0⊥.

The above representation is the general form for the generalized form factors of
the deeply virtual Compton amplitude for any composite system. Thus given the
light-front Fock state wavefunctions of the eigensolutions of the light-front Hamil-
tonian, we can compute the amplitude for virtual Compton scattering including all
spin correlations. The formulae are accurate to leading order in 1/Q2. Radiative
corrections to the quark Compton amplitude of order αs(Q

2) from diagrams in which
a hard gluon interacts between the two photons have also been neglected.

5 Applications of QCD Factorization to Hard QCD

Processes

Factorization theorems for hard exclusive, semi-exclusive, and diffractive processes
allow the separation of soft non-perturbative dynamics of the bound state hadrons
from the hard dynamics of a perturbatively-calculable quark-gluon scattering ampli-
tude. The factorization of inclusive reactions is reviewed in ref. For reviews and
bibliography of exclusive process calculations in QCD (see Ref. [38, 89]).

The light-front formalism provides a physical factorization scheme which conve-
niently separates and factorizes soft non-perturbative physics from hard perturbative
dynamics in both exclusive and inclusive reactions [5, 90].

In hard inclusive reactions all intermediate states are divided according to M2
n <

Λ2 and M2
n > Λ2 domains. The lower mass regime is associated with the quark and

gluon distributions defined from the absolute squares of the LC wavefunctions in the
light front factorization scheme. In the high invariant mass regime, intrinsic transverse
momenta can be ignored, so that the structure of the process at leading power has the
form of hard scattering on collinear quark and gluon constituents, as in the parton
model. The attachment of gluons from the LC wavefunction to a propagator in
a hard subprocess is power-law suppressed in LC gauge, so that the minimal quark-
gluon particle-number subprocesses dominate. It is then straightforward to derive the
DGLAP equations from the evolution of the distributions with log Λ2. The anomaly
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contribution to singlet helicity structure function g1(x,Q) can be explicitly identified
in the LC factorization scheme as due to the γ∗g → qq fusion process. The anomaly
contribution would be zero if the gluon is on shell. However, if the off-shellness of the
state is larger than the quark pair mass, one obtains the usual anomaly contribution
[91].

In exclusive amplitudes, the LC wavefunctions are the interpolating amplitudes
connecting the quark and gluons to the hadronic states. In an exclusive ampli-
tude involving a hard scale Q2 all intermediate states can be divided according to
M2

n < Λ2 < Q2 and M2
n < Λ2 invariant mass domains. The high invariant mass

contributions to the amplitude has the structure of a hard scattering process TH in
which the hadrons are replaced by their respective (collinear) quarks and gluons. In
light-cone gauge only the minimal Fock states contribute to the leading power-law
fall-off of the exclusive amplitude. The wavefunctions in the lower invariant mass
domain can be integrated up to an arbitrary intermediate invariant mass cutoff Λ.
The invariant mass domain beyond this cutoff is included in the hard scattering am-
plitude TH . The TH satisfy dimensional counting rules [92]. Final-state and initial
state corrections from gluon attachments to lines connected to the color-singlet dis-
tribution amplitudes cancel at leading twist. Explicit examples of perturbative QCD
factorization will be discussed in more detail in the next section.

The key non-perturbative input for exclusive processes is thus the gauge and
frame independent hadron distribution amplitude [90, 5] defined as the integral of
the valence (lowest particle number) Fock wavefunction; e.g. for the pion

φπ(xi,Λ) ≡
∫
d2k⊥ ψ

(Λ)
qq/π(xi, ~k⊥i, λ) (32)

where the global cutoff Λ is identified with the resolution Q. The distribution ampli-
tude controls leading-twist exclusive amplitudes at high momentum transfer, and it
can be related to the gauge-invariant Bethe-Salpeter wavefunction at equal light-front
time. The logarithmic evolution of hadron distribution amplitudes φH(xi, Q) can be
derived from the perturbatively-computable tail of the valence light-front wavefunc-
tion in the high transverse momentum regime [90, 5]. The conformal basis for the
evolution of the three-quark distribution amplitudes for the baryons [93] has recently
been obtained by V. Braun et al.[57].

The existence of an exact formalism provides a basis for systematic approxima-
tions and a control over neglected terms. For example, one can analyze exclusive
semi-leptonic B-decays which involve hard internal momentum transfer using a per-
turbative QCD formalism [94, 95, 33, 34, 96, 97] patterned after the perturbative
analysis of form factors at large momentum transfer. The hard-scattering analysis
again proceeds by writing each hadronic wavefunction as a sum of soft and hard
contributions

ψn = ψsoft
n (M2

n < Λ2) + ψhard
n (M2

n > Λ2), (33)

25



where M2
n is the invariant mass of the partons in the n-particle Fock state and Λ is

the separation scale. The high internal momentum contributions to the wavefunction
ψhard

n can be calculated systematically from QCD perturbation theory by iterating the
gluon exchange kernel. The contributions from high momentum transfer exchange to
the B-decay amplitude can then be written as a convolution of a hard-scattering
quark-gluon scattering amplitude TH with the distribution amplitudes φ(xi,Λ), the
valence wavefunctions obtained by integrating the constituent momenta up to the
separation scale Mn < Λ < Q. Furthermore in processes such as B → πD where
the pion is effectively produced as a rapidly-moving small Fock state with a small
color-dipole interactions, final state interactions are suppressed by color transparency.
This is the basis for the perturbative hard-scattering analyses [94, 33, 34, 96, 97]. In
a systematic analysis, one can identify the hard PQCD contribution as well as the
soft contribution from the convolution of the light-front wavefunctions. Furthermore,
the hard-scattering contribution can be systematically improved.

Given the solution for the hadronic wavefunctions ψ(Λ)
n with M2

n < Λ2, one can
construct the wavefunction in the hard regime with M2

n > Λ2 using projection opera-
tor techniques. The construction can be done perturbatively in QCD since only high
invariant mass, far off-shell matrix elements are involved. One can use this method
to derive the physical properties of the LC wavefunctions and their matrix elements

at high invariant mass. Since M2
n =

∑n
i=1

(
k2
⊥+m2

x

)
i
, this method also allows the

derivation of the asymptotic behavior of light-front wavefunctions at large k⊥, which
in turn leads to predictions for the fall-off of form factors and other exclusive matrix
elements at large momentum transfer, such as the quark counting rules for predicting
the nominal power-law fall-off of two-body scattering amplitudes at fixed θcm [92]
and helicity selection rules [98]. The phenomenological successes of these rules can be
understood within QCD if the coupling αV (Q) freezes in a range of relatively small
momentum transfer [99].

6 Two-Photon Processes

The simplest and perhaps the most elegant illustration of an exclusive reaction in
QCD is the evaluation of the photon-to-pion transition form factor Fγ→π(Q2) [5,
100] which is measurable in single-tagged two-photon ee → eeπ0 reactions. The
form factor is defined via the invariant amplitude Γµ = −ie2Fπγ(Q

2)εµνρσpπ
ν ερqσ .

