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1. Introduction

Measured fermion masses represent a window into ultraviolet physics. The stan-

dard model (SM) can reproduce the observed hierarchy of masses and mixing angles

with a set of dimensionless parameters (Yukawa couplings) ranging over five orders

of magnitude, but does not explain why such a diverse and interesting pattern exists.

One avenue of exploration of high energy physics would be to find models in

which such hierarchical patterns can be reproduced by a theory with only “natural”

couplings, i.e., dimensionless parameters of order unity. The first success of this type

is the Froggatt-Nielsen mechanism [1] which imposes an additional symmetry on the

SM thereby forbidding most Yukawa couplings. Yukawa couplings are generated by

higher dimension operators and the spontaneous breaking of the additional symmetry

and are suppressed by powers of the breaking scale over some fundamental scale.

An interesting orthogonal approach to generating a large hierarchy in the Yukawas

is to use locality rather than symmetries to produce small dimensionless numbers.

The Arkani-Hamed-Schmaltz (AS) mechanism requires SM fermion zero modes to be

localized at different positions in one (or more) extra dimension(s) [2]. This can be

done by coupling five-dimensional fermions to a scalar field with a space-dependent

vacuum expectation value (VEV). For Gaussian wave functions, couplings between

fields are exponentially suppressed for separations of order a few (in units of the wave

function widths). It has been shown [3] that all fermion masses and mixing angles

can be reproduced by localizing all SU(2) doublets and SU(2) singlets at different

positions in one extra dimension, with the Higgs zero mode constant along the extra

dimension. However, it has been noted that in the five-dimensional case one cannot

accommodate the observed CP violation in the Kaon system [4]. In addition the

large top mass requires some fine-tuning of parameters. Many interesting variations

on this theme have since appeared in the literature [5, 6, 7, 8].

A complete version of a model of this type should have a four-dimensional chiral

low energy effective theory. Five-dimensional theories are in general non-chiral but

can be made chiral by choosing the right boundary conditions [9]. In the next

section, we present a simple set of orbifold boundary conditions which can reproduce

the AS model in a compact extra dimension. The boundary conditions are realized

by compactifying on a Z2 orbifold and by giving each fermion a different 5d mass

which is odd under the Z2, we localize each fermion at a distinct location in the extra

dimension.

We then present simpler models in which the fermions (and in one of the models,

the Higgs boson VEV) are each localized on one of two orbifold fixed points. Different

Yukawa couplings are generated due to the fact that the fermion wave functions have

different widths. Their widths are controlled by their order one couplings to a scalar

field, and their location (i.e., which orbifold fixed point they are centered about) is
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governed by the sign of the coupling∗. In this scenario (unlike the AS one), the top

mass is natural and is a result of a quark doublet and a quark singlet having the

opposite sign couplings as the other quarks, localizing them at the Higgs brane. In

addition, εK is predicted to be of the right order because the Yukawa matrices are

“full” in the sense that there are no negligible entries. Finally, the flavor problems

common to these models are ameliorated and thus a lower compactification scale is

allowed.

In Section 3, we promote our models to a supersymmetric framework. We use the

notation of Arkani-Hamed, Gregoire and Wacker [10] to describe supersymmetry in

five dimensions. In the simplest model, zero modes are localized by mass terms which

are odd under the orbifold. These terms are allowed by all remaining symmetries

in the theory and can be viewed as VEV’s of maximally broken gauge symmetries.

We then find flat directions in which a scalar field has a space-dependent VEV along

the extra dimension. This allows for additional models where chiral superfields are

localized at arbitrary points. However, it is difficult to produce viable models of this

type because of the extra constraints of 5d supersymmetry. These models can be

made to work by supplementing them with a partial Froggatt-Nielsen mechanism. We

also present another possibility where we compactify on S1, and introduce chirality

by hand by inserting a three brane and “projecting” the chiral states into the bulk

using the supersymmetric profiles found earlier in the section.

In Section 4 we discuss some of the issues which naturally come up in this con-

text. For instance, are there any distinguishing signals from such models and how

should supersymmetry be broken. For a high flavor scale, how supersymmetry breaks

plays an important roll in determining whether or not one can find physical evidence

of these theories. Mediating supersymmetry breaking can be done in an extra dimen-

sional context, as in gaugino mediated supersymmetry breaking, or can be completely

orthogonal to this flavor mechanism, such as low-scale gauge mediation.

2. Non-supersymmetric Models

Our first models use an extra dimension to explain the small Yukawa interac-

tions apparent from the quark and lepton masses in terms of fermions localized in

the extra dimension. Localizing quarks and leptons may also be helpful to pre-

vent unacceptably fast proton decay [2, 11]. We assume a flat background metric,

ηMN = Diag[+1,−1,−1,−1,−1], where the large Latin characters M,N, ... refer to

the full 5d vector indices and space coordinates xM = {xµ, y} are decomposed into

the 4d (uncompactified) subset xµ and the compactified direction, y. Without su-

persymmetry, our models suffer from the usual hierarchy and triviality problems of

∗A supersymmetric model of this sort, in the case of an anti-de Sitter background, was discussed

in [8].
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the SM, and thus we would like the fundamental scale to be of order TeV so that the

large extra dimension solution to the hierarchy problem [12, 13] is applicable†. As we

wish to construct flavor by localizing the fermions of the SM at various points in the

extra dimension, it is necessary that the SM gauge fields live in the full 5d theory.

We begin by constructing models which reproduce the fermion mass spectrum. We

then examine the effects of this new physics on low energy processes allowing us to

put a bound on the size of the extra dimension and of the fundamental scale.

