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2 Introduction

The analytic expression for the e�ective transverse wake �eld caused by the

electron cloud in a positron storage ring is derived. The derivation includes

the frequency spread in the cloud, which is the main e�ect of the nonlinearity

of electron motion in the cloud. This approach allows calculation of the Q-

factor and study the tune spread in a bunch.

3 Wake �eld of the cloud

Derivation of the e�ective wake �eld induced by the electron cloud is compli-

cated by the substantial nonlinearity of the motion of electrons in the cloud.

A simple estimate of the wake �eld is known [2], [3], and was recently used

to study the emittance blow up [6]. The wake was obtained in these papers

in a linear approximation and for equal transverse sizes of the beam and of

the cloud what is, certainly, wrong in reality. The estimate is based on an

assumption that the wake is de�ned, mostly, by the electrons in the close

proximity to the beam. This argument is correct but not obvious because

the roll-o� of the force of interaction at large distances from the beam may

be compensated by the large number of distant electrons. In this paper the

wake is derived in somewhat more rigorous way which, hopefully, may clarify

validity of the assumptions assumed in the linear approximation. Our deriva-

tion is valid for the arbitrary ratio of the size of the cloud to the rms size of

the bunch, allowing us to de�ne the Q-factor of the wake, and to study the

tune spread induced by the e-cloud.

Let us consider a at Gaussian bunch with transverse rms �x >> �y and

the bunch rms length �z. A slice at the distance z > 0 from the head of

the bunch is at s = ct� z in the ring at the moment t. Let us use notation

y(t; z) for the vertical displacement of a positron in a slice z and Y (t; s) for an

electron at location s. The bunch can be at or round. Equation of motion

of an electron of the cloud in the �rst case is

d2Y (t; s)

dt2
= 2r0c

2�b(s� ct)BE(X; Y � yc(t; ct� s)); (1)

where r0 is the classical radius of a particle of the cloud, �b(z) is the linear

bunch density, yc(t; z) is the displacement of the centroid of a slice z = ct�s,
and X can be considered as a constant de�ned by initial location of the

electron. For a round beam, Y can be understood as the displacement of a

particle along the radius. The X dependence in this case should be omitted.

The explicit form of the vertical force BE produced by a Gaussian bunch

is given by Bassetti-Erskin formula [7],

BE(x; y) = h
p
�Re [W (u+ ivp)�W (pu+ iv)e�(1�p2)(u2+v2)];
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u = hx; v = hy
p
; p =

�y
�x
; h = 1p

2[�2x��
2
y]
; (2)

where W (z) = Erf [�iz]e�z2 . It is convenient sometimes to use the integral

representation,

BE(X; Y ) = �( Y

�y(�x + �y)
)S0(X; Y ); (3)

where

S0(X; Y ) = (
1 + p

2p
)

Z
1

0

d�

(1 + �)3=2
q
1 + �=p2

e
�

�
1+�

Y 2

2�2y
�

�X2

2�2x(�+p
2) : (4)

Note that S0(0; 0) = 1 and S(r) = 2�2
?
=r2 for a round beam.

Motion of a particle in a slice z of a bunch is described by a similar

equation. This equation, averaged over the transverse Gaussian distribution

of the slice, describes the betatron motion of the slice centroid:

d2yc(t; z)

dt2
+!2

�yc(t; z) =
2rec
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dNe

ds

Z
dXdY BE(X; yc(t; z)�Y )��(X; Y; t; ct�z):

(5)

Here the density �� of electrons in the cloud can be obtained from the nor-

malized to one distribution function

��(X; Y; t; s) =
Z
d _Xd _Y ��(X; _X; Y; _Y ; t; s); (6)

where ��(X; _X; Y; _Y ; 0; s) is Gaussian initial distribution with the rms �x;y.