As in inclusive reactions, one must specify a factorization scheme which divides the
integration regions of the loop integrals into hard and soft momenta, compared to the
resolution scale Q̃. At leading twist, the transition form factor then factorizes as a
convolution of the γ∗γ → qq amplitude (where the quarks are collinear with the final
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Figure 5: (a) Preliminary transverse lattice results for the pion distribution amplitude
at Q2 ∼ 10 GeV2. The solid curve is the theoretical prediction from the combined
DLCQ/transverse lattice method [107]; the chain line is the experimental result ob-
tained from jet diffractive dissociation [26]. Both are normalized to the same area
for comparison. (b) Scaling of the transition photon to pion transition form factor
Q2Fγπ0(Q2). The dotted and solid theoretical curves are the perturbative QCD pre-
diction at leading and next-to-leading order, respectively, assuming the asymptotic
pion distribution The data are from the CLEO collaboration [102].

state pion) with the valence light-front wavefunction of the pion:

FγM(Q2) =
4√
3

∫ 1

0
dxφM(x, Q̃)TH

γ→M(x,Q2). (34)

The hard scattering amplitude for γγ∗ → qq is TH
γM (x,Q2) = [(1− x)Q2]−1 ×

(1 +O(αs)) . The leading QCD corrections have been computed by Braaten [101].
The evaluation of the next-to-leading corrections in the physical αV scheme is given
in Ref. [99]. For the asymptotic distribution amplitude φasympt

π (x) =
√

3fπx(1 − x)

one predicts Q2Fγπ(Q2) = 2fπ

(
1− 5

3
αV (Q∗)

π

)
where Q∗ = e−3/2Q is the BLM scale

for the pion form factor. The PQCD predictions have been tested in measurements
of eγ → eπ0 by the CLEO collaboration [102]. See Fig. 5 (b). The observed flat
scaling of the Q2Fγπ(Q2) data from Q2 = 2 to Q2 = 8 GeV2 provides an important
confirmation of the applicability of leading twist QCD to this process. The magnitude
of Q2Fγπ(Q2) is remarkably consistent with the predicted form, assuming the asymp-
totic distribution amplitude and including the LO QCD radiative correction with
αV (e−3/2Q)/π ' 0.12. One could allow for some broadening of the distribution am-
plitude with a corresponding increase in the value of αV at small scales. Radyushkin
[103], Ong [104], and Kroll [105] have also noted that the scaling and normaliza-
tion of the photon-to-pion transition form factor tends to favor the asymptotic form
for the pion distribution amplitude and rules out broader distributions such as the
two-humped form suggested by QCD sum rules [106].

The two-photon annihilation process γ∗γ → hadrons, which is measurable in
single-tagged e+e− → e+e−hadrons events, provides a semi-local probe of C = +
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hadron systems π0, η0, η′, ηc, π
+π−, etc. The γ∗γ → π+π− hadron pair process is

related to virtual Compton scattering on a pion target by crossing. The leading twist
amplitude is sensitive to the 1/x − 1/(1 − x) moment of the two-pion distribution
amplitude coupled to two valence quarks [88, 77].

Two-photon reactions, γγ → HH at large s = (k1 + k2)
2 and fixed θcm, provide a

particularly important laboratory for testing QCD since these cross-channel “Comp-
ton” processes are the simplest calculable large-angle exclusive hadronic scattering
reactions. The helicity structure, and often even the absolute normalization can be
rigorously computed for each two-photon channel [100]. In the case of meson pairs,
dimensional counting predicts that for large s, s4dσ/dt(γγ → MM scales at fixed
t/s or θc.m. up to factors of ln s/Λ2. The angular dependence of the γγ → HH
amplitudes can be used to determine the shape of the process-independent distribu-
tion amplitudes, φH(x,Q). An important feature of the γγ → MM amplitude for
meson pairs is that the contributions of Landshoff pitch singularities are power-law
suppressed at the Born level—even before taking into account Sudakov form factor
suppression. There are also no anomalous contributions from the x → 1 endpoint
integration region. Thus, as in the calculation of the meson form factors, each fixed-
angle helicity amplitude can be written to leading order in 1/Q in the factorized form
[Q2 = p2

T = tu/s; Q̃x = min(xQ, (l − x)Q)]:

Mγγ→MM =
∫ 1

0
dx
∫ 1

0
dyφM(y, Q̃y)TH(x, y, s, θc.m.φM(x, Q̃x), (35)

where TH is the hard-scattering amplitude γγ → (qq)(qq) for the production of the
valence quarks collinear with each meson, and φM(x, Q̃) is the amplitude for finding
the valence q and q with light-front fractions of the meson’s momentum, integrated
over transverse momenta k⊥ < Q̃. The contribution of non-valence Fock states are
power-law suppressed. Furthermore, the helicity-selection rules [98] of perturbative
QCD predict that vector mesons are produced with opposite helicities to leading order
in 1/Q and all orders in αs. The dependence in x and y of several terms in Tλ,λ′ is
quite similar to that appearing in the meson’s electromagnetic form factor. Thus
much of the dependence on φM(x,Q) can be eliminated by expressing it in terms
of the meson form factor. In fact, the ratio of the γγ → π+π− and e+e− → µ+µ−

amplitudes at large s and fixed θCM is nearly insensitive to the running coupling and
the shape of the pion distribution amplitude:

dσ
dt

(γγ → π+π−)
dσ
dt

(γγ → µ+µ−)
∼ 4|Fπ(s)|2

1− cos2 θc.m.
. (36)

The comparison of the PQCD prediction for the sum of π+π− plus K+K− channels
with recent CLEO data [108] is shown in Fig. 6. The CLEO data for charged pion and
kaon pairs show a clear transition to the scaling and angular distribution predicted by

PQCD [100] for W =
√

(sγγ > 2 GeV. See Fig. 6. It is clearly important to measure
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Figure 6: Comparison of the sum of γγ → π+π− and γγ → K+K− meson pair
production cross sections with the scaling and angular distribution of the perturbative
QCD prediction [100]. The data are from the CLEO collaboration [108].

the magnitude and angular dependence of the two-photon production of neutral pions
and ρ+ρ− cross sections in view of the strong sensitivity of these channels to the shape
of meson distribution amplitudes. QCD also predicts that the production cross section
for charged ρ-pairs (with any helicity) is much larger that for that of neutral ρ pairs,
particularly at large θc.m. angles. Similar predictions are possible for other helicity-
zero mesons. The cross sections for Compton scattering on protons and the crossed
reaction γγ → pp at high momentum transfer have also been evaluated [109, 110],
providing important tests of the proton distribution amplitude.

It is particularly compelling to see a transition in angular dependence between
the low energy chiral and PQCD regimes. The success of leading-twist perturbative
QCD scaling for exclusive processes at presently experimentally accessible momentum
transfer can be understood if the effective coupling αV (Q∗) is approximately constant
at the relatively small scales Q∗ relevant to the hard scattering amplitudes [99]. The
evolution of the quark distribution amplitudes In the low-Q∗ domain at also needs to
be minimal. Sudakov suppression of the endpoint contributions is also strengthened
if the coupling is frozen because of the exponentiation of a double logarithmic series.

A debate has continued [111, 112, 113, 114] on whether processes such as the pion
and proton form factors and elastic Compton scattering γp→ γp might be dominated
by higher-twist mechanisms until very large momentum transfer. If one assumes that

the light-front wavefunction of the pion has the form ψsoft(x, k⊥) = A exp(−b k2
⊥

x(1−x)
),

then the Feynman endpoint contribution to the overlap integral at small k⊥ and
x ' 1 will dominate the form factor compared to the hard-scattering contribution
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until very large Q2. However, this ansatz for ψsoft(x, k⊥) has no suppression at k⊥ = 0
for any x; i.e., the wavefunction in the hadron rest frame does not fall-off at all for
k⊥ = 0 and kz → −∞. Thus such wavefunctions do not represent well soft QCD
contributions. Endpoint contributions are also suppressed by the QCD Sudakov form
factor, reflecting the fact that a near-on-shell quark must radiate if it absorbs large
momentum. One can show [5] that the leading power dependence of the two-particle
light-front Fock wavefunction in the endpoint region is 1−x, giving a meson structure
function which falls as (1−x)2 and thus by duality a non-leading contribution to the
meson form factor F (Q2) ∝ 1/Q3. Thus the dominant contribution to meson form
factors comes from the hard-scattering regime.