We work with a compact extra dimension subject to orbifold boundary condi-

tions, S1/Z2, with the orbifold fixed points at y = 0 and y = ±L/2. The orbifold

is essential in order to recover a chiral theory from the vector-like 5d theory by re-

moving the mirror partners of the fermion zero modes. It is further useful because it

can force the VEV of an odd scalar field to assume a non-trivial profile with respect

to the extra dimension. The extra dimension is compact, with −L/2 < y ≤ L/2

and the points −L/2 and L/2 identified, but the orbifold constrains the fields in the

region y < 0 to shadow the fields in the y > 0 region, and thus the physical dynamics

may be understood to take place in the region 0 ≤ y ≤ L/2. The 5d theory contains

a real scalar “localizer” field φ and a number of fermions ψ (which correspond to the

usual SM quarks and leptons plus their mirror partner degrees of freedom) satisfying

orbifold boundary conditions [9],

φ(xµ,−y) = −φ(xµ, y) , φ(xµ, L/2 + y) = −φ(xµ,−L/2 + y),

ψ(xµ,−y) = γ5ψ(xµ, y) , ψ(xµ, L/2 + y) = γ5ψ(xµ,−L/2 + y). (2.1)

The 5d Lagrangian density is,

L5 = ψ

[
iγM∂M −

fψ√
M∗

φ

]
ψ +

1

2
∂Mφ∂

Mφ− λ

4M∗
(φ2 − u2)2, (2.2)

where we have ignored the gauge interactions as they are unimportant with respect

to localization. A mass for the fermions is forbidden by the orbifold transformations

(2.1). The fundamental scale M∗ has been included in the interactions so that the

coupling constants fψ and λ are dimensionless.

In order to estimate reasonable ranges of the parameters such as fψ and λ, it is

necessary to make some assumptions about the underlying theory. If the underlying

theory at high energies is such that all couplings are strong at the cut-off, naive

dimensional analysis (NDA) would suggest fψ ∼
√

24π3 and λ ∼ 24π3 at M∗ [14].

These estimates also provide an estimate of where perturbation theory is expected

to break down. We will consider couplings somewhat smaller than those suggested

by NDA, fψ ∼ λ ∼ 1. Such couplings could be considered natural for a perturbative

†For example, we might have more than one extra dimension, with the SM fields seeing only one

of the extra dimensions.
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underlying theory containing only one dimensional parameter M∗ (see for example

[15, 16]). In constructing models, we invoke sources for bulk fields living on branes

(and in some cases field theories confined to the branes themselves). We will assume

the underlying theory is such that the branes can be treated as thin, rigid objects,

and further that the sources living on them (which we presume have some unspecified

dynamical origin) are generated at a high scale, and will not succumb to back-reaction

effects from the bulk fields.

As discussed in [17], the orbifold boundary conditions clash with the bulk dy-

namics for φ, resulting in a non-trivial VEV which can be approximated for M∗L� λ

by,

〈φ〉(y) = u tanh [β(−L/2− y)] tanh [βy] tanh [β(L/2 − y)] , (2.3)

where β2 = λu2/2. This nontrivial profile for 〈φ〉, inserted into the 5d Lagrangian

2.2, appears as a mass for fermion ψ that varies across the extra dimension, Mψ(y) =

fψ〈φ〉(y). Turning to the 4d effective theory, we expand ψ in a Kaluza-Klein (KK)

tower [18] and find expressions for the zero mass wave functions,

ψ0
±(y) = N±Exp

[
fψ

∫ y

0

dy′〈φ〉(y′)
]
, (2.4)

where ψ0
+ is the left-chiral zero mode and ψ0

− the right-chiral one. For fψu > 0,

this results in wave function ψ0
+ localized about the orbifold fixed point y = 0, with

profile that looks like 1/cosh(α/β)[βy], where α = |fψu|. For fψu < 0, ψ0
+ has similar

profile, but centered about the other orbifold point, y = L/2. In each case, the

mirror zero mode ψ0
− is inconsistent with the orbifold conditions, Eq.(2.1), and thus

removed from the spectrum [17].

In order to simplify our analysis, we will further consider the case in which

λu2L2 � 1, for which the domain walls can be approximated as step functions,

〈φ〉(y) = u ε(y) (2.5)

with,

ε(y) =

{
+1 L

2
> y > 0

−1 −L
2
< y < 0

(2.6)

with L/2 and −L/2 identified. Again we have a single zero mode with profile,

ψ0(y) =

√
2α

1− e−αL e
−αy, (2.7)

centered at y = 0 for fψu > 0, or the same wave function with by y → L/2 − y for

fψu < 0. In regards to flavor in the light quark sector our exponential profile does not
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actually differ much from 1/cosh because the small entries in the Yukawa interaction

matrices are generated by the small overlap in the tails of the exponentials which do

not differ much from the tails of the 1/cosh function. The major difference is with

respect to the large mass matrix entries, namely the top Yukawa coupling, which

come from large overlaps, and thus are more sensitive to the shape of the entire wave

functions. In that case, as we shall see below, the more narrow exponential will have

greater difficulty realizing an O(1) top Yukawa coupling than the broader 1/cosh

would have, and thus it is somewhat more difficult to realize flavor for our limiting

case than it would be for the general 1/cosh zero modes.

We now discuss the AS model, the original proposal to generate flavor in a large

extra dimension [2], and construct two explicit non-supersymmetric models of flavor,

finishing with some remarks on the experimental constraints on this class of models,

and whether they allow the extra dimension to really solve the hierarchy problem.

2.1 The Arkani-Hamed-Schmaltz Model

The AS model generates flavor by localizing zero modes of the weak doublet and

singlet fermions at different positions, with the Higgs VEV spread evenly throughout

the bulk. The 4d Yukawa interactions arise as the overlap of a doublet with a singlet

field. It is assumed that the wave functions are Gaussians with common widths α

(presumably of the order of the fundamental scale M∗); flavor is successfully realized

by distributing the fermions appropriately throughout a region of about ∆y ∼ 25/α,

determined from a numerical scan of parameters by Mirabelli and Schmaltz [3].