Dependence on the o�set yc in Eq. (5) comes from the dependence of the

factor BE and from the dependence of ��. The amplitude of the bunch

centroid is always small compared to the dimensions of the cloud. In the

linearized Eq. (5), the term given by the expansion of the factor BE over yc
gives the tune shift

�!� = �rec
2

!�

dNe

ds

Z
dX0dY0(

@BE(X; Y )

@Y
)Y=Ytr�

(0)
� (X0; Y0; 0; s); (7)

where s = ct � z, �
(0)
� (X0; Y0; 0; s) is the cloud density at t = 0, and Ytr =

Ytr(X0; Y0; t; s) is a trajectory of an electron of the cloud with the initial

conditions X0, Y0 at t = 0. Eq. (7) de�nes G,

�!� =
2�rec

2ne

!�
G(


0z

c
): (8)
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If Ytr = Y0, G is constant,

G =
�x�yq

�2
y + �2

y [
q
�2
x + �2

x +
q
�2
y + �2

y]
: (9)

In the following, we will neglect this e�ect and put yc ! 0 in the argument

of BE in the right-hand-side (RHS) of Eq. (5). The RHS is de�ned then by

the distribution function of the cloud ��(X; _X; Y; _Y ; t; s), which satis�es the

continuity equation

@��

@t
+ _Y

@��

@Y
+ FY

@��

@ _Y
+ (X� > Y ) = 0; (10)

where FY is the RHS of Eq. (1). Let us linearize Eq. (10) expanding the force

FY over yc and taking ��(t; s) = �(0)(t; s)+�(1). The �rst part, �(0) describes

a perturbation of the cloud density by the bunch with the zero o�set. Note

that �(0)(t; s) is an even function of Y provided it is even at t = 0. Because

BE(X; Y ) is odd function of Y , �(0) does not contribute to Eq. (5). The

equation for the second part, �(1)(Y; _Y ; t; s), is

@�(1)

@t
+ _Y

@�(1)

@Y
+ F

(0)
Y

@�(1)

@ _Y
= yc(t; ct� s)

@�(0)

@ _Y

@F
(0)
Y

@Y
; (11)

where

F
(0)
Y = �2r0c2�b(ct� s)BE(X; Y ): (12)

Introduce new variables Y0, _Y0,

Y = Ytr(Y0; _Y0; t; s); _Y = _Ytr(Y0; _Y0; t; s); (13)

and the function f(Y0; _Y0; t; s), which is related to �(1) by

�(1)(Y; _Y ; t; s) = f(Y0; _Y0; t; s)jY0=Ytr(Y;�t;s): (14)

The function f satis�es equation

@f

@t
= yc(t; ct� s)

@�(0)

@ _Y

@F
(0)
Y

@Y
: (15)

The arguments Y and _Y in the RHS have to be expressed in terms of Y0, _Y0
using Eq. (13). Then, the RHS is a function of Y0, _Y0 and can be written as

Poisson brackets ycfF (0)
Y ; �(0)gY; _Y = ycfF (0)

Y ; �(0)gY0; _Y0 . Thus, for t > t0 = s=c,

f(Y0; _Y0; t; s) =
Z t

t0

dt0yc(t
0; ct0�s)fF (0)

Y [Ytr(Y0; _Y0; t
0�t0; s); ct0�s]; �(0)� [Y0; _Y0; 0; s]gY0; _Y0:

(16)

Here we used the identity: �(0)[Ytr(Y0; _Y0; t
0; s); t0; s] = �

(0)
� [Y0; _Y0; 0; s].
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Eqs. (16, 14) de�ne the RHS of Eq. (5):

RHS = �2rec
2


dNe

ds

R
dX0dY0d _X0d _Y0

R t
0 dt

0yc(t
0; c(t0 � t) + z)

BE[X; Ytr(Y0; _Y0; t; s)]fF (0)
Y [Ytr(Y0; _Y0; t

0 � t0; s); ct
0 � s]; �(0)[Y0; _Y0; 0; s]gY0; _Y0:(17)