Radyushkin [112] has argued that the Compton amplitude is dominated by soft
end-point contributions of the proton wavefunctions where the two photons both
interact on a quark line carrying nearly all of the proton’s momentum. This de-
scription appears to agree with the Compton data at least at forward angles where
−t < 10 GeV2. From this viewpoint, the dominance of the factorizable PQCD leading
twist contributions requires momentum transfers much higher than those currently
available. However, the endpoint model cannot explain the empirical success of the
perturbative QCD fixed θc.m. scaling s7dσ/dt(γp → π+n) ∼ const at relatively low
momentum transfer in pion photoproduction [115].

Clearly much more experimental input on hadron wavefunctions is needed, partic-
ularly from measurements of two-photon exclusive reactions into meson and baryon
pairs at the high luminosity B factories. For example, the ratio
dσ
dt

(γγ → π0π0)/dσ
dt

(γγ → π+π−) is particularly sensitive to the shape of pion distri-
bution amplitude. Baryon pair production in two-photon reactions at threshold may
reveal physics associated with the soliton structure of baryons in QCD [116, 117].
In addition, fixed target experiments can provide much more information on funda-
mental QCD processes such as deeply virtual Compton scattering and large angle
Compton scattering.

7 Diffractive Dissociation and Light-Cone Wave-

functions

Diffractive dissociation in QCD can be understood as a three-step process:

1. The initial hadron can be decomposed in terms of its quark and gluon con-
stituents in terms of its light-front Fock-state components.

2. In the second step, the incoming hadron is resolved by Pomeron or Odderon
(multi-gluon) exchange with the target or by Coulomb dissociation. The exchanged
interaction has to supply sufficient momentum transfer qµ to put the diffracted state
X on shell. Light-front energy conservation requires q− = (m2

X −m2
π)/P+

π , where mX

is the invariant mass of X. In a heavy target rest system, the longitudinal momentum
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transfer is qz = (m2
X −m2

π)/Eπlab. Thus the momentum transfer t = q2 to the target
can be sufficiently small so that the target remains intact.

In perturbative QCD, the pomeron is generally be represented as multiple gluon
exchange between the target and projectile. Effectively this interaction occurs over
a short light-front time interval, and thus like photon exchange, the perturbative
QCD pomeron can be effectively represented as a local operator. This description
is believed to be applicable when the pomeron has to resolve compact states and is
the basis for the terminology “hard pomeron”. The BFKL formalism generalizes the
perturbative QCD treatment by an all-orders perturbative resummation, generating a
pomeron with a fixed Regge intercept αP (0). Next to leading order calculations with
BLM scale fixing leads to a predicted intercept αP (0) ' 0.4 [118]. However, when
the exchange interactions are soft, a multiperipheral description in terms of meson
ladders may dominate the physics. This is the basis for the two-component pomeron
model of Donnachie and Landshoff [119].

Consider a collinear frame where the incident momentum P+
π is large and s =

(pπ + ptarget)
2 ' p+

π p
−
target. The matrix element of an exchanged gluon with momen-

tum qi between the projectile and an intermediate state |N〉 is dominated by the

“plus current”:
〈
π|j+(0) exp(i1

2
q+
i x

− − iq⊥i · x⊥|N
〉
. Note that the coherent sum of

couplings of an exchanged gluon to the pion system vanishes when its momentum is
small compared to the characteristic momentum scales in the projectile light-front
wavefunction: q⊥i∆x⊥ � 1 and q+

i ∆x− � 1. The destructive interference of the
gauge couplings to the constituents of the projectile follows simply from the fact that
the color charge operator has zero matrix element between distinct eigenstates of the
QCD Hamiltonian: 〈A|Q|B〉 ≡ ∫

d2x⊥dx− 〈A|j+(0)|B〉 = 0 [120]. At high energies
the change in k+

i of the constituents can be ignored, so that Fock states of a hadron
with small transverse size interact weakly even in a nuclear target because of their
small dipole moment [30, 27]. To a good approximation the sum of couplings to
the constituents of the projectile can be represented as a derivative with respect to
transverse momentum. Thus photon exchange measures a weighted sum of transverse
derivatives ∂k⊥ψn(xi, k⊥i

, λi), and two-gluon exchange measures the second transverse
partial derivative [121].

3. The final step is the hadronization of the n constituents of the projectile Fock
state into final state hadrons. Since q+

i is small, the number of partons in the initial
Fock state and the final state hadrons are unchanged. Their coalescence is thus
governed by the convolution of initial and final-state Fock state wavefunctions. In
the case of states with high k⊥, the final state will hadronize into jets, each reflecting
the respective xi of the Fock state constituents. In the case of higher Fock states
with intrinsic sea quarks such as an extra cc pair (intrinsic charm), one will observe
leading J/ψ or open charm hadrons in the projectile fragmentation region; i.e., the
hadron’s fragments will tend to have the same rapidity as that of the projectile.

For example, diffractive multi-jet production in heavy nuclei provides a novel way
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to measure the shape of the LC Fock state wavefunctions and test color transparency.
Consider the reaction [27, 28, 122] πA → Jet1 + Jet2 + A′ at high energy where the
nucleus A′ is left intact in its ground state. The transverse momenta of the jets
balance so that ~k⊥i + ~k⊥2 = ~q⊥ < R−1

A . The light-front longitudinal momentum
fractions also need to add to x1 + x2 ∼ 1 so that ∆pL < R−1

A . The process can
then occur coherently in the nucleus. Because of color transparency, the valence
wavefunction of the pion with small impact separation, will penetrate the nucleus
with minimal interactions, diffracting into jet pairs [27]. The x1 = x, x2 = 1 − x
dependence of the di-jet distributions will thus reflect the shape of the pion valence
light-front wavefunction in x; similarly, the ~k⊥1 − ~k⊥2 relative transverse momenta
of the jets gives key information on the second derivative of the underlying shape
of the valence pion wavefunction [28, 122, 121]. The diffractive nuclear amplitude
extrapolated to t = 0 should be linear in nuclear number A if color transparency is
correct. The integrated diffractive rate should then scale as A2/R2

A ∼ A4/3.

The results of a diffractive dijet dissociation experiment of this type E791 at
Fermilab using 500 GeV incident pions on nuclear targets [123] appear to be consistent
with color transparency. The measured longitudinal momentum distribution of the
jets [124] is consistent with a pion light-front wavefunction of the pion with the shape
of the asymptotic distribution amplitude, φasympt

π (x) =
√

3fπx(1 − x). Data from
CLEO [102] for the γγ∗ → π0 transition form factor also favor a form for the pion
distribution amplitude close to the asymptotic solution to the perturbative QCD
evolution equation [5].

The interpretation of the diffractive dijet processes as measures of the hadron
distribution amplitudes has recently been questioned by Braun et al. [125] and by
Chernyak [126] who have calculated the hard scattering amplitude for such processes
at next-to-leading order. However, these analyses neglect the integration over the
transverse momentum of the valence quarks and thus miss the logarithmic ordering
which is required for factorization of the distribution amplitude and color-filtering in
nuclear targets.