In order to remove the troublesome mirror fermions, it is desirable to impose

the orbifold on the AS model. Since we need to have the fermion zero modes spread

(roughly) evenly through the extra dimension, and to have Gaussian wave functions,

we would like the localizer VEV to be approximately linear. This can be engineered

by including sources for ∂yφ at the orbifold fixed points,

J1 (∂yφ) δ (y) + J2 (∂yφ) δ (y − L/2) . (2.8)

If φ were massless and had no quartic interaction, these sources would literally result

in a linear VEV. For a massive localizer, the VEV may be simply obtained by using

the Green’s function for a simple harmonic oscillator of imaginary frequency and we

find that when m <∼M∗/3 (as could be expected if m2 is generated at one-loop), the

VEV remains approximately linear, as demonstrated in Figure 1. In order to have

each fermion localized about a different point in the extra dimension, we introduce

“odd masses” in L5 for each fermion,

LM5 = Mψ ε(y) ψ ψ. (2.9)

This term could come from the VEV of an second scalar field which is odd under the

Z∈ orbifold symmetry and has the appropriate sources at the orbifold fixed points.
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Figure 1: The profile (solid curve) for 〈φ〉 resulting from the sources Eq. 2.8 with J1 = J2

and the mass of the localizer taken to be m ∼ M∗/5. Also shown is the effective mass

function (dotted curve) seen by a fermion with odd mass M ∼ J , and shift in the wave

function (dashed curves) which results from this odd mass.

The odd mass effectively shifts the zero crossing of the “mass function” for the

fermion, thus localizing it some distance away from one of the orbifold fixed points.

2.2 Higgs in the Bulk

In our first model, the Higgs lives in the entire 5d bulk, and is even under the orbifold

transformation. A 5d version of the SM Higgs potential will thus generate an EWSB

VEV v spread evenly throughout the extra dimension. The underlying 5d Yukawa

interactions are,

L =
Y d
ij√
M∗

Hqidj +
Y u
ij√
M∗

Hcqiuj + h.c., (2.10)

where H is the Higgs doublet, Hc = iσ2H
∗, qi with i = 1, 2, 3 are the three families of

weak doublet quarks, and ui and di are the up- and down-type weak singlet quarks,

respectively. We have included the appropriate power of the cut-off scale for the

effective 5d theory, M∗, such that the Y u and Y d are dimensionless. Again, we
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assume that all of the Y u and Y d are of O(1) (though not necessarily identically

equal to one, and with O(1) complex phases with respect to one another).

We realize a hierarchy in the effective 4d theory by coupling the weak doublets

to φ with couplings fqi > 0 and the weak singlets to φ with fui , fdi < 0. This results

in the doublet zero modes centered at y = 0 with exponential widths αi while the

singlet zero modes (both up- and down-type) are centered at y = L/2, again with a

variety of widths. Provided u ∼ M
3/2
∗ , λ ∼ 1, and fi ∼ 1, the widths α will be of

order M∗. The effective coupling strength between the Higgs and the zero modes of

the left-handed doublet i and right-handed singlet j are,

yij = Nij
Yij√
M∗L

e
−αjL

2 − e−αiL2

(αi − αj)
, (2.11)

where the normalization factor is given by N 2
ij = 4αiαj/[(1 − e−αiL)(1 − e−αjL)].

This equation is valid for both the up- and down-type Yukawa interactions, with

the appropriate αj for the right-handed field in each case. The basic idea is that

the third family fermions are more weakly coupled to φ, resulting in a large overlap

between the doublets and singlets, and thus strong coupling to the Higgs, whereas

the second and first generations couple more strongly to φ, and thus have narrower

profiles with exponentially suppressed overlaps and hence smaller interactions with

the Higgs.

The model contains nine parameters (three αqi, three αui , and three αdi) and to

be considered successful, must fit the six quark masses and three real CKM angles

with all of the widths of O(1). Generally, there is some tension in successfully

generating the flavor observed in nature. The large top mass requires that the u3

and q3 zero modes be rather broad, which tends to generate large entries in the 13 and

23 entries of the mass matrices. Working only at the level of order of magnitudes, we

find that for M∗L = 10, one can successfully realize quark flavor with widths ranging

from 1/2 (for u3) to 3 (for d2 and q1), with the Yij ranging from about 3 (for Y u
33) to

1/3 (for Y
u(d)

23 and Y
u(d)

13 ). For M∗L = 20 one has widths from 1/5 to 3/2, with the

same range of Y .

The lepton sector can be constructed by introducing the lepton doublets, li,

right-handed charged singlets, ei, and three right-handed neutrinos νi into the bulk,

each coupled to the localizer. In the absence of any symmetries to protect them, we

assume Majorana masses for the ν fields on the order of M∗ which we now take to

be 100 TeV. The 5d Yukawa interactions and bulk masses are,

L =
Y e
ij√
M∗

H li ej +
Y ν
ij√
M∗

Hc li νj + Mν
Rij ν

c
i νj + h.c. , (2.12)

where M ν
Rij ∼ 100 TeV are the Majorana masses for the right-handed neutrinos, and

need not be diagonal in the same basis as the interactions with φ. The interactions
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of the zero modes include Yukawa interactions (ye and yν) suppressed by the overlap

of the zero-mode wave functions, as in Eq.(2.11). When the Higgs acquires a VEV,

this results in Dirac masses for the both the charged and neutral leptons. The

charged lepton mass matrix can be diagonalized as was done for the quarks, but the

neutrinos are more conveniently analyzed by first integrating out the heavy right-

handed neutrinos. This results in effective Majorana masses for the left-handed

neutrinos,

Mν
Lij = v2yνik (Mν

R)−1
kl y

ν∗
lj . (2.13)

