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Abstract

In this talk I show how, in Lemâitre coordinates, one can canonically quantize a

massless scalar �eld in the background of a Schwarzschild black hole and then show

how this leads to a simpli�ed derivation of Hawking radiation. The key result of the

canonical quantization procedure is that the Hamiltonian of the system is explicitly

time dependent, which immediately shows that the problem is intrinsically non-static

and that, although a unitary time-development operator exists, it is not useful to talk

about eigenstates. Rather, one should deal with the Heisenberg equations of motion

and focus attention on steady state phenomena, such as the Hawking radiation. In

order to clarify the procedure used to solve the Heisenberg equations I �rst discuss

the related problem of the massless scalar �eld theory calculated in the presence of a

moving mirror.
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1 Introduction

The phenomenon of Hawking radiation has fascinated physicists ever since Hawking's

1974 paper[2] showed that, when quantum �elds are taken into account, a black hole

of mass M appears to emit (nearly) thermal radiation with a temperature TH =

1=(8�GM). This result, extensively studied in the literature (see for example [3, 4,

5]), is clearly robust since all approaches lead to the same conclusion. So far as I

know, however, no derivation of Hawking radiation discusses the problem within the

framework of canonical quantization. This is one reason the question of whether the

time evolution of the system is unitary became a topic of debate.

In this talk I present work[1] done in collaboration with Kirill Melnikov, show-

ing that a simple canonical quantization procedure exists and leads to the usual

Hawking results within the framework of a unitary quantum theory. This theory

has some surprising features but doesn't seem lead to paradoxes which invalidate

the approach. One unique advantage of our calculation is that we can compute the

energy-momentum tensor at all positions and times. This allows us to explicitly ex-

hibit transient behavior and retardation e�ects, and { as a matter of principle { give

a self-consistent treatment of back reaction.

Before diving into details I will spend a few moments reminding you why carrying

out a Hamiltonian formulation of the problem of a massless scalar �eld in the presence

of a black-hole background seems so di�cult. Consider the usual Schwarzschild metric

for a black hole of mass M :

ds2 = �(1� 2M

r
) dt2 +

1

(1� 2M
r
)
dr2 + r2d
2 (1)

and a massless scalar �eld with Lagrange density

L =
p�g [g�� @��(x) @��(x)] : (2)

(Note that in what follows I will set 2M = 1 to simplify the equations.) While one

usually focuses on the singularity of the metric at r = 2M , this coordinate singularity

is not a problem. The real issue is that in order to canonically quantize this theory we

need a family of spacelike slices which foliate the spacetime. Given this, we can then

de�ne the �eld and its conjugate momentum on one of these slices. Inspection of the

metric, Eq.1, shows that surfaces of constant Schwarzschild time change from spacelike

to timelike at the horizon (r = 2M) and so, they do not ful�ll our requirements.

2 Summary of Results

In order to de�ne a set of spacelike surfaces which foliate the Schwarzschild spacetime

we begin by introducing Painlev�e coordinatess because surfaces of constant Painlev�e

time extend from r = 0 to r = 1 and are everywhere spacelike. Since, however,
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the Painlev�e timelines are not everywhere timelike we will have to make one more

transformation, to Lemâitre coordinates, in order to canonically quantize the theory.

In these coordinates we see that the metric and therefore the Hamiltonian is explic-

itly time dependent, which is the reason why Hawking radiation exists. Of course,

despite the time dependence of the Hamiltonian, the theory possesses a unitary time

development operator, which is all we need to discuss the relevant physical issues.

Note, because the Hamiltonian is time dependent, it is never useful to talk about

eigenstates.

The strategy of the computations I will describe goes as follows: �rst, we canoni-

cally quantize the theory; second, we devise a scheme (the Geometric Optics Approx-

imation) for approximately solving the Heisenberg equations of motion (this is easier

than calculating the unitary time development operator); third, we compute the tem-

perature seen by a thermometer located at �xed r which is adiabatically switched on

and o�; last, we compute the ux passing through a sphere of �xed radius and show

that in the long time limit (after transients have died out) it has the Hawking value.

3 Review of Coordinate Systems

While we are ultimately interested in the surfaces de�ned by �xing Painlev�e time, it

is convenient to �rst introduce Kruskal coordinates and plot the various surfaces of

interest in these coordinates. The reason for this is that these coordinates make it

particularly easy to draw null-geodesics (they are simply lines parallel to either the

X or Y axes shown in Fig.1) and they allow us to easily compare surfaces of �xed

Schwarzschild time to surfaces of �xed Painlev�e time. Kruskal coordinates are de�ned

by the equations:

xy = (r � 1) er ;
x

jyj = etS : (3)

In these coordinates the Schwarzschild metric becomes:

ds2 =
32 ej�rjdx dy

r
+ r2d
2 (4)

Note that Eq.3 immediately shows us that �xed Schwarzschild r is a hyperbola in

the x; y-plane, as shown in Fig.1, and that surfaces of �xed Schwarzschild time cor-

responds to straight lines x = jyj etS (which are not shown in Fig.1).

Now, Painlev�e coordinates are arrived at by making an r-dependent shift in

Schwarzschild time; i.e.,

t = �� 2
p
r � ln

 �����
p
r � 1p
r + 1

�����
!

(5)

These are the almost horizontal curves shown in Fig.1 which clearly foliate the space-

time. Note, that while Schwarzschild t and Painlev�e � di�er by functions of r, if two
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Figure 1:

events having the same r then the di�erences in Schwarzschild and Painlev�e times

are equal. In Painlev�e coordinates the Schwarzschild metric takes the form

ds2 = �(1� 1

r
) d�2 +

2 d� drp
r

+ dr2 + r2d
2 (6)

Although Painlev�e coordinates are useful for de�ning our set of spacelike surfaces they

don't work well for canonical quantization because of the cross term involving d� dr

which appears in the metric. A better coordinate system is provided by Lemâitre

coordinates, which are related to Painlev�e � and r by

r(�; rsch) = (r
3=2
sch �

3

2
�)2=3 = (

3

2
(� � �))2=3 (7)

In Lemâitre coordinates the metric takes the form

ds2 = �d�2 +
1

r(�; �)
d�2 + r(�; �)2d
2 (8)

which allows a straightforward treatment of canonical quantization.

4 Canonical Quantization

We choose the surface � = 0 as the initial surface on which to canonically quantize

the free massless scalar �eld theory. Since the metric in all coordinate systems is rota-

tionally invariant we can always solve the �eld equations for each angular momentum

mode separately. For this reason we can imagine expanding the �eld in spherical har-

monics in � and � and then restricting attention just to the L = 0 mode, since this
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contains most of the interesting physics. If we do this then, in Lemâitre coordinates,

the L = 0 scalar �eld Lagrangian reduces to

L =
p�g 1

2

h
(@�� (�; �))

2 � r (@�� (�; �))
2
i

(9)

where the determinant
p�g is

p�g = r3=2 =
3

2
(� � �): (10)

Following the usual rules the momentum conjugate to the �eld is

�(�; �) = (� � �) @��(�; �); (11)

and the canonical Hamiltonian is

H(�) =
1

2

Z
1

�
d�

 
�2

� � �
+ r(� � �)(@��)

2

!
: (12)

The commutation relations for � and � are

[�(�; �); �(�; �0)] = �i �(� � �0) (13)

As advertised, this Hamiltonian is explicitly time dependent and in a sense this �n-

ishes our job, since we see that we are looking for steady state and not static behavior.

Another feature of this Hamiltonian is that setting � = 0 we see that by a simple

rescaling of � and �, in order to absorb the factor of 1=� in the �2 term, we can

convert it to the usual Hamiltonian of the L = 0 mode of a free massless �eld in at

space and therefore solve it exactly.

It is important to note, as in the usual interaction representation, the fact that

we have a time dependent Hamiltonian doesn't mean that we don't have a unitary

time-development operator. There is a one parameter family U(�) which satis�es the

equation
d

d�
U(�) = H(�)U(�) (14)

whose solution is the path ordered exponential of the integral of H(�). Fields at later

� are de�ned by

�(�; �) = U(�)�(�)U y(�) (15)

�(�; �) = U(�) �(�)U y(�) (16)

It follows from the canonical commutation relations that these operators satisfy

Heisenberg equations of motion of the form

@� [(� � �)@��]� @� [(� � �) r @��] = 0 (17)
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5 Solving The Heisenberg Equations: An Aside

To explain the Geometric Optics Approximation to these Heisenberg equations it is

convenient to �rst discuss these equations in at space. I begin with the case where

there are no boundary conditions and then consider the problem of a moving mirror,

whose physics is much closer to that of the black hole. By a moving mirror, I mean

a free �eld theory in at space together with the boundary condition that the �eld

vanishes on and to the left of a curve x(t).

To solve the free �eld Euler-Lagrange equation when there are no boundary con-

ditions we rewrite the equations as

(@2
t � @2

x)�(t; x) = 0

(@t � @x) (@t + @x)�(t; x) = 0 (18)

The general solution to this equation is

�(t; x) = f(x� t) + g(x+ t) (19)

where the functions f and g are determined by the values of �(t; x) and its time

derivative at t = 0; i.e.,

@t�(t = 0; x0) = �@xf(x0) + @xg(x0)

@x�(t = 0; x0) = @xf(x0) + @xg(x0) (20)

which says that

@xf(x0) =
1

2
(@x�(x0)� �(x0))

@xg(x0) =
1

2
(@x�(x0) + �(x0)) (21)

Now consider, as shown in Fig.2, the case of a �eld theory with moving boundary

x(t) = �t + A (1 � e�2 �t), where I have chosen to plot the curve for A = 1 and

� = 1=2. In this case the Euler-Lagrange equations remain unchanged, however the

solution needs to be modi�ed to maintain the boundary condition which says that

�(t; x(t)) = 0. This is easily done by the trick of adding a reected wave, g0(x � t),

so that the general solution has the form

�(t; x) = �(x� t) f(x� t) + g(t+ x)

+�(t� x) g0(x� t) (22)

We will see that the crucial feature of this solution is that, if one sits at a �xed point

x, the reected rays contributing to �(t; x) for t >> x all come from very near the

point x = A.
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Figure 2:

6 The Story of Temperature

In what follows I adopt Unruh's de�nition of a thermometer; i.e., a quantum system

with multiple energy levels interacting with the �eld �(t; x). In other words, I add an

interaction of the form

Vint(t) = � e�(t�t0)
2=2�Q�(x; t) (23)

to the Lagrangian, where the parameters t0 and � de�ne the range in t for which

the interaction is turned on and x speci�es the spatial location of the thermometer.

Furthermore, the operator Q is some operator causing transitions among the energy

eigenstates of the thermometer.

Of course, assumptions have to be made in order to get reasonable results. First,

in order for the thermometer to know the mirror is moving, it is necessary that

t0 >> x. Second, we impose an adiabatic condition,
p
� >> 1=E, where E is the

typical excitation energy of the thermometer, so that we do not excite the termometer

just by turning it on or o�. Finally, we impose the condition E � �, so that the

acceleration of the mirror is capable of exciting the higher states of the thermometer.

With these assumptions second order perturbation theory in � tells us that the

probability of the thermometer being excited to a state with energy E is

P(E;E0) = �2jhEjM(0)jE0ij2
Z
dt dt0

e�i(E�E0)(t�t
0)e�(t�t0)

2=2�

e�(t0�t0)
2=2�h�(t; x)�(t0; x)i (24)

What we now do is compute h�(t; x)�(t0; x)i by plugging in the formula giving �(t; x)

in terms of �(x) and �(x) on the original surface, expand these t = 0 operators in
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terms of annihilation and creation operators and evaluate the resulting expression.

The key feature of this problem is that the points on the original surface corresponding

to (t; x) and (t0; x) for t; t0 >> x are exponentially close to the point x = A. A

straightforward computation gives the result

P(E;E0) =
�2
p
�

2

jhEjM(0)jE0ij2
E � E0

�
�

1

e2� (E�E0)=� � 1

�
(25)

7 Computing The Energy Flux

To compute the ux of energy through a plane at position x we need to compute Ttx,

the energy momentum tensor for the massless �eld, which is given by

T�� =
1

2
f@��(t; x); @��(t; x)g ; (26)

Generally, the expectation value of components of T�� will be divergent since the �eld

derivatives are being evaluated at the same spacetime point. To deal with this we

adopt a point splitting procedure; i.e., we de�ne

Ttx =
1

2
f�(t+ �; x); @x�(t� �; x)g ; (27)

evaluate the expression and then take the limit � ! 0. The result is that the energy

density Ttt diverges as 1=�
2 but the ux, Ttx, is �nite and unique. The result of the

computation is

Ttx =
�2

48�
(28)

Although the �niteness of the ux may seem surprising, it is in fact a consequence of

a general theorem.

8 The Black Hole

Now let us turn to a discussion of the case of a Schwarzschild black hole. Another way

of describing the previous example is to say that we solve the Heisenberg equations

by tracing back the two null-rays leaving the point (t; x) to �nd the two points at

which they intersect the t = 0 surface and write the �eld in terms of the � and � at

those two points. There is a simple generalization of this approach to the equations

in curved space.

Straightforward analysis shows that what is usually referred to as a WKB analysis

of the wave equation in curved space amounts to, what we will call, the Geometric

Optics Approximation. The generalization is given by the following prescription.
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First, starting from the point (�; r), �nd the two null-geodesics which meet at this

point and trace them back to the surface � = 0 (since this is a geometrical statement

it can be solved in any coordinate system). In Painlev�e coordinates the equations for

these two geodesics are

S1(x1) = �+ S1(r)

S2(x2) = �+ S2(r)

S1(r) = r � 2
p
r + ln((

p
r + 1)2)

S2(r) = �r � 2
p
r � ln((

p
r + 1)2) (29)

Next, having found the points x1 and x2, write the �eld at (�; r) as

�(�; r) =
1

r
(�1(�+ S1(r)) + �2(�+ S2(r))) (30)

where the �eld on the initial surface is given in terms of two functions

�(0; r) =
1

r
(�1(S1(r)) + �2(S2(r)))

=
1

r
(f1(r) + f2(r)) (31)

Finally, in analogy with the at space case, write f1 and f2 in terms of �(r) and �(r)

on the surface of quantization (� = 0).

9 Black Hole: Thermometer Redux

Let us now consider adiabatically switching on a thermometer, kept at �xed Schwarzschild

r, and then switching it o�. As in the case of the moving mirror, second order per-

turbation says

P(E;E0) = �2jhEjM(0)jE0ij2
Z
d� d�0

e�i(E�E0)(���
0)e�(���0)

2=2�

e�(�0
��0)

2=2�h�(�; r)�(�0; r)i (32)

Of course, now the points (�; r) and (�0; r) in the correlation function h�(�; r)�(�0; r)i
are traced back, using null-geodesics, to the initial surface � = 0 and the �elds are

appropriately re-expressed in terms of � and � on that surface. The only subtlety in

this calculation is that for arbitrary r the interaction term gets an extra correction for

the time dilation at point r, since the energy levels of the thermometer are de�ned

in its rest frame. The result of this calculation is that the thermometer reads a

temperature

kB T =
1

8�M
q
1� 2M=r

(33)

which agrees with Hawking's result.
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10 Black Hole: Energy Flux

The energy ux for the Schwarzschild black hole is calculated in the same way as for

the moving mirror. Again we have to point-split the �elds appearing in the energy

momentum tensor and then take the limit of zero splitting. As before we �nd that

the ux T�;r is �nite and the total ux through a sphere at large r takes the expected

limiting value

Flux =
�

12
T 2 =

�

12

1

(8�M)2
(34)

plus, of course, transients which vanish for large � and terms which die faster than

1=r2.

11 Back Reaction

Our approach is unique in that we start at a �nite time and calculate everything as

a function for all values of � and r. Thus, in principle, one can discuss the problem

of back reaction after the Hawking radiation has set in, but before any appreciable

amount of the black hole's mass has been radiated. The reason there is a back reaction

problem is because we calculated the energy-momentrum tensor for a Schwarzschild

background and found a non-vanishing T�r and so we are in the situation that

G�� = R�� � g�� R = 0

T�� 6= 0: (35)

This, of course, is not consistent with the Einstein equations and so we do not have

a self-consistent semi-classical problem.

Given our computational procedure, however, for any point r, T�r is zero until

radiation from the horizon has a chance to reach that point, at which time an observer

begins to see the Hawking radiation. In principle we could feed our expression for

T�� back into the Einstein equations and attempt to �nd a self-consistent metric for

which the computation of T�� wouldn't change very much. Clearly this is di�cult to

do in general but we can ask what things look like inside of a sphere of radius r after

the Hawking radiation has set in. If, in this region we adopt a metric of Schwarzschild

form but change M to M(t) = M0 � Ft then the metric becomes

ds2 = �(1� 2M(t)

r
) dt2 +

1

(1� 2M(t)

r
)
dr2

+r2d
2 (36)
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which leads to an Einstein tensor of the form0
BBBBB@

0 2F
r2X(t)

0 0
2F

r2X(t)
0 0 0

0 0 4F 2

X(t)3
0

0 0 0
4F 2 sin(�)2

X(t)3

1
CCCCCA (37)

where

X(t) = 1� 2 (M0 � F t)

r
(38)

which matches the outgoing ux computed for the static background. Since our

computation of the ux at a point (t; r) only involves the computation of geodesics

leaving the initial surface and arriving at this point. It is clear that for a large

black hole these geodesics will not change very much for time intervals for which

the Hawking radiation has set in but during which only a neglible fraction of the

black hole mass has been radiated away. Therefore, it would seem that an iterative

self-consistent solution should be possible.

12 Entropy?

While the two issues of entropy and the issue of decoupling of modes at r = 0 are

very interesting, there is no time to discuss them in this talk. A discussion of these

issues will appear in a forthcoming paper.
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