As noted above, the diffractive dissociation of a hadron or nucleus can also oc-
cur via the Coulomb dissociation of a beam particle on an electron beam (e.g. at
HERA or eRHIC) or on the strong Coulomb field of a heavy nucleus (e.g. at RHIC
or nuclear collisions at the LHC) [121]. The amplitude for Coulomb exchange at
small momentum transfer is proportional to the first derivative

∑
i ei

∂
~kTi
ψ of the light-

front wavefunction, summed over the charged constituents. The Coulomb exchange
reactions fall off less fast at high transverse momentum compared to pomeron ex-
change reactions since the light-front wavefunction is effective differentiated twice in
two-gluon exchange reactions.

It will also be interesting to study diffractive tri-jet production using proton beams
pA→ Jet1+Jet2+Jet3+A′ to determine the fundamental shape of the 3-quark struc-
ture of the valence light-front wavefunction of the nucleon at small transverse sepa-
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ration [28]. For example, consider the Coulomb dissociation of a high energy proton
at HERA. The proton can dissociate into three jets corresponding to the three-quark
structure of the valence light-front wavefunction. We can demand that the produced
hadrons all fall outside an opening angle θ in the proton’s fragmentation region. Ef-
fectively all of the light-front momentum

∑
j xj ' 1 of the proton’s fragments will

thus be produced outside an “exclusion cone”. This then limits the invariant mass of
the contributing Fock stateM2

n > Λ2 = P+2 sin2 θ/4 from below, so that perturbative
QCD counting rules can predict the fall-off in the jet system invariant mass M. At
large invariant mass one expects the three-quark valence Fock state of the proton to
dominate. The segmentation of the forward detector in azimuthal angle φ can be
used to identify structure and correlations associated with the three-quark light-front
wavefunction [121]. An interesting possibility is that the distribution amplitude of
the ∆(1232) for Jz = 1/2, 3/2 is close to the asymptotic form x1x2x3, but that the
proton distribution amplitude is more complex. This ansatz can also be motivated
by assuming a quark-diquark structure of the baryon wavefunctions. The differences
in shapes of the distribution amplitudes could explain why the p → ∆ transition
form factor appears to fall faster at large Q2 than the elastic p → p and the other
p → N∗ transition form factors [127]. One can use also measure the dijet structure
of real and virtual photons beams γ∗A → Jet1 + Jet2 + A′ to measure the shape
of the light-front wavefunction for transversely-polarized and longitudinally-polarized
virtual photons. Such experiments will open up a direct window on the amplitude
structure of hadrons at short distances. The light-front formalism is also applicable
to the description of nuclei in terms of their nucleonic and mesonic degrees of free-
dom [128, 129]. Self-resolving diffractive jet reactions in high energy electron-nucleus
collisions and hadron-nucleus collisions at moderate momentum transfers can thus be
used to resolve the light-front wavefunctions of nuclei.

The first tests of color transparency involved large momentum transfer quasi-
elastic scattering processes in nuclei. Such reactions are predicted in perturbative
QCD to depend on the scattering of small impact size hadron wavefunction configu-
rations [30]. The onset of color transparency in proton-proton scattering in nuclei was
first seen by Experiment E834 at BNL by observing a rise in the ratio of quasi-elastic
to elastic pp scattering at large angles and energies up to

√
s ∼ 5 GeV [130]. Quasi-

elastic proton-proton scattering is advantageous over the analogous electron-proton
scattering reaction since the wavefunctions of the incoming and outgoing hadron in
high energy proton reactions would not suffer rapid expansion. However, E834 also
revealed another remarkable feature of quasi-elastic pp scattering: the quenching of
color transparency at the largest measured energy measured by E834, in direct con-
tradiction to the predictions perturbative QCD. A more recent experiment, E850,
using the EVA spectrometer has now confirmed this unexpected effect through new
measurements of the transparency ratio at higher energies [32].

The quenching of color transparency observed in the E834 and E850 experiments
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is almost as important discovery as color transparency itself. It signals a nonpertur-
bative effect in QCD which clearly must be understood. The quenching occurs at
the center-of-mass energy of 5 GeV where the pp elastic cross section also displays
another remarkable effect: the rate of scattering where the spins of the initial protons
are parallel and normal to the scattering plane grows rapidly and becomes approxi-
mately 4 times as large as the spin-antiparallel rate [131]. De Teramond and I [132]
have noted that both phenomenon occur just at the threshold for open charm hadron
production. We have shown in fact that resonance production in pp elastic scattering
due to a uuduudcc spin-1 resonance will in fact lead to a remarkably large spin cor-
relation ANN and quenching of color transparency above the charm threshold. If this
explanation is validated (by the observation of a significant open charm cross section
near 5 GeV center of mass energy), then E834 and E850 will have provided the first
evidence for an exotic QCD state with hidden charm.

8 Higher Fock States and the Intrinsic Sea

Since a hadronic wavefunction describes states off of the light-front energy shell, there
is a finite probability of the projectile having fluctuations containing extra quark-
antiquark pairs, such as intrinsic strangeness charm, and bottom. In contrast to the
quark pairs arising from gluon splitting, intrinsic quarks are multiply-connected to
the valence quarks and are thus part of the dynamics of the hadron.

Recently Franz, Polyakov, and Goeke have analyzed the properties of the intrinsic
heavy-quark fluctuations in hadrons using the operator-product expansion [25]. For
example, the light-cone momentum fraction carried by intrinsic heavy quarks in the
proton xQQ as measured by the T++ component of the energy-momentum tensor is re-

lated in the heavy-quark limit to the forward matrix element 〈p|trc(G
+αG+βGαβ)/m2

Q|p〉,
where Gµν is the gauge field strength tensor. Diagrammatically, this can be described
as a heavy quark loop in the proton self-energy with four gluons attached to the
light, valence quarks. Since the non-Abelian commutator [Aα, Aβ] is involved, the
heavy quark pairs in the proton wavefunction are necessarily in a color-octet state.
It follows from dimensional analysis that the momentum fraction carried by the QQ
pair scales as k2

⊥/m
2
Q where k⊥ is the typical momentum in the hadron wave function.

[In contrast, in the case of Abelian theories, the contribution of an intrinsic, heavy
lepton pair to the bound state’s structure first appears in O(1/m4

L). One relevant op-
erator corresponds to the Born-Infeld (Fµν)

4 light-by-light scattering insertion, and
the momentum fraction of heavy leptons in an atom scales as k4

⊥/m
4
L.]

The intrinsic sea is thus sensitive to the hadronic bound-state structure [133, 47].
The maximal contribution of an intrinsic heavy quark occurs at xQ ' m⊥Q/

∑
im⊥

where m⊥ =
√
m2 + k2

⊥; i.e. at large xQ, since this minimizes the invariant mass

M2
n. The measurements of the charm structure function by the EMC experiment
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are consistent with intrinsic charm at large x in the nucleon with a probability of
order 0.6±0.3% [48] which is consistent with the recent estimates based on instanton
fluctuations [25].

Thus one can identify two contributions to the heavy quark sea, the “extrinsic”
contributions which correspond to ordinary gluon splitting, and the “intrinsic” sea
which is multi-connected via gluons to the valence quarks. Intrinsic charm can be
materialized by diffractive dissociation into open or hidden charm states such as
pp → J/ψXp′,ΛcXp

′. At HERA one can measure intrinsic charm in the proton by
Coulomb dissociation: pe → ΛCXe

′, and J/ψXe′. Since the intrinsic heavy quarks
tend to have the same rapidity as that of the projectile, they are produced at large
xF in the beam fragmentation region.