We attempt to understand lepton flavor by building a hierarchy into the 4d

Yukawa interactions, ye and yν, arising from the exponentially suppressed overlaps

of the left- and right-handed lepton wave functions. We find it is generically easy to

produce a heaviest neutrino relevant for atmospheric neutrino oscillation by simply

arranging the wave functions such that yν23 ∼ yν33 ∼ 10−5, which results in a neutrino

with mass m2 ∼ 10−3eV2 which is almost an equal mixture of νµ and ντ (some

fine-tuning is required for the mixing to be near maximal). A small mixing angle

solution for the solar neutrinos may then be produced by introducing much smaller

entries yν11 ∼ yν12 ∼ yν22 ∼ 10−6, producing a neutrino with mass m2 ∼ 10−5eV2 which

is almost entirely an electron neutrino, with small ν and τ components such that

sin2 θ ∼ 10−2. The third neutrino is generally light and is largely the mixture of ντ
and νµ orthogonal to the heaviest neutrino. This scheme can be realized within the

context of Eq.(2.11) when M∗L = 10 for widths varying between about 1 (for e3) to

about 4 (for ν2 and l1), and the underlying Y range between about 3 and 1/4. When

M∗L = 20, we find that we need widths between about 1/2 (for e3) to 5/2 (for ν2 and

l1) with the same range of Y . The large mixing angle solution to the solar neutrino

problem is difficult to realize in this scenario.

2.3 Localized Higgs VEV

Now we present what we believe is the most attractive scenario for extra-dimensional

flavor: the possibility that the Higgs VEV is confined to one of the orbifold fixed

points. This could be accomplished in a number of different ways. One option is that

the Higgs field is simply confined to the boundary, and thus EWSB occurs only at

a single point in the extra dimension. Another idea is that the Higgs is a bulk field,

with a positive bulk mass2 such that it does not develop a bulk VEV, but a separate

negative mass2 term exists on the boundary, and again the EWSB VEV develops

only close to the boundary. A final scenario has the Higgs field in the bulk, coupled

to more bulk fields (such as the localizer φ) which have VEV’s which are functions

of y and trigger EWSB only in a limited region of y. Generally one would expect

some fine tuning associated with any of these options, since both bulk and boundary

masses would naturally be of order M∗ � v.
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The fermions will be localized as before with fψ ∼ O(1), which again will result

in O(1) widths for their exponential zero mode profiles. If the Higgs and its VEV

are, for example, confined to y = 0, the 5d mass terms for fermions are,

L =

{
Y d
ij

M∗
〈H〉qidj +

Y u
ij

M∗
〈Hc〉qiuj

}
δ(y) + h.c. (2.14)

(Note, the NDA estimate for the Y is on the order of 6π2 [14] but we will continue to

assume Y ∼ 1 as we are assuming a weakly coupled threshold at M∗). The effective

4d masses for the zero modes is equal to a product of the wave functions for those

modes evaluated at y = 0,

md
ij

v
=
Y d
ij

M∗
ψ0
qi

(0) ψ0
dj

(0) ,
mu
ij

v
=
Y u
ij

M∗
ψ0
qi

(0) ψ0
uj

(0). (2.15)

In an abbreviated notation in which we write the zero mode wave function at y = 0

as the field itself, i = ψi(0), we thus have the following 4d mass matrices,

mu

v
∼



q1u1 q1u2 q1u3

q2u1 q2u2 q2u3

q3u1 q3u2 q3u3


 ,

md

v
∼



q1d1 q1d2 q1d3

q2d1 q2d2 q2d3

q3d1 q3d2 q3d3


 , (2.16)

where we have suppressed the underlying (O(1)) 5d interactions, Yij, which multiply

the corresponding entry in each matrix. The full matrices are thus generically of rank

3. Assuming there is a significant hierarchy as one moves along the rows and columns,

this implies the simple relation between the three Cabibbo elements, Vub ∼ VusVcb.

A further implication is that the contributions from the up and down sectors to

the CKM matrix will be about equal in magnitude, in contrast to flavor symmetry

models. The matrices are full in the sense that there are no negligible entries, so for

general complex Y u and Y d, we should be able to realize CP violation to the extent

required by measurements of εK [19].

We realize the large top Yukawa coupling by localizing q3 and u3 at the Higgs

boundary by choosing fq3 ∼ fu3 ∼ 1, which results in yu33 ∼ 1. Note that we obtain

the correct top mass without fine-tuning simply by requiring that one quark doublet

and one (up-type) quark singlet are localized on the Higgs boundary. This is in

contrast to the AS model where a q and u must be placed very close to one another.

We localize the zero modes for all of the other fermions at y = L/2, and adjust the

αi in order to generate the observed Yukawas. For M∗L = 10, this results in widths

ranging from about 1/3 (for u2) to 1 (for u1), and forces us to invoke 5d Yukawa

couplings ranging from about 1/3 to 1. The resulting profiles for some of the zero

modes are shown in Figure 2.

Once again, we introduce three lepton doublets, charged singlets, and neutral

singlets into the bulk, coupled to φ. We continue to assume right-handed neutrino
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Figure 2: Zero mode profiles for some of the quarks, for the model with the Higgs VEV

localized at y = 0.

masses on the order of 100 TeV. The 5d mass terms are,

L =

{
Y e
ij

M∗
〈H〉 li ej +

Y ν
ij

M∗
〈Hc〉 li νj

}
δ(y) +M ν

Rij ν
c
i νj + h.c. (2.17)

Moving to the Kaluza-Klein description, the zero modes for the left-handed neutrinos

have Dirac masses with the entire tower of right-handed neutrino modes. The spacing

in this tower will not be the compactification scale 1/L but characteristic of the width

of the localized wave function. The contributions to the low energy neutrino masses

will differ from those estimated below (where we only take into account zero modes)

by coefficients of order unity, which is to the accuracy we are currently working.

The Dirac masses for the charged and neutral leptons are again proportional to

wave functions evaluated at y = 0,

me
ij

v
=
Y e
ij

M∗
ψ0
li
(0) ψ0

ej
(0) ,

mν
ij

v
=
Y ν
ij

M∗
ψ0
li
(0) ψ0

νj
(0), (2.18)

which for the charged leptons may simply be diagonalized. Once again, we integrate

out the heavy singlet neutrinos, resulting in an effective Majorana mass matrix for
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the left-handed neutrinos,

Mν
L = mν 1

Mν
R

mν†. (2.19)

We choose the couplings to the localizer such that e3 is localized around the Higgs

VEV, and all of the other leptons are localized around y = L/2. For M∗L = 10,

we can realize the small mixing angle solution outlined in Section 2.2 by choosing

widths ranging from 1/2 (for e2) to 2 (for ν2) and invoking 5d Yukawa interactions

ranging from about 1/3 to 3. Again, it proves somewhat difficult to realize the large

mixing angle solution.

