
SLAC–PUB–9055
November 2001

The Heisenberg Matrix Formulation

of Quantum Field Theory∗

Stanley J. Brodsky

Stanford Linear Accelerator Center
Stanford University, Stanford, California 94309

sjbth@slac.stanford.edu

Presented at the
Symposium On 100 Years Werner Heisenberg: Works And Impact

Bamberg, Germany
26-30 September 2001

∗Work supported by Department of Energy contract DE–AC03–76SF00515.



Abstract:

Heisenberg’s matrix formulation of quantum mechanics can be generalized to rel-
ativistic systems by evolving in light-front time τ = t + z/c. The spectrum and
wavefunctions of bound states, such as hadrons in quantum chromodynamics, can
be obtained from matrix diagonalization of the light-front Hamiltonian on a finite
dimensional light-front Fock basis defined using periodic boundary conditions in x−

and x⊥. This method, discretized light-cone quantization (DLCQ), preserves the
frame-independence of the front form even at finite resolution and particle number.
Light-front quantization can also be used in the Hamiltonian form to construct an
event generator for high energy physics reactions at the amplitude level. The light-
front partition function, summed over exponentially-weighted light-front energies, has
simple boost properties which may be useful for studies in heavy ion collisions. I also
review recent work which shows that the structure functions measured in deep in-
elastic lepton scattering are affected by final-state rescattering, thus modifying their
connection to light-front probability distributions. In particular, the shadowing of
nuclear structure functions is due to destructive interference effects from leading-
twist diffraction of the virtual photon, physics not included in the nuclear light-front
wavefunctions.

1 Introduction

One of the challenges of relativistic quantum field theory is to compute the wavefunc-
tions of bound states, such as the amplitudes which determine the quark and gluon
substructure of hadrons in quantum chromodynamics. However, any extension of the
Heisenberg-Schrödinger formulation of quantum mechanics H|ψ〉 = i ∂

∂t
|ψ〉 = E|ψ〉

to the relativistic domain has to confront seemingly intractable hurdles: (1) quan-
tum fluctuations preclude finite particle-number wavefunction representations; (2) the
charged particles arising from the quantum fluctuations of the vacuum contribute to
the matrix element of currents— thus knowledge of the wavefunctions alone is insuffi-
cient to determine observables; and (3) the boost of an equal-time wavefunction from
one Lorentz frame to another not only changes particle number, but is as complicated
a dynamical problem as solving for the wavefunction itself.

In 1949, Dirac [1] made the remarkable observation that ordinary “instant” time
t is not the only possible evolution parameter. In fact, evolution in “light-front” time
τ = t+z/c = x+ has extraordinary advantages for relativistic systems, stemming from
the fact that a subset of the Lorentz boost operators becomes purely kinematical. In
fact, the Fock-state representation of bound states defined at equal light-front time,
i.e., along the light-front, provides wavefunctions of fixed particle number which are
independent of the eigenstate’s four-momentum P µ. Furthermore, quantum fluctua-
tions of the vacuum are absent if one uses light-front time to quantize the system,
so that matrix elements such as the electromagnetic form factors only depend on the
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Figure 1: Dirac’s three forms of Hamiltonian dynamics. From Ref. [2].

currents of the constituents described by the light-front wavefunctions.
In Dirac’s “Front Form”, the generator of light-front time translations is P− = i ∂

∂τ
.

Boundary conditions are set on the transverse plane labeled by x⊥ and x− = z − ct.
See Fig. 1. Given the Lagrangian of a quantum field theory, P− can be constructed
as an operator on the Fock basis, the eigenstates of the free theory. (This method
is also called “light-cone” quantization in the literature.) Since each particle in the

Fock basis is on its mass shell, k− ≡ k0−k3 =
k2
⊥+m2

k+ , and its energy k0 = 1
2
(k+ +k−)

is positive, only particles with positive momenta k+ ≡ k0 + k3 ≥ 0 can occur in the
Fock basis. Since the total plus momentum P+ =

∑
n k+

n is conserved, the light-front
vacuum cannot have any particle content. The operator HLC = P+P− − P 2

⊥, the
“light-front Hamiltonian”, is frame-independent.