The presence of intrinsic charm quarks in the B wave function provides new
mechanisms for B decays. The characteristic momenta characterizing the B meson is
most likely higher by a factor of 2 compared to the momentum scale of light mesons,
This effect is analogous to the higher momentum scale of muonium µ+e− versus that
of positronium e+e− in atomic physics because of the larger reduced mass. Thus one
can expect a higher probability for intrinsic charm in heavy hadrons compared to
light hadrons. For example, Chang and Hou have considered the production of final
states with three charmed quarks such as B → J/ψDπ and B → J/ψD∗ [134]; these
final states are difficult to realize in the valence model, yet they occur naturally when
the b quark of the intrinsic charm Fock state | bucc〉 decays via b → cud. In fact,
the J/ψ spectrum for inclusive B → J/ψX decays measured by CLEO and Belle
shows a distinct enhancement at the low J/ψ momentum where such decays would
kinematically occur. Alternatively, this excess could reflect the opening of baryonic
channels such as B → J/ψpΛ [135].

Recently, Susan Gardner and I have shown that the presence of intrinsic charm in
the hadrons’ light-front wave functions, even at a few percent level, provides new, com-
petitive decay mechanisms for B decays which are nominally CKM-suppressed [136].
For example, the weak decays of the B-meson to two-body exclusive states consisting
of strange plus light hadrons, such as B → πK, are expected to be dominated by
penguin contributions since the tree-level b → suu decay is CKM suppressed. How-
ever, higher Fock states in the B wave function containing charm quark pairs can
mediate the decay via a CKM-favored b → scc tree-level transition. Such intrinsic
charm contributions can be phenomenologically significant. Since they mimic the am-
plitude structure of “charming” penguin contributions [137, 138, 139, 140], charming
penguins need not be penguins at all [136].

One can also distinguish “intrinsic gluons” [141] which are associated with multi-
quark interactions and extrinsic gluon contributions associated with quark substruc-
ture. One can also use this framework to isolate the physics of the anomaly contri-
bution to the Ellis-Jaffe sum rule [91]. Thus neither gluons nor sea quarks are solely
generated by DGLAP evolution, and one cannot define a resolution scale Q0 where
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the sea or gluon degrees of freedom can be neglected.

It is usually assumed that a heavy quarkonium state such as the J/ψ always
decays to light hadrons via the annihilation of its heavy quark constituents to gluons.
However, as Karliner and I [142] have shown, the transition J/ψ → ρπ can also occur
by the rearrangement of the cc from the J/ψ into the | qqcc〉 intrinsic charm Fock state
of the ρ or π. On the other hand, the overlap rearrangement integral in the decay
ψ′ → ρπ will be suppressed since the intrinsic charm Fock state radial wavefunction
of the light hadrons will evidently not have nodes in its radial wavefunction. This
observation provides a natural explanation of the long-standing puzzle [143] why
the J/ψ decays prominently to two-body pseudoscalar-vector final states, breaking
hadron helicity conservation [98], whereas the ψ′ does not.

The higher Fock state of the proton | uudss〉 should resemble a |KΛ〉 intermediate
state, since this minimizes its invariant mass M. In such a state, the strange quark
has a higher mean momentum fraction x than the s [144, 145, 146]. Similarly, the
helicity of the intrinsic strange quark in this configuration will be anti-aligned with
the helicity of the nucleon [144, 146]. This Q↔ Q asymmetry is a striking feature of
the intrinsic heavy-quark sea.

9 Non-Perturbative Solutions of Light-Front Quan-

tized QCD

Is there any hope of computing light-front wavefunctions from first principles? The
solution of the light-front Hamiltonian equation HQCD

LC |Ψ〉 = M2|Ψ〉 is an eigenvalue
problem which in principle determines the masses squared of the entire bound and
continuum spectrum of QCD. If one introduces periodic or anti-periodic boundary
conditions, the eigenvalue problem is reduced to the diagonalization of a discrete
Hermitian matrix representation ofHQCD

LC . The light-front momenta satisfy x+ = 2π
L
ni

and P+ = 2π
L
K, where

∑
i ni = K. The number of quanta in the contributing Fock

states is restricted by the choice of harmonic resolution. A cutoff on the invariant mass
of the Fock states truncates the size of the matrix representation in the transverse
momenta. This is the essence of the DLCQ method [35], which has now become a
standard tool for solving both the spectrum and light-front wavefunctions of one-space
one-time theories—virtually any 1+1 quantum field theory, including “reduced QCD”
(which has both quark and gluonic degrees of freedom) can be completely solved
using DLCQ [147, 73]. The method yields not only the bound-state and continuum
spectrum, but also the light-front wavefunction for each eigensolution [148, 149].

Dalley et al. have shown how one can use DLCQ in one space-one time, with
a transverse lattice to solve mesonic and gluonic states in 3 + 1 QCD [150]. The
spectrum obtained for gluonium states is in remarkable agreement with lattice gauge
theory results, but with a huge reduction of numerical effort. Hiller and I [151] have
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shown how one can use DLCQ to compute the electron magnetic moment in QED
without resort to perturbation theory.

There has been recent progress developing the computational tools and renormal-
ization methods which can make DLCQ a viable computational method for QCD in
physical space-time. John Hiller, Gary McCartor, and I [11] have shown how DLCQ
can be used to solve (3+1) theories and obtain the spectrum and light-front wave-
functions of the bound state solutions despite the large numbers of degrees of freedom
needed to enumerate the Fock basis. A key feature of our work is the introduction
of Pauli Villars fields [152] in the DLCQ basis which regulate the UV divergences
and perform renormalization while preserving the frame-independence of the theory
[153, 154].

A recent application of DLCQ and Pauli Villars regularization to a (3+1) quantum
field theory with Yukawa interactions is given in Ref. [11]. Only one heavy fermion
is allowed in the Fock states. We include an additional effective interaction which
represents the contribution of the missing Z graph and cancels an infrared singularity
introduced by the instantaneous fermion interaction. Cancellation of ultraviolet in-
finities is then arranged by choosing imaginary couplings or an indefinite metric. In
our most recent work we used three heavy scalars, two of which have negative norm.

In DLCQ, all light-front momentum variables are discretized, with p+ → nπ/L
and ~p⊥ → ~n⊥π/L⊥, in terms of longitudinal and transverse length scales L and L⊥.
The total longitudinal momentum is P+ = Kπ/L and momentum fractions are given
by x = n/K. Wave functions and the mass eigenvalue problem, where HLC = P+P−,
are naturally expressed in terms of momentum fractions and the resolution K. Hence
L disappears, and K effectively takes its place as the resolution scale. The transverse
scale L⊥ is set by a momentum cutoff and a transverse resolution. The integrals over
wave functions which make up the mass eigenvalue problem HLCΦ = M2Φ are then
approximated by the trapezoidal quadrature rule. This yields a matrix eigenvalue
problem which is typically quite large but also quite sparse. Lanczos techniques [155]
are used to extract eigenvalues and eigenvectors for the lowest states, even in the case
of an indefinite metric [11].

The mass M of the dressed single-fermion state is held fixed. This is imposed by
rearranging the mass eigenvalue problem into an eigenvalue problem for the quantity
δM2:

x

M2 − M2 + p2
⊥

x
−
∑
j

µ2
j + q2

⊥j

yj

 φ̃ (37)

−
∫ ∏

j

dy′jd
2q′⊥j

√
xx′Kφ̃′ = δM2φ̃ ,

where K represents the original kernel and amplitudes are related by φ =
√
xφ̃.