2.4 Constraints and the Hierarchy Solution

Theories in which fermions live at different locations in an extra dimensions are

subject to constraints from flavor and CP violation arising from the higher KK

modes of the gauge fields [20], whose interactions depend on the location and shape

of the fermion wave function. After performing the CKM rotation into the quark

mass basis, this results in flavor-changing neutral currents (FCNC’s) at tree level.

While these interactions are suppressed by the compactification scale Mc that sets

the gauge boson KK masses, they may still be competitive with the SM predictions,

which occur only through loops.

For simplicity we consider only the gluon KK modes, as they have the strongest

couplings of the SM gauge fields, and flavor mixing in the first two generation down-

type quarks‡, which is expected to result in the strongest constraints. The wave

functions for the n > 0 KK gluons are ψnA(y) ∼ cos[2πny/L] with corresponding

masses Mn = 2πn/L = 2πnMc. The interaction between the nth KK gluon (G
(n)
µ )

and the strange and down quarks are,

L = −
√

2gSG
(n)
µ

(
d s
)
γµ T a [DLPL +DRPR]

(
d

s

)
, (2.20)

where the matrices DL(R) are defined by

DL = Ld

(
c
L(n)
1 0

0 c
L(n)
2

)
L†d , DR = Rd

(
c
R(n)
1 0

0 c
R(n)
2

)
R†d , (2.21)

a product of the left- (right-) handed down quark rotations Ld (Rd) from interaction

to mass basis, and the couplings of the nth KK gluon to the left- (right-) handed

quark zero modes,

c
L(n)
i =

∫ L/2

0

dy cos

[
2πn

L
y

] ∣∣ψ0(y)
∣∣2 . (2.22)

‡Similar FCNC bounds on extra-dimensional lepton flavor models were considered in [21].
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In [20] the left-left current contribution of the ∆S = 2 portion of these interac-

tions to ∆mK and |εK| was considered. The requirement that the extra dimensional

contribution is no larger than the experimentally determined values [22] yields the

constraints§,

Mc
>∼ 160 TeV

√√√√√
n∗∑

n=1

Re
[
D2
L{12} +D2

R{12} + 14.8DL{12}DR{12}
]

n2
, (2.23)

Mc
>∼ 2800 TeV

√√√√√
n∗∑

n=1

Im
[
D2
L{12} +D2

R{12} + 14.8DL{12}DR{12}
]

n2
, (2.24)

where we have used the vacuum insertion approximation and the factor of 14.8 ac-

counts for the difference in the hadronic matrix element for a left-right as opposed

to a left-left (or right-right) current operator [23] as well as a relative factor of

two in the effective Hamiltonian. The sum over KK modes is explicitly cut-off at

n∗ ∼M∗L/(2π) to avoid counting the modes with mass greater than M∗. In fact for

all of the models we will consider there is very little sensitivity to n∗ because of the

1/n2 suppression in the sum, as well as an additional suppression because the high

frequency modes tend to average to zero over the quark wave functions.

Armed with the model-independent constraints Eqs.(2.23) and (2.24), we can

now derive constraints on specific models of large extra dimensions. One can derive

analytic expressions for the cn constants for all of the models we have considered,

but as the expressions are somewhat unwieldy and not very illuminating, instead

we prefer to quote the resulting bounds. The limits on Mc are presented in Table 1

for the three models described above. For reference, we also show the expected

relationship between the compactification and fundamental (assumed to be related

to the wave function width) scales. We note that our bounds on the AS model

are a factor of about 50 more stringent than those derived in [20] which used a

different definition of the AS model, and included only the left-left flavor violating

currents. In considering the bounds from |εK|, one should keep in mind that the the

AS solution contains approximate zeros in the down quark mass matrix which would

allow one to approximately rotate all of the CP -violating phases away. This feature

could allow us to interpret the bounds from |εK|, as a prediction of that model for

Mc, as this extra-dimensional contribution may be able to explain the experimental

measurements, though of course this would be a coincidence.

As the table shows, the models we have constructed in which the quarks and

leptons live on one or the other of the orbifold fixed points have significantly weaker
§Note that our definition of Mc differs by a factor of 2π from that of [20]. Our results for the

left-left current constraints are consistent with [20] to within about 10%, well within the theoretical

uncertainties.
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Quantity AS Model Higgs in the Bulk Higgs on a Brane

Mc from ∆mK 120 TeV 5 TeV 13 TeV

Mc from εK 2100 TeV 80 TeV 230 TeV

M∗ 50 ×Mc 10 − 20 ×Mc 10 − 20 ×Mc

Table 1: Limits from Kaon measurements on the three models described in the text.

bounds on Mc than the AS model. This can be understood largely from the fact

that in the orbifold models the first and second generation down-type quarks are

localized about the same point, with differences in masses and mixings arising from

the different widths of the wave functions, whereas in AS the quarks are localized

at different points and thus for the lower KK modes of the gluon (which dominate

the sum in Eqs.(2.23-2.24) the couplings to the two quarks are more equal, and

thus the flavor-violation less pronounced. Furthermore, the AS model requires the

fundamental scale be considerably higher than the other models, because it must

actually space the multiple fermions away from each other to get small masses and

mixing angles.

If one makes the extra dimension in AS a bit larger, one can incorporate their

solution to the problem of proton decay via higher dimension operators. Their so-

lution, separating quarks and leptons in the bulk, is not easily adapted into our

framework and thus we require further ingredients (for example, imposing additional

gauge symmetries could forbid the dangerous operators) to be consistent with proton

decay constraints.