The Heisenberg equation on the light-front is

HLC |Ψ〉 = M2|Ψ〉 . (1)

This can in principle be solved by diagonalizing the matrix 〈n|HLC |m〉 on the free
Fock basis: [2] ∑

m

〈n|HLC |m〉 〈m|ψ〉 = M2 〈n|Ψ〉 . (2)

The eigenvalues {M2} of HLC = H0
LC + VLC give the squared invariant masses of

the bound and continuum spectrum of the theory. For example, the light-cone gauge
interaction terms of QCD which are important for a meson are illustrated in Fig. 2.
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Figure 2: The front-form matrix of QCD interactions in light-cone gauge. Up to eight
constituents in a meson are shown. From Ref. [2] and H. C. Pauli.

The projections {〈n|Ψ〉} of the eigensolution on the n-particle Fock states provide
the light-front wavefunctions. Thus solving a quantum field theory is equivalent to
solving a coupled many-body quantum mechanical problem:

[
M2 −

n∑

i=1

m2
⊥i

xi

]
ψn =

∑

n′

∫
〈n|VLC |n′〉ψn′ (3)

where the convolution and sum is understood over the Fock number, transverse mo-
menta, plus momenta, and helicity of the intermediate states. Here m2

⊥ = m2 + k2
⊥.

In QCD, the wavefunction of a hadron describes its composition in terms of the
momenta and spin projections of quark and gluon constituents. For example, the
eigensolution of a negatively-charged meson QCD, projected on its color-singlet B =
0, Q = −1, Jz = 0 eigenstates {|n〉} of the free Hamiltonian HQCD

LC (g = 0) at fixed
τ = t− z/c has the expansion:

∣∣∣ΨM ; P+, ~P⊥, λ
〉

=
∑

n≥2,λi

∫
Πn

i=1

d2k⊥idxi√
xi16π3

16π3δ


1−

n∑

j

xj


 δ(2)

(
n∑

`

~k⊥`

)

∣∣∣n; xiP
+, xi

~P⊥ + ~k⊥i, λi

〉
ψn/M(xi, ~k⊥i, λi). (4)
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The set of light-front Fock state wavefunctions {ψn/M} represent the ensemble of
quark and gluon states possible when the meson is intercepted at the light-front. The
light-front momentum fractions xi = k+

i /P+
π = (k0 + kz

i )/(P
0 + P z) with

∑n
i=1 xi = 1

and ~k⊥i with
∑n

i=1
~k⊥i = ~0⊥ represent the relative momentum coordinates of the QCD

constituents and are independent of the total momentum of the state. The actual
physical transverse momenta are ~p⊥i = xi

~P⊥+~k⊥i. The λi label the light-front spin Sz

projections of the quarks and gluons along the quantization z direction. The spinors
of the light-front formalism automatically incorporate the Melosh-Wigner rotation.
The physical gluon polarization vectors εµ(k, λ = ±1) are specified in light-cone
gauge by the conditions k · ε = 0, η · ε = ε+ = 0. The parton degrees of freedom are
thus all physical; there are no ghost or negative metric states. A detailed derivation
of light-front quantization of non-Abelian gauge theory in light-cone gauge is given
in Ref. [3]. Explicit examples of light-front wavefunctions in QED are given in Ref.
[4].

Angular momentum has simplifying features in the light-front formalism since
the projection Jz is kinematical and conserved. Each light-front Fock wavefunction
satisfies the angular momentum sum rule: Jz =

∑n
i=1 Sz

i +
∑n−1

j=1 lzj . The sum over
Sz

i represents the contribution of the intrinsic spins of the n Fock state constituents.
The sum over orbital angular momenta

lzj = −i

(
k1

j

∂

∂k2
j

− k2
j

∂

∂k1
j

)
(5)

derives from the n−1 relative momenta. This excludes the contribution to the orbital
angular momentum due to the motion of the center of mass, which is not an intrinsic
property of the hadron [4]. The numerator structure of the light-front wavefunctions
is in large part determined by the angular momentum constraints.

The most important feature of light-front Fock wavefunctions ψn/p(xi, ~k⊥i, λi) is
the fact they are Lorentz invariant functions of the relative coordinates, independent
of the bound state’s physical momentum P+ = P 0 + P z, and P⊥ [5]. The light-
front wavefunctions represent the ensembles of states possible when the hadron is
intercepted by a light-front at fixed τ = t + z/c. The light-front representation thus
provide a frame-independent, quantum-mechanical representation of a hadron at the
amplitude level, capable of encoding its multi-quark, hidden-color and gluon momen-
tum, helicity, and flavor correlations in the form of universal process-independent
hadron wavefunctions.