The coupling g is constrained by imposing a condition on the boson occupation
number: 〈:φ2(0):〉 ≡ Φ†

σ :φ2(0):Φσ. This quantity can be computed fairly efficiently as
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Figure 7: The boson structure function fB at various numerical resolutions for 〈:
φ2(0):〉 = 0.5, with M = µ, cutoff Λ2 = 50µ2, and Pauli–Villars masses µ2

1 = 10µ2,
µ2

2 = 20µ2, and µ2
3 = 30µ2. The solid line is from first-order perturbation theory.

the sum

〈:φ2(0):〉 =
∞∑

ni=0

∫ ntot∏
j

dq+
j d

2q⊥j

∑
s

(−1)(ni) (38)

×
(

n∑
k=1

2

q+
k /P

+

) ∣∣∣∣∣∣φ(ni)
σs (q

j
;P −

∑
j

q
j
)

∣∣∣∣∣∣
2

.

The constraint on 〈:φ2(0) :〉 can be satisfied by solving it simultaneously with the
eigenvalue problem.

With the parameters fixed, we can compute various quantities, such as the parton
wavefunctions and momentum distributions, the form factor slope at zero momentum
transfer, the average numbers of constituents, and the average constituent momenta.
A representative plot of the bosonic structure function

fB(y) ≡
∞∑

ni=0

∑
s

∫ ∏
j

dq+
j d

2q⊥j(−1)(ni)
n0∑

k=1

×δ(y − q+
k /P

+)

∣∣∣∣∣φ(ni)
σs (q

j
;P −

∑
i

q
j
)

∣∣∣∣∣
2

, (39)

is given in Fig. 7. We have also worked at somewhat stronger couplings where devia-
tions from first order perturbation theory becomes apparent; however, high resolution
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is required, with K = 21 to 39 and as many as 15 transverse momentum points. This
resolution could be achieved by limiting the number of constituents to 3, after veri-
fying that the contribution from higher sectors was sufficiently small.

The success of application of DLCQ to the Yukawa theory with Pauli-Villars regu-
larization is encouraging. One can compute masses and wave functions for eigenstates
for quantum field theories in physical space-time. Another procedure, now under in-
vestigation, is to use one heavy scalar and one heavy fermion, both with negative
norm, as suggested by the work of Paston et al. [156] This method has the advantage
of being free of instantaneous fermion interactions. An alternative and interesting
regularization is to apply DLCQ to finite supersymmetric 3+1 theories, and then
introduce supersymmetric breaking.

We plan to continue to be explored these possibilities with various model theories,
leading eventually to the direct application to QCD(3+1). In fact, Paston et al. [157]
have already obtained a PV-like regularization of QCD which could, in principle, be
solved by DLCQ; however, given present computing power the number of fields is
possibly too large for meaningful calculations.

One can also formulate DLCQ so that supersymmetry is exactly preserved in the
discrete approximation, thus combining the power of DLCQ with the beauty of su-
persymmetry [158, 159, 160]. The “SDLCQ” method has been applied to several
interesting supersymmetric theories, to the analysis of zero modes, vacuum degen-
eracy, massless states, mass gaps, and theories in higher dimensions, and even tests
of the Maldacena conjecture [158]. Broken supersymmetry is interesting in DLCQ,
since it may serve as a method for regulating non-Abelian theories [154].

There are also many possibilities for obtaining approximate solutions of light-
front wavefunctions in QCD. QCD sum rules, lattice gauge theory moments, and QCD
inspired models such as the bag model, chiral theories, provide important constraints.
Guides to the exact behavior of LC wavefunctions in QCD can also be obtained from
analytic or DLCQ solutions to toy models such as “reduced” QCD(1+1). The light-
front and many-body Schrödinger theory formalisms must match In the nonrelativistic
limit.

It would be interesting to see if light-front wavefunctions can incorporate chiral
constraints such as soliton (Skyrmion) behavior for baryons and other consequences
of the chiral limit in the soft momentum regime. Solvable theories such as QCD(1 +
1) are also useful for understanding such phenomena. It has been shown that the
anomaly contribution for the π0 → γγ decay amplitude is satisfied by the light-front
Fock formalism in the limit where the mass of the pion is light compared to its size
[161].
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10 Non-Perturbative Calculations of the Pion Dis-

tribution Amplitude

The distribution amplitude φ(x, Q̃) can be computed from the integral over transverse
momenta of the renormalized hadron valence wavefunction in the light-cone gauge at
fixed light-front time [38]:

φ(x, Q̃) =
∫
d2 ~k⊥ θ

Q̃2 −
~k⊥

2

x(1− x)

ψ(Q̃)(x, ~k⊥), (40)

where a global cutoff in invariant mass is identified with the resolution Q̃. The distri-
bution amplitude φ(x, Q̃) is boost and gauge invariant and evolves in ln Q̃ through an
evolution equation [93, 90, 5]. Since it is formed from the same product of operators
as the non-singlet structure function, the anomalous dimensions controlling φ(x,Q)
dependence in the ultraviolet logQ scale are the same as those which appear in the
DGLAP evolution of structure functions [55]. The decay π → µν normalizes the
wave function at the origin: a0/6 =

∫ 1
0 dxφ(x,Q) = fπ/(2

√
3). One can also compute

the distribution amplitude from the gauge invariant Bethe-Salpeter wavefunction at
equal light-front time. This also allows contact with both QCD sum rules and lattice
gauge theory; for example, moments of the pion distribution amplitudes have been
computed in lattice gauge theory [162, 163, 164].

Dalley [107] has recently calculated the pion distribution amplitude from QCD
using a combination of the discretized DLCQ method for the x− and x+ light-front co-
ordinates with the transverse lattice method [165, 166] in the transverse directions, A
finite lattice spacing a can be used by choosing the parameters of the effective theory
in a region of renormalization group stability to respect the required gauge, Poincaré,
chiral, and continuum symmetries. The overall normalization gives fπ = 101 MeV
compared with the experimental value of 93 MeV. Figure 5 (a) compares the result-
ing DLCQ/transverse lattice pion wavefunction with the best fit to the diffractive
di-jet data (see the next section) after corrections for hadronization and experimental
acceptance [26]. The theoretical curve is somewhat broader than the experimental
result. However, there are experimental uncertainties from hadronization and theo-
retical errors introduced from finite DLCQ resolution, using a nearly massless pion,
ambiguities in setting the factorization scale Q2, as well as errors in the evolution
of the distribution amplitude from 1 to 10 GeV2. Instanton models also predict a
pion distribution amplitude close to the asymptotic form [167]. In contrast, recent
lattice results from Del Debbio et al. [164] predict a much narrower shape for the
pion distribution amplitude than the distribution predicted by the transverse lattice.
A new result for the proton distribution amplitude treating nucleons as chiral solitons
has recently been derived by Diakonov and Petrov [168]. Dyson-Schwinger models
[169] of hadronic Bethe-Salpeter wavefunctions can also be used to predict light-front
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wavefunctions and hadron distribution amplitudes by integrating over the relative
k− momentum. There is also the possibility of deriving Bethe-Salpeter wavefunc-
tions within light-front gauge quantized QCD [41] in order to properly match to the
light-cone gauge Fock state decomposition.