3. Supersymmetric Models and y-dependent Flat Directions

We now promote the above models to supersymmetrized versions using the su-

perfield notation of [10] for dimensions greater than four (which we review below).

We find that using odd mass terms is enough to generate the complete Yukawa hier-

archy. We also find scalar VEV profiles which preserve N = 1 supersymmetry and

can be used to localize chiral superfields. While the restrictive nature of 5d supersym-

metry makes it difficult to construct realistic models, we do outline a working model

in this context compactified on an orbifold. Finally, we present a model compactified

on S1 where chirality is simply introduced by introducing a brane containing chiral

matter. Vector-like fields in the bulk mix with the chiral fields on the brane and a

scalar VEV “projects” the massless chiral fermions into the bulk.

3.1 Superspace for five-dimensional supersymmetry

Using the notation of [10], we formulate a 5d supersymmetric gauge theory in the

language of N = 1 4d superfields. This allows us to use the powerful superfield
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machinery to analyze the conditions under which one supersymmetry is preserved in

the 4d effective theory. We find y-dependent flat directions which then can be used

as tools for model-building.

3.1.1 Hypermultiplets

Chiral superfields in five dimensions come in pairs, called hypermultiplets. A free

hypermultiplet was first described in the following notation in [24]:
∫
d4θ
(
H†H +Hc†Hc

)
+

∫
d2θ Hc (∂y +m)H + h.c. (3.1)

If the fifth dimension is compactified on a Z2 orbifold, then H and Hc must transform

oppositely under the discrete symmetry and thus m = 0. Another option is to give

the hypermultiplet a mass which is odd under the Z2 with one chiral superfield odd

and the other even. This mass term preserves the full 5d supersymmetry everywhere

except at the boundaries, where it preserves half.

3.1.2 An Abelian Gauge Multiplet

The 5d gauge sector consists of a vector superfield V whose components are the four-

dimensional part of the vector gauge field Aµ, the left-handed gaugino λL, and an

auxiliary field D, and a chiral superfield Φ whose components are a complex scalar

φ = (Σ + iA5)/
√

2 (containing both the fifth component of the vector field A5 and

the real scalar Σ), the right-handed gaugino λR, and a complex auxiliary field F .

The 5d Lagrangian density is given by
∫
d4θ

1

g2

(
Φ†Φ −

√
2
(
Φ† + Φ

)
∂yV − V ∂2

yV
)

+

∫
d2θ

1

4g2
WαW

α + h.c. . (3.2)

While this Lagrangian is only manifestly 4d Poincaré invariant, it is in fact invari-

ant under the full 5d Poincaré symmetry. It is also invariant under the 5d gauge

transformations: V → V + Λ† + Λ and Φ → Φ +
√

2∂yΛ, as well as the full N = 2

supersymmetry transformations [10].

3.1.3 Charged matter

A hypermultiplet of charge Q consists of two chiral superfields H and H̃ with scalar

components h and h̃, fermionic components ψh and ψh̃, and auxiliary fields FH and

FH̃ and the following terms in the Lagrangian:
∫
d4θ
[
H†e−QVH + H̃†eQV H̃

]

+

∫
d2θ

[
H̃

(
∂y +m− Q√

2
Φ

)
H

]
+ h.c. (3.3)
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Generalizing to more than one hypermultiplet is trivial. For hypermultiplets of the

same charge, m can be a matrix with non-trivial flavor structure. Under gauge

transformations, the hypermultiplet transforms as H → eQΛH, and H̃ → e−QΛH̃ .

3.1.4 Coupling to Branes/Boundaries

One of the reasons this notation is so powerful is that it makes coupling bulk fields

to branes trivial. For example, a superpotential coupling of a component H of an

uncharged hypermultiplet to a brane at y = 0 would look like

∫
d2θ JHδ(y) , (3.4)

where J is a gauge invariant operator made up of brane fields and/or numerical

constants. A Fayet-Iliopoulos term on a brane at y = 0 looks like

∫
d4θ 2 ξ V δ(y) , (3.5)

while adding charged fields X, X̃ (with charges ±1) to a brane at a point y = L/2

requires

∫
d4θ

(
X†e−VX + X̃†eV X̃

)
δ(y − L/2) . (3.6)

When translated into component language, this notation reproduces the results of

[25].

3.1.5 Flat directions

We now have the machinery needed to look for y-dependent flat directions which

preserve the 4d N = 1 supersymmetry. We simply need to solve the F - and D-

flat conditions. Before we do, we remind the reader that our fifth dimension is

compact. We are interested in both compactification on a simple circle (S1), with

−L/2 < y ≤ L/2, and on an orbifold (S1/Z2), with the same range for y but with

y and −y identified. In the latter case, the superfields H and V are even under the

Z2 and H̃ and Φ are odd. This has the consequence (as in the previous section)

that a normal mass term connecting H with H̃ is forbidden while an odd mass term

(proportional to ε(y)) is allowed.

First let us look at the case with a U(1) vector multiplet with a Fayet-Iliopoulos

term and matter with charges ±Q on branes (or orbifold fixed points) at y = 0 and

y = L/2 respectively. The D-flat condition requires

−D =

[
2ξδ(y) +

g Q

2

(
|X̃ |2 − |X|2

)
δ(y − L/2) + ∂yΣ

]
= 0 , (3.7)
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which is satisfied by the conditions |X̃|2 − |X|2 = −4ξ/gQ and Σ = Σ0 + ξε(y). In

the case of the orbifold, Σ0 = 0 since Σ is odd around the points y = 0, L/2. It is

simply a degree of freedom which is projected out of the theory by the orbifold [10].

As can be seen from Eq. (3.3), Φ can play the role of the localizer field¶ with

standard model matter (and their mirror partners) as hypermultiplets in the bulk.

The Lagrangian contains ψq̃(Dy +QΣ(y)/2)ψq which localizes the zero mode of the

quark ψq(mirror-quark ψq̃) where Σ(y) crosses zero with a positive (negative) slope.

In a compact space, zero modes only exist for Σ0 = 0. In the orbifold case this

condition, as well as the removal of the q̃ zero mode, is guaranteed by the boundary

conditions. In the S1 case this could be guaranteed by a soft mass for Σ on either

brane. If Σ0 is non-zero, the lightest mode mass goes as
√
ξ2 −Σ2

0 e
−(ξ−Σ0)L/2 for Σ0

at least somewhat smaller than ξ.

More interesting VEV profiles can appear if we include a hypermultiplet in the

flat directions. Using equations (3.2) and (3.3), we look for solutions to the dif-

ferential equations resulting from imposing the F - and D-flatness conditions D2 =

|FH|2 = |FH̃|2 = |FΦ|2 = 0, where,

−F ∗Φ = −g Q√
2
h̃h

−F ∗
H̃

=

[
∂y + m− Qg√

2
φ

]
h

−F ∗H =

[
−∂y +m− Qg√

2
φ

]
h̃

−D =
g Q

2

(
|h̃|2 − |h|2

)
+ ∂yΣ . (3.8)

As it turns out for the S1 and S1/Z2 geometries, the only solutions are Σ = Σ0

and φ = 0 respectively with all other scalar fields zero. This is because the com-

pactification of the extra dimension requires solutions which are periodic, and while

such solutions to Eqs.(3.8) exist, they have VEV’s which are singular at points in

the extra dimension, and thus our effective theory description of the physics may

not be applicable. In order to have nontrivial profiles valid within the context of

the effective theory, we introduce a 3-brane located at y = 0 with a Fayet-Iliopoulos

term (3.5), which modifies the D term equation as in (3.7). This in turn induces

a discontinuity in the VEV of φ at the brane. The FΦ and FH equations may be

satisfied by requiring h̃ = 0, and the remaining two equations have solutions,

h(y) =
2α

g cos[α(y + L/2 − LΘ(y))]

Σ(y) =
α

g
tan[α(y + L/2 − LΘ(y))] +

m

g
, (3.9)

¶Localizing chiral superfields requires a straight-forward generalization of the procedure for lo-

calizing a fermion zero mode. For details, see [6].
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where we have taken the charge Q = 1 and explicitly chosen a (5d) gauge to make

h(y) real and A5 vanish. The parameter α is related to the magnitude of the Fayet-

Iliopoulos term by,

α =

√
g ξ

2L
, (3.10)

and nonsingular VEV’s in the interval −L/2 ≤ y ≤ L/2 require α < π/L.

Again, the profile for Σ acts as a “mass function” and will tend to localize the

right-handed components of (positively charged) hypermultiplets about the point

where the brane sits (y = 0) and the left-handed components at a point in the bulk

where Σ(y) crosses zero [6], with the KK tower masses given as eigenvalues of the

supersymmetric QM Hamiltonians, −∂2
y∓g/

√
2(∂yΣ(y))+g2/2Σ2(y) . As an example

in order to divine some general features, we consider the case where m = 0 (which

would be enforced, for example, by orbifold boundary conditions) and will allow for

the lightest modes in the KK decomposition to have zero mass. Our analysis is

further simplified when α is small, which allows us to expand the profile for Σ as,

Σ(y) =
α2

g
[y + L/2 − LΘ(y)] . (3.11)

The zero mass solutions for a hypermultiplet (containing chiral multiplets Ψ̃ and Ψ)

of charge Q are,

ψ0
±(y) = N±Exp

[
±Qα2

(
1

2
y2 +

L

2
y − LyΘ(y)

)]
, (3.12)

where N± are chosen to correctly normalize the kinetic terms. In the limit of large

L, these solutions look increasingly like an exponential centered at y = 0 and a

Gaussian centered at y = L/2, which is understandable because in that limit the

corresponding Hamiltonians look like a δ-function potential at y = 0 and a simple

harmonic oscillator at y = L/2, each surrounded by large “potential barriers” that

discourage the wave functions of the low mass modes from spreading.

If we now allow non-zero ∆m = mH−m, the situation changes in two important

ways. The zero-crossing of the linear term in Σ will shift, which will translate the

center of the part of the Hamiltonian which looked like a harmonic oscillator (if ∆m is

large enough, the zero crossing may in fact disappear altogether). More importantly,

the two fields which formerly corresponded to the right- and left-handed zero modes

will now marry one another with some non-zero mass of O(∆m). However, provided

L is large (and thus the potential barrier between the two localizing potentials in

the corresponding Schrödinger problem is also large), the profiles for this pair of

light modes remain localized as they were for the m = 0 case. Thus, the lightest

modes of the KK spectrum are a pair of chiral superfields (H̃0 and H0) localized

at y = 0 (with approximately exponential profile) and y = L/2 − ∆mQ/α2 (with

approximately Gaussian profile), respectively.
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3.2 Flavor from an Odd Mass Term

The simplest and perhaps most attractive model of the sort we are discussing re-

quires masses for hypermultiplets which are odd under the Z2 of the orbifold‖. The

hypermultiplets are the SM quarks and leptons and their 5d chiral partners. The

odd mass localizes the chiral zero modes of the matter fields at one of the orbifold

fixed points, depending on the sign of the mass-term step function.

The model reproduces (a supersymmetrized version of) the model in Section

2.3 with the scalar profile idealized to a step function. The Higgses are now chiral

superfields and can be localized in the same way as the matter fields. The Yukawa in-

teractions are forbidden by N = 2 supersymmetry, but may be explicitly introduced

on the branes. Thus the most successful model of the previous section can be put

into a supersymmetric context and thereby decouple the gauge hierarchy problem

from the generation of Yukawa suppression. In fact, because generic supersymmetric

theories have two Higgs doublets, one to generate up-type quark (and, if relevant,

Dirac neutrino) masses, and the other to generate down-type quark and charged lep-

ton masses, we have an additional freedom in constructing flavor in a supersymmetric

context in the choice of ratio of the Higgs VEV’s, tanβ = vu/vd. This allows one,

for example, to partially or completely generate the hierarchy between the top and

bottom masses by the choice of tan β, and allows some more flexibility in generating

realistic flavor.

The next question is whether or not one can promote the above mass term to a

field such that one can produce successful models of flavor with localized fermions zero

modes by the y-dependent profiles described above. The short answer is no. Coupling

a hypermultiplet to the Σ field in the superpotential requires the hypermultiplet to

be charged under a gauge symmetry. Taking that gauge symmetry to be U(1), the

couplings of matter fields to Σ, and thus the width of their wave functions, are

proportional to the charge of the hypermultiplet in question.

If one wants different widths for different generations, the fields must have differ-

ent charges. However, this forbids most or all of the Yukawa couplings in the 5d the-

ory. One could choose chargesQ such thatQqi+Qui+Qhu = 0 and Qqi+Qdi+Qhd = 0,

where i = 1, 2, 3 is the generation index, and so at best one can get the right mass

hierarchies in both the up and down sectors (with the µ term forbidden by the U(1)

symmetry). However, the Yukawa matrices will already be diagonal and thus the

CKM matrix is the identity matrix. One can remedy this situation by noticing that

the boundary fields required to produce the Σ profile break the U(1) gauge symmetry

spontaneously. This field can be used to produce non-renormalizable operators which

could allow mixing terms once the field’s VEV is inserted. The result is a hybrid

extra-dimensional/Froggatt-Nielsen mechanism for fermion masses. While this idea

‖We thank Andrea Romanino, who was the first to point out this possibility to us.

18



seems workable, the resulting models are more in the Froggatt-Nielsen spirit than an

extra-dimensional one, so we will not pursue them here.

3.3 Compactifying on S1

An alternative to the orbifold is to work with the extra dimension compactified on S1,

and introduce chiral matter explicitly on a 3-brane. To illustrate how this works, let

us consider a bulk hypermultiplet containing chiral multiplets Ψ and Ψc. We include

a 3-brane at y = 0 on which lives a chiral superfield η, and include a brane-coupling

between η and Ψc,

∫
dy

∫
d2θ Ψc(∂y +m)Ψ +M ηΨc δ(y) . (3.13)

Without the orbifold, Ψ is allowed an ordinary mass m. Ignoring the brane coupling

for the moment, we consider the case in which Ψ is charged with charge Q under a

bulk U(1) whose Σ is given the profile of Eq. (3.9). Its lightest KK mode Ψ0 will

tend to localize around the zero crossing of the function (Q×〈Σ〉(y)−m). Of course,

it will have some non-zero mass m0 with Ψc 0, which will tend to localize around the

brane (the locations can be reversed by adjusting the sign of Q and/or m). If we

now turn on the brane coupling, the net result will be one massless field and one

with mass
√
M2

0 +m2
0 (with M0 given by the overlap of the Ψc 0 wave function with

the brane), each of which is a mixture of the bulk light mode Ψ0 and the brane field

η. The composition of the zero mass field will be

− M0√
M2

0 +m2
0

Ψ0 +
m0√

M2
0 +m2

0

η , (3.14)

indicating that provided M0 � m0, we have essentially recovered a chiral field in the

bulk (though with some small component living on the brane). The chiral fields on

the brane have been “projected” from the brane into the bulk by appropriate mixing

with bulk fields.

We can use this tool to avoid the problems of the S1/Z2 models in the previous

section. We introduce a brane containing the entire MSSM chiral superfield sector,

with brane couplings to an entire MSSM hypermultiplet sector in the bulk∗∗.

In order to allow for Higgs couplings, we assign each generation the same charges

for a given type of field, for example: Qq = +1/2, Quc = +1, Qdc = −2, Ql = +1/2,

Qec = −2, Qnc = +1, QHu = −3/2 and QHd = +3/2. These charges allow inter-

generational couplings to the Higgses (on the branes), and results in the bulk light

modes for the q, uc, l, nc, and Hd fields living at various points in the bulk (with

∗∗For producing the right masses in the charged sector, it is in fact not necessary to put an entire

MSSM hypermultiplet sector in the bulk. Simply a set of (what makes up) 10’s and their conjugates

will do.
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positions determined by the corresponding hypermultiplet masses) and the ec, dc,

and Hu fields all living on the brane. The right-handed neutrino masses are now

forbidden by the U(1) symmetry, but could be generated by a non-renormalizable

superpotential term such as HHncnc. By appropriately choosing the bulk masses,

we may adjust the overlaps of the left-handed fields with the right-handed fields and

Higgses, and thus realize viable flavor. This mechanism has something in common

with both the AS mechanism in that one sees suppression from right- and left-handed

fields overlapping, and also some features of suppression due to the overlap with the

Higgs present in the models of Section 2.3 and [6].

4. Supersymmetry Breaking

Having successfully constructed supersymmetric theories in which flavor is gen-

erated by an extra-dimensional mechanism, it is important to also consider how

supersymmetry is broken. A generic supersymmetry-breaking mechanism could lead

to off-diagonal entries in the sfermion mass matrices. The simplest way to avoid

this supersymmetric flavor problem is to break supersymmetry in such as way as

to guarantee that all sfermions of the same charge have approximately degener-

ate masses. This insures that after the rotation from gauge to mass eigenstates

required to diagonalize the fermion masses, the sfermion masses remain diagonal.

Since we have already introduced an extra dimension, we briefly consider two extra-

dimensional supersymmetry-breaking mechanisms: Scherk-Schwarz breaking [26] by

twisted boundary conditions (as realized in [27]), and gaugino-mediation [28, 29].

4.1 Scherk-Schwarz Breaking

Any of the flavor models of the previous section can incorporate supersymmetry

breaking by modifying the orbifold boundary conditions on the components of the

superfields such that masses of the superpartner zero-modes are lifted to weak scale

values. The model, and discussion, follows closely the one proposed in [27