If one imposes periodic boundary conditions in x− = t + z/c, then the plus mo-
menta become discrete: k+

i = 2π
L

ni, P
+ = 2π

L
K, where

∑
i ni = K [6, 7]. For a

given “harmonic resolution” K, there are only a finite number of ways positive in-
tegers ni can sum to a positive integer K. Thus at a given K, the dimension of
the resulting light-front Fock state representation of the bound state is rendered fi-
nite without violating Lorentz invariance. The eigensolutions of a quantum field
theory, both the bound states and continuum solutions, can then be found by nu-
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merically diagonalizing a frame-independent light-front Hamiltonian HLC on a finite
and discrete momentum-space Fock basis. Solving a quantum field theory at fixed
light-front time τ thus can be formulated as a relativistic extension of Heisenberg’s
matrix mechanics. The continuum limit is reached for K → ∞. This formulation of
the non-perturbative light-front quantization problem is called “discretized light-front
quantization” (DLCQ) [7]. Lattice gauge theory has also been used to calculate the
pion light-front wavefunction [8].

The DLCQ method has been used extensively for solving one-space and one-time
theories [2], including applications to supersymmetric quantum field theories [9] and
specific tests of the Maldacena conjecture [10]. There has been progress in system-
atically developing the computation and renormalization methods needed to make
DLCQ viable for QCD in physical spacetime. For example, John Hiller, Gary Mc-
Cartor, and I [11] have shown how DLCQ can be used to solve 3+1 theories despite
the large numbers of degrees of freedom needed to enumerate the Fock basis. A key
feature of our work is the introduction of Pauli Villars fields to regulate the UV diver-
gences and perform renormalization while preserving the frame-independence of the
theory. A recent application of DLCQ to a 3+1 quantum field theory with Yukawa
interactions is given in Ref. [11]. Representative plots of the one-boson one-fermion
light-front Fock wavefunction of the lowest mass fermion solution of the Yukawa
(3+1) theory showing spin correlations and the presence of non-zero orbital angular
momentum are shown in Fig. 3.

There has also been important progress using the transverse lattice, essentially
a combination of DLCQ in 1+1 dimensions together with a lattice in the transverse
dimensions [12, 13, 14]. One can also define a truncated theory by eliminating the
higher Fock states in favor of an effective potential [15]. Spontaneous symmetry
breaking and other nonperturbative effects associated with the instant-time vacuum
are hidden in dynamical or constrained zero modes on the light-front. An introduction
is given in Refs. [16, 17].

2 General Features of Light-front Wavefunctions

The maximum of a light-front wavefunction occurs when the invariant mass of the
partons is minimal; i.e., when all particles have equal rapidity and are all at rest in
the rest frame. In fact, Dae Sung Hwang and I [18] have noted that one can rewrite
the wavefunction in the form:

ψn =
Γn

M2[
∑n

i=1
(xi−x̂i)2

xi
+ δ2]

(6)

where xi = x̂i ≡ m⊥i/
∑n

i=1 m⊥i is the condition for minimal rapidity differences
of the constituents. The key parameter is M2 − ∑n

i=1 m2
⊥i/x̂i ≡ −M2δ2. One can

interpret δ2 ' 2ε/M where ε =
∑n

i=1 m⊥i −M is the effective binding energy. This
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Figure 3: DLCQ results for the one-boson one-fermion wavefunction in a fermion
system with parallel and antiparallel fermion helicity, as a function of longitudinal
momentum fraction y and one transverse momentum component qx in the qy = 0
plane. The parameter values for the DLCQ resolution are K = 29, N⊥ = 7. Further
details are given in Ref. [11].

form shows that the wavefunction is a quadratic form around its maximum, and that
the width of the distribution in (xi − x̂i)

2 (where the wavefunction falls to half of
its maximum) is controlled by xiδ

2 and the transverse momenta k⊥i
. Note also that

the heaviest particles tend to have the largest x̂i, and thus the largest momentum
fraction of the particles in the Fock state, a feature familiar from the intrinsic charm
model. For example, the b quark has the largest momentum fraction at small k⊥ in
the B meson’s valence light-front wavefunction, but the distribution spreads out to
an asymptotically symmetric distribution around xb ∼ 1/2 when k⊥ À m2

b .
The fall-off the light-front wavefunctions at large k⊥ and x → 1 is dictated by

QCD perturbation theory since the state is far-off the light-front energy shell. This
leads to counting rule behavior for the quark and gluon distributions at x → 1.
Notice that x → 1 corresponds to kz → −∞ for any constituent with nonzero mass
or transverse momentum.

The above discussion suggests that an approximate form for the hadron light-front
wavefunctions could be constructed through variational principles and by minimizing
the expectation value of HQCD

LC .

3 A Light-front Event Amplitude Generator

The light-front formalism can be used as an “event amplitude generator” for high
energy physics reactions where each particle’s final state is completely labeled in
momentum, helicity, and phase. The application of the light-front time evolution op-
erator P− to an initial state systematically generates the tree and virtual loop graphs
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of the T -matrix in light-front time-ordered perturbation theory in light-front gauge.
The loop integrals only involve integrations over the momenta of physical quanta
and physical phase space

∏
d2k⊥idk+

i . Renormalized amplitudes can be explicitly
constructed by subtracting from the divergent loops amplitudes with nearly identi-
cal integrands corresponding to the contribution of the relevant mass and coupling
counter terms (the “alternating denominator method”) [19]. The natural renormal-
ization scheme to use for defining the coupling in the event amplitude generator is a
physical effective charge such as the pinch scheme [20]. The argument of the coupling
is then unambiguous [21]. The DLCQ boundary conditions can be used to discretize
the phase space and limit the number of contributing intermediate states without
violating Lorentz invariance. Since one avoids dimensional regularization and non-
physical ghost degrees of freedom, this method of generating events at the amplitude
level could provide a simple but powerful tool for simulating events both in QCD and
the Standard Model.

4 The Light-front Partition Function

In the usual treatment of classical thermodynamics, one considers an ensemble of
particles n = 1, 2, . . . N which have energies {En} at a given “instant” time t. The
partition function is defined as Z =

∑
n exp−En

kT
. Similarly, in quantum mechanics,

one defines a quantum-statistical partition function as Z = tr exp−βH which sums
over the exponentiated-weighted energy eigenvalues of the system.

In the case of relativistic systems, it is natural to characterize the system at a
given light-front time τ = t+z/c; i.e., one determines the state of each particle in the
ensemble as its encounters the light-front. Thus we can define a light-front partition
function

ZLC =
∑
n

exp− p−n
kTLC

by summing over the particles’ light-front energies p− = p0 − pz =
p2
⊥+m2

p+ . The

total momentum is P+ =
∑

p+
n , ~P⊥ =

∑
n ~p⊥n, and the total mass is defined from

P+P− − P 2
⊥ = M2. The product M

P−TLC is boost invariant. In the center of mass

frame where ~P = 0 and thus P+ = P− = M . It is also possible to consistently impose
boundary conditions at fixed x− = z− ct and x⊥, as in DLCQ. The momenta p+

n , ~p⊥n

then become discrete. The corresponding light-front quantum-statistical partition
function is Z = tr exp−βLCHLC where HLC = i ∂

∂τ
is the light-front Hamiltonian.

For non-relativistic systems the light-front partition function reduces to the stan-
dard definition. However, the light-front partition function should be advantageous
for analyzing relativistic systems such as heavy ion collisions, since, like true rapid-
ity, y = ln p+

P+ , light-front variables have simple behavior under Lorentz boosts. The
light-front formalism also takes into account the point that a phase transition does
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not occur simultaneously in t, but propagates through the system with a finite wave
velocity.

5 Light-front Wavefunctions and QCD Phenomenol-

ogy

There have been extensive applications of light-front wavefunctions to QCD phe-
nomenology [22]; for example, form factors [23] and the handbag contribution to
deeply virtual Compton scattering γ∗p → γp can be expressed as overlaps of the
light-front wavefunctions [24, 25]; quark and gluon distributions are light-front wave-
function probabilities. The distributions measured in the diffractive dissociation of
hadrons are computed from transverse derivatives of the light-front wavefunctions.
Progress in measuring the basic parameters of electroweak interactions and CP vio-
lation will require a quantitative understanding of the dynamics and phase structure
of B decays at the amplitude level. The light-front Fock representation is specially
advantageous in the study of exclusive B decays. For example, Dae Sung Hwang [26]
and I have derived an exact frame-independent representation of decay matrix el-
ements such as B → D`ν from the overlap of n′ = n parton-number conserving
wavefunctions and the overlap of wavefunctions with n′ = n−2 from the annihilation
of a quark-antiquark pair in the initial wavefunction.

One can also express the matrix elements of the energy momentum tensor as
overlap integrals of the light-front wavefunctions [4]. An important consistency check
of any relativistic formalism is to verify the vanishing of the anomalous gravito-
magnetic moment B(0), the spin-flip matrix element of the graviton coupling and
analog of the anomalous magnetic moment F2(0). For example, at one-loop order
in QED, Bf (0) = α

3π
for the electron when the graviton interacts with the fermion

line, and Bγ(0) = − α
3π

when the graviton interacts with the exchanged photon. The
vanishing of B(0) can be shown to be exact for bound or elementary systems in the
light-front formalism [4], in agreement with the equivalence principle [27, 28, 29].

6 Structure Functions are Not Parton Distribu-

tions

The quark and gluon distributions of hadrons can be defined from the probability
measures of the light-front wavefunctions. For example, the quark distribution in a
hadron H is

Pq/H(xBj, Q
2) =

∑
n

∫ k2
i⊥<Q2

[∏

i

dxi d
2k⊥i

]
|ψn/H(xi, k⊥i)|2

∑

j=q

δ(xBj − xj). (7)
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It has been conventional to identify the leading-twist structure functions Fi(x,Q2)
measured in deep inelastic lepton scattering with the light-front probability distri-
butions. For example, in the parton model, F2(x,Q2) =

∑
q e2

qPq/H(x,Q2). However,
Paul Hoyer, Nils Marchal, Stephane Peigne, Francesco Sannino, and I [30] have re-
cently shown that the leading-twist contribution to deep inelastic scattering is af-
fected by diffractive rescattering of a quark in the target, a coherent effect which is
not included in the light-front wavefunctions, even in light-cone gauge. The gluon
propagator in light-cone gauge A+ = 0 is singular:

dµν
LC(k) =

i

k2 + iε

[
−gµν +

nµkν + kµnν

n · k

]
(8)

has a pole at k+ ≡ n · k = 0, which has to be defined by an analytic prescription such
as the Mandelstam-Liebbrandt prescription [31]. In final-state scattering involving
on-shell intermediate states, the exchanged momentum k+ is of O (1/ν) in the target
rest frame, which enhances the second term of the light-cone gauge propagator. This
enhancement allows rescattering to contribute at leading twist even in LC gauge.

Thus diffractive contributions to the deep inelastic scattering γ∗p → Xp′ cross
sections, which leave the target intact, contribute at leading twist to deep inelastic
scattering. Diffractive events resolve the quark-gluon structure of the virtual pho-
ton, not the quark-gluon structure of the target, and thus they give contributions to
structure functions which are not target parton probabilities. Our analysis of deep
inelastic scattering γ∗(q)p → X, when interpreted in frames with q+ > 0, also sup-
ports the color dipole description of deep inelastic lepton scattering at small xbj. For
example, in the case of the aligned-jet configurations, one can understand σT (γ∗p) at
high energies as due to the coherent color gauge interactions of the incoming quark-
pair state of the photon interacting, first coherently and finally incoherently, in the
target.

The distinction between structure functions and target parton probabilities is
also implied by the Glauber-Gribov picture of nuclear shadowing [32, 33, 34, 35].
In this framework, shadowing arises from interference between complex rescattering
amplitudes involving on-shell intermediate states. In contrast, the wave function of
a stable target is strictly real since it does not have on energy-shell configurations.
Thus nuclear shadowing is not a property of the light-front wavefunctions of a nuclear
target; rather, it involves the total dynamics of the γ∗ - nucleus collision. A strictly
probabilistic interpretation of the deep inelastic cross section cross section is thus
precluded.
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