11 Calculating and Modelling Light-Front Wave-

functions

Many features of the light-front wavefunctions follow from general arguments. Light-
front wavefunctions satisfy the equation of motion:

HQCD
LC |Ψ〉 = (H0

LC + VLC)|Ψ〉 = M2|Ψ〉,

which has the Heisenberg matrix form in Fock space:

[M2 −
n∑

i=1

m2
⊥i

xi

]ψn =
∑
n′

∫
〈n|V |n′〉ψn′

where the convolution and sum is understood over the Fock number, transverse mo-
menta, plus momenta and helicity of the intermediate states. Here m2

⊥ = m2 + k2
⊥.

Thus, in general, every light-front Fock wavefunction has the form:

ψn =
Γn

M2 −∑n
i=1

m2
⊥i

xi

where Γn =
∑

n′
∫
Vnn′ψn. The main dynamical dependence of a light-front wave-

function away from the extrema is controlled by its light-front energy denominator.
The maximum of the wavefunction occurs when the invariant mass of the partons is
minimal; i.e., when all particles have equal rapidity and are all at rest in the rest
frame. In fact, Dae Sung Hwang and I [120] have noted that one can rewrite the
wavefunction in the form:

ψn =
Γn

M2[
∑n

i=1
(xi−x̂i)2

xi
+ δ2]

where xi = x̂i ≡ m⊥i/
∑n

i=1m⊥i is the condition for minimal rapidity differences of
the constituents. The key parameter is M2 − ∑n

i=1m
2
⊥i/x̂i ≡ −M2δ2. We can also

interpret δ2 ' 2ε/M where ε =
∑n

i=1m⊥i −M is the effective binding energy. This
form shows that the wavefunction is a quadratic form around its maximum, and that
the width of the distribution in (xi − x̂i)

2 (where the wavefunction falls to half of
its maximum) is controlled by xiδ

2 and the transverse momenta k⊥i
. Note also that

the heaviest particles tend to have the largest x̂i, and thus the largest momentum
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fraction of the particles in the Fock state, a feature familiar from the intrinsic charm
model. For example, the b quark has the largest momentum fraction at small k⊥ in
the B meson’s valence light-front wavefunction,, but the distribution spreads out to
an asymptotically symmetric distribution around xb ∼ 1/2 when k⊥ � m2

b .
We can also discern some general properties of the numerator of the light-front

wavefunctions. Γn(xi, k⊥i, λi). The transverse momentum dependence of Γn guar-
antees Jz conservation for each Fock state. For example, one of the three light-
front Fock wavefunctions of a Jz = +1/2 lepton in QED perturbation theory is

ψ↑
+ 1

2
+1

(x,~k⊥) = −
√

2 (−k1+ik2)
x(1−x)

ϕ , where ϕ = ϕ(x,~k⊥) = e/
√

1−x

M2−(~k2
⊥+m2)/x−(~k2

⊥+λ2)/(1−x)
.

The orbital angular momentum projection in this case is `z = −1. The spin structure
indicated by perturbative theory provides a template for the numerator structure of
the light-front wavefunctions even for composite systems. The structure of the elec-
tron’s Fock state in perturbative QED shows that it is natural to have a negative
contribution from relative orbital angular momentum which balances the Sz of its
photon constituents. We can also expect a significant orbital contribution to the pro-
ton’s Jz since gluons carry roughly half of the proton’s momentum, thus providing
insight into the “spin crisis” in QCD.

The high x→ 1 and high k⊥ limits of the hadron wavefunctions control processes
and reactions in which the hadron wavefunctions are highly stressed. Such configu-
rations involve far-off-shell intermediate states and can be systematically treated in
perturbation theory [170, 5]. This leads to counting rule behavior for the quark and
gluon distributions at x → 1. Notice that x → 1 corresponds to kz → −∞ for any
constituent with nonzero mass or transverse momentum.

The above discussion suggests that an approximate form for the hadron light-front
wavefunctions could be constructed through variational principles and by minimizing
the expectation value of HQCD

LC .

12 Structure Functions are Not Parton Distribu-

tions

Ever since the earliest days of the parton model, it has been assumed that the leading-
twist structure functions Fi(x,Q

2) measured in deep inelastic lepton scattering are
determined by the probability distribution of quarks and gluons as determined by the
light-front wavefunctions of the target. For example, the quark distribution is

Pq/N(xB , Q
2) =

∑
n

∫ k2
i⊥<Q2

[∏
i

dxi d
2k⊥i

]
|ψn(xi, k⊥i)|2

∑
j=q

δ(xB − xj).

The identification of structure functions with the square of light-front wavefunctions
is usually made in LC gauge n · A = A+ = 0, where the path-ordered exponential in
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Figure 8: Glauber-Gribov shadowing involves interference between rescattering am-
plitudes.

the operator product for the forward virtual Compton amplitude apparently reduces
to unity. Thus the deep inelastic lepton scattering cross section (DIS) appears to be
fully determined by the probability distribution of partons in the target. However,
Paul Hoyer, Nils Marchal, Stephane Peigne, Francesco Sannino, and I [171] have
recently shown that the leading-twist contribution to DIS is affected by diffractive
rescattering of a quark in the target, a coherent effect which is not included in the
light-front wavefunctions, even in light-cone gauge. The distinction between structure
functions and parton probabilities is already implied by the Glauber-Gribov picture
of nuclear shadowing [172, 173, 174, 175]. In this framework shadowing arises from
interference between complex rescattering amplitudes involving on-shell intermediate
states, as in Fig. 8. In contrast, the wave function of a stable target is strictly real
since it does not have on energy-shell configurations. A probabilistic interpretation
of the DIS cross section is thus precluded.

It is well-known that in Feynman and other covariant gauges one has to evaluate
the corrections to the “handbag” diagram due to the final state interactions of the
struck quark (the line carrying momentum p1 in Fig. 9) with the gauge field of the
target. In light-cone gauge, this effect also involves rescattering of a spectator quark,
the p2 line in Fig. 9. The light-cone gauge is singular – in particular, the gluon
propagator dµν

LC(k) = i
k2+iε

[
−gµν + nµkν+kµnν

n·k
]

has a pole at k+ = 0 which requires an
analytic prescription. In final-state scattering involving on-shell intermediate states,
the exchanged momentum k+ is ofO (1/ν) in the target rest frame, which enhances the
second term in the propagator. This enhancement allows rescattering to contribute
at leading twist even in LC gauge.

The issues involving final state interactions even occur in the simple framework
of abelian gauge theory with scalar quarks. Consider a frame with q+ < 0. We
can then distinguish FSI from ISI using LC time-ordered perturbation theory [5].
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Figure 9: Two types of final state interactions. (a) Scattering of the antiquark (p2

line), which in the aligned jet kinematics is part of the target dynamics. (b) Scattering
of the current quark (p1 line). For each LC time-ordered diagram, the potentially on-
shell intermediate states – corresponding to the zeroes of the denominators Da, Db, Dc

– are denoted by dashed lines.

Figure 9 illustrates two LCPTH diagrams which contribute to the forward γ∗T →
γ∗T amplitude, where the target T is taken to be a single quark. In the aligned
jet kinematics the virtual photon fluctuates into a qq pair with limited transverse
momentum, and the (struck) quark takes nearly all the longitudinal momentum of
the photon. The initial q and q momenta are denoted p1 and p2 − k1, respectively,

The calculation of the rescattering effect of DIS in Feynman and light-cone gauge
through three loops is given in detail in Ref. [171]. The result can be resummed
and is most easily expressed in eikonal form in terms of transverse distances r⊥, R⊥
conjugate to p2⊥, k⊥. The deep inelastic cross section can be expressed as

Q4 dσ

dQ2 dxB
=

α

16π2

1− y

y2

1

2Mν

∫
dp−2
p−2

d2~r⊥ d2 ~R⊥ |M̃ |2 (41)

where

|M̃(p−2 , ~r⊥, ~R⊥)| =
∣∣∣∣∣∣
sin

[
g2W (~r⊥, ~R⊥)/2

]
g2W (~r⊥, ~R⊥)/2

Ã(p−2 , ~r⊥, ~R⊥)

∣∣∣∣∣∣ (42)

is the resummed result. The Born amplitude is

Ã(p−2 , ~r⊥, ~R⊥) = 2eg2MQp−2 V (m||r⊥)W (~r⊥, ~R⊥) (43)

where m2
|| = p−2 MxB +m2 and

V (mr⊥) ≡
∫
d2~p⊥
(2π)2

ei~r⊥·~p⊥

p2
⊥ +m2

=
1

2π
K0(mr⊥) (44)
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The rescattering effect of the dipole of the qq is controlled by

W (~r⊥, ~R⊥) ≡
∫
d2~k⊥
(2π)2

1− ei~r⊥·~k⊥

k2
⊥

ei ~R⊥·~k⊥ =
1

2π
log

 |~R⊥ + ~r⊥|
R⊥

 . (45)

The fact that the coefficient of Ã in (42) is less than unity for all ~r⊥, ~R⊥ shows that the
rescattering corrections reduce the cross section. It is the analog of nuclear shadowing
in our model.

We have also found the same result for the deep inelastic cross sections in light-
cone gauge. Three prescriptions for defining the propagator pole at k+ = 0 have been
used in the literature:

1

k+
i

→
[

1

k+
i

]
ηi

=


k+

i

[
(k+

i − iηi)(k
+
i + iηi)

]−1
(PV)[

k+
i − iηi

]−1
(K)[

k+
i − iηiε(k

−
i )
]−1

(ML)

(46)

the principal-value, Kovchegov [176], and Mandelstam-Leibbrandt [177] prescriptions.
The ‘sign function’ is denoted ε(x) = Θ(x) − Θ(−x). With the PV prescription we

have Iη =
∫
dk+

2

[
1

k+
2

]
η2

= 0. Since an individual diagram may contain pole terms

∼ 1/k+
i , its value can depend on the prescription used for light-cone gauge. However,

the k+
i = 0 poles cancel when all diagrams are added; the net is thus prescription-

independent, and it agrees with the Feynman gauge result. It is interesting to note
that the diagrams involving rescattering of the struck quark p1 do not contribute to
the leading-twist structure functions if we use the Kovchegov prescription to define
the light-cone gauge. In other prescriptions for light-cone gauge the rescattering of
the struck quark line p1 leads to an infrared divergent phase factor exp iφ:

φ = g2 Iη − 1

4π
K0(λR⊥) +O(g6) (47)

where λ is an infrared regulator, and Iη = 1 in the K prescription. The phase is
exactly compensated by an equal and opposite phase from final-state interactions
of line p2. This irrelevant change of phase can be understood by the fact that the
different prescriptions are related by a residual gauge transformation proportional to
δ(k+) which leaves the light-cone gauge A+ = 0 condition unaffected.

Diffractive contributions which leave the target intact thus contribute at leading
twist to deep inelastic scattering. These contributions do not resolve the quark struc-
ture of the target, and thus they are contributions to structure functions which are
not parton probabilities. More generally, the rescattering contributions shadow and
modify the observed inelastic contributions to DIS.

Our analysis in the K prescription for light-cone gauge resembles the “covariant
parton model” of Landshoff, Polkinghorne and Short [178, 76] when interpreted in
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the target rest frame. In this description of small x DIS, the virtual photon with
positive q+ first splits into the pair p1 and p2. The aligned quark p1 has no final
state interactions. However, the antiquark line p2 can interact in the target with an
effective energy ŝ ∝ k2

⊥/x while staying close to its mass shell. Thus at small x and
large ŝ, the antiquark p2 line can first multiple scatter in the target via pomeron and
Reggeon exchange, and then it can finally scatter inelastically or be annihilated. The
DIS cross section can thus be written as an integral of the σqp→X cross section over the
p2 virtuality. In this way, the shadowing of the antiquark in the nucleus σqA→X cross
section yields the nuclear shadowing of DIS [174]. Our analysis, when interpreted
in frames with q+ > 0, also supports the color dipole description of deep inelastic
lepton scattering at small x. Even in the case of the aligned jet configurations, one
can understand DIS as due to the coherent color gauge interactions of the incoming
quark-pair state of the photon interacting first coherently and finally incoherently in
the target.

13 A Light-Front Event Amplitude Generator

The light-front formalism can be used as an “event amplitude generator” for high
energy physics reactions where each particle’s final state is completely labelled in
momentum, helicity, and phase. The application of the light-front time evolution op-
erator P− to an initial state systematically generates the tree and virtual loop graphs
of the T -matrix in light-front time-ordered perturbation theory in light-cone gauge.
The loop integrals only involve integrations over the momenta of physical quanta
and physical phase space

∏
d2k⊥idk

+
i . Renormalized amplitudes can be explicitly

constructed by subtracting from the divergent loops amplitudes with nearly identi-
cal integrands corresponding to the contribution of the relevant mass and coupling
counter terms (the “alternating denominator method”) [4]. The natural renormal-
ization scheme to use for defining the coupling in the event amplitude generator is a
physical effective charge such as the pinch scheme [39]. The argument of the coupling
is then unambiguous [179]. The DLCQ boundary conditions can be used to discretize
the phase space and limit the number of contributing intermediate states without
violating Lorentz invariance. Since one avoids dimensional regularization and non-
physical ghost degrees of freedom, this method of generating events at the amplitude
level could provide a simple but powerful tool for simulating events both in QCD and
the Standard Model.

14 The Light-Front Partition Function

In the usual treatment of classical thermodynamics, one considers an ensemble of
particles n = 1, 2, ...N which have energies {En} at a given “instant” time t. The
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partition function is defined as Z =
∑

n exp−En

kT
. Similarly, in quantum mechanics,

one defines a quantum-statistical partition function as Z = tr exp−βH which sums
over the exponentiated-weighted energy eigenvalues of the system.

In the case of relativistic systems, it is natural to characterize the system at a
given light-front time τ = t+z/c; i.e., one determines the state of each particle in the
ensemble as its encounters the light-front. Thus we can define a light-front partition
function

ZLC =
∑
n

exp− p−n
kTLC

by summing over the particles’ light-front energies p− = p0 − pz =
p2
⊥+m2

p+ . The

total momentum is P+ =
∑
p+

n ,
~P⊥ =

∑
n ~p⊥n, and the total mass is defined from

P+P− − P 2
⊥ = M2. The product M

P−TLC is boost invariant. In the center of mass

frame where ~P = 0 and thus P+ = P− = M . It is also possible to consistently impose
boundary conditions at fixed x− = z− ct and x⊥, as in DLCQ. The momenta p+

n , ~p⊥n

then become discrete. The corresponding light-front quantum-statistical partition
function is Z = tr exp−βLCHLC where HLC = i ∂

∂τ
is the light-front Hamiltonian.

For non-relativistic systems the light-front partition function reduces to the stan-
dard definition. However, the light-front partition function should be advantageous
for analyzing relativistic systems such as heavy ion collisions, since, like true rapid-
ity, y = ln p+

P+ , light-front variables have simple behavior under Lorentz boosts. The
light-front formalism also takes into account the point that a phase transition does
not occur simultaneously in t, but propagates through the system with a finite wave
velocity.
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