Integrating by parts and changing variable t0 to z0, t0 = t + (z0 � z)=c, it

can be transformed to the form

RHS = �2rec


dNe

ds
2r0c

2
R z
0 dz

0yc(t+
z0
�z
c
; z0)�b(z

0)
R
dX0dY0d _X0d _Y0�

(0)[Y0; _Y0; 0; s]

fBE[X; Ytr(Y0; _Y0; z
0

c
; s)]; BE[Ytr(Y0; _Y0; t+

z
c
; s)]gY0; _Y0; (18)

where s = ct � z. Let us compare Eq. (18) with the standard form of the

force due to the transverse wake �eld per unit length W :

d2yc(t; z)

dt2
+ !2

�yc(t; z) =
rec
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Z z

dz0W (z0 � z)yc(t+
z0 � z

c
; z0)�b(z

0); (19)

where �b(z) is the linear density of a bunch normalized to the bunch popu-

lation,
R
dz�b(z) = Nb. Comparison de�nes the e�ective wake of the cloud

per unit length:

W (z; z0) = 4r0c
dNe

ds

R
dX0dY0d _X0d _Y0�

(0)
� [Y0; _Y0; 0; s]

fBE[X; Ytr(Y0; _Y0; z=c; s)]; BE[X; Ytr(Y0; _Y0; z0=c; s)]gY0; _Y0: (20)

This formula gives the wake in terms of the trajectories of electrons in

the �eld of a bunch with the zero o�set.

Let us calculate the e�ective wake neglecting anharmonicity of the oscil-

lations in the cloud but taking into account dependence of the frequency on

amplitudes. This will allow us to calculate the Q-factor of the wake. In this

approximation,

Ytr(Y0; _Y0; t; s) = Y0 cos[ ] +
_Y0



sin[ ]; (21)

where d =dt = 
(X0; Y0; ct� s). The Poisson in this approximation give:

fBE[X; Ytr(Y0; _Y0; t; s); t; s]; BE[X; Ytr(Y0; _Y0; t+ z0
�z
c
; s); t0; s]gY0; _Y0

= [ sin[ (z)]Cos[ (z
0)]


(z)
� sin[ (z0)]Cos[ (z)]


(z0)
](@BE
@Ytr

)z(
@BE
@Ytr

)z0: (22)

Here d (z)=dz = 
(z)=c, (@BE
@Ytr

)z and (
@BE
@Ytr

)z0 have arguments Ytr(Y0; _Y0; z=c; s)

and Ytr(Y0; _Y0; z
0=c; s), respectively.

After substitution of Eq. (22) into Eq. (20), the initial velocity _Y0 can

be put to zero. This is justi�ed because the potential well of an electron in
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the �eld of a bunch is deeper than the average potential well of a beam by a

large factor equal to the ratio of the bunch spacing to the rms �z.

The frequency 
 in 1D case is derived from the HamiltonianH(Y; _Y ; t; s) =
_Y 2

2
+U , where U(X; Y; t; s) is related to the force F = �(@U=@Y ) = 2r0�b(s�

ct)c2BE(X; Y ). We can distinguish two extreme cases: a sharp edge bunch

(low bunch current), 
0�z=c << 1, and a adiabatic bunch 
0�z=c >> 1

where 
0 is frequency of linear oscillations,

(

0

c
)2 =

�b(0)r0

�y(�x + �y)
: (23)

In the �rst case, the energy H and 
 are de�ned by initial Y0 and _Y0,


0



=

2
0

�

Z Y0

0

dYq
2[U(Y0)� U(Y )]

: (24)

In the second case, the adiabatic-invariant J(H) =
R
(dY=2�)

q
2[H � U(Y; t)]

is constant, and 1


= 1

dJ=dH
is again given by Eq. (24).

Electrons of the cloud after interaction with a sharp edge bunch change

their velocity and are accelerated to the speed above the average velocity

before interaction. For adiabatic bunch it does not take place. For this

reason, the maximum energy of the electrons does not increase proportional

to the beam current but is limited by the condition 
�z=c ' 1.

Eq. (24) can be simpli�ed noticing that the main contribution to the

integral is given by coordinates Y in the vicinity of Y0. Expanding U(Y0)�
U(Y ) around Y0, we get


(z)


0

=

vuutS0(X; Y0)
�b(z)

�b(0)
: (25)

Here �b(0) is the maximum linear density of a bunch, �b(0) = Nb=(�z
p
2�).

The �rst factor,
q
S0(X; Y0), is shown in Fig. 1. The error introduced by

this approximation was checked numerically and is small, �
=
 ' 0:2.

Eqs. (20), (22), and Eq. (25) de�ne the wake per unit length as a function

of � = 
0(z
0 � z)=c, proportional to the distance z0 � z between leading and

trailing slices, and �0 = 
0z=c, the position of the leading slice from the head

of the bunch:

W (z; z0) =
8ne

�b(1 + p)
(

0

c
)Weff(�; �0): (26)

Here,

Weff(z; z
0) =

R
1

0 dx
R
1

0 dye
�
x2

2
( �x
�x

)2�Y 2

2
(
�y

�y
)2
[ sin[ (z)]Cos[ (z

0)]


(z)=
0
� sin[ (z0)]Cos[ (z)]


(z0)=
0
]

[S0(x; yz)� y2zS1(x; yz)][S0(x; y
0

z)� y2z0S1(x; y
0

z)]; (27)
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Figure 1: Frequency 
=
0 vs initial amplitudes 0 < X=�x < 3, 0 < Y=�y < 5.

where yz = y cos[ (z)], and y0z = y cos[ (z0)].

In the integrals we used dimensionless x = X=�x, y = Y=�y. The func-

tions S0(x; y) and S1(x; y) in this variables are

S0;1(X; Y ) = (
1 + p

2p
)

Z
1

0

d�

(1 + �)3=2
q
1 + �=p2

e
�

�
1+�

y2

2
�

�x2

2(�+p2) [1;
�

1 + �
]:

(28)

The wake Eq. (27) is a weak function of parameters p, z, and the ratio

�x;y=�x;y. The wake Weff Eq. (25)-(28) calculated for parameters z0 = 0,

p = 0:2, �x=�x = �y=�y = 5 is shown in Fig.2. The calculations were carried

out with MATHEMATICA interpolating functions S0;1 and 
(X; Y ) and,

then, carrying out double integrals in Eq. (27).

For the nominal LER PEP-II parameters, Table I, the average cloud

density ne = 4:75 106, 
y=(2�) = 14:0 GHz, the number of oscillations within

the bunch rms 
y�z=(2�c) = 0:6, and the amplitude of the wake �eld is 695

V=pC=cm what corresponds to the shunt impedance 4:7 MOhm/m. This

should be compared with the resistive wall transverse wake

Wx(s) =
4Æ0

b3

s
2�R

s
; (29)

where Æ0 is the skin depth at the revolution harmonics. For PEP-II parame-

ters, Æ0 ' 0:17 mm, and Wx = 2:0 V=pC=cm at s = 1 cm.

The wake, see Fig. 2, can be approximated by the wake of a single mode

with frequency �
0,

Weff(�) = Wmax sin(��)e
�
��

2Q : (30)
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Figure 2: E�ective wake Weff (�; 0) of the cloud as function of � = 
0z=c.

Dependence of the factor Weff(�; 0) on parameters is illustrated in Figs.4-6.

The best �t in all cases was for � = 0:9.

The wake shown in Fig. 3-4 was calculated for a long bunch 
0�z=c >> 1

and for the leading slice at the head of the bunch, z0 = 0. Fig. 5 shows wakes

generated by a leading slice z0 = 0 for several values of 
0�z=c. For a short

bunch, the wake is mostly linear. Initial slope is the same in all cases. Fig.

6 shows wake for di�erent positions of the leading slice within a bunch.

4 Summary

The wake �eld induced by the beam interaction with the electron cloud can

cause the head-tail instability. The e�ective wake of the e-cloud is given in

terms of electron trajectories in the �led of the beam with the zero o�set. Ne-

glecting anharmonicity of the motion but taking into account the amplitude

dependence of the frequencies of electron oscillations, we obtain expression

for the e�ective wake driven by the e-cloud. Dependence of the wake on the

beam parameters is in a good agreement with the tracking simulations [3].
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Figure 4: Dependence of Weff(�; 0) on �x;y=�x;y for �xed p = 0:2.
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Figure 5: Weff(�; 0) for several values of 
0�z=c. p = 0:2, �x;y=�x;y = 5.
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0z
0=c, where z0 is location of

the leading slice. Other parameters are: 
0�z=c = 5, p = 0:2, �x;y=�x;y = 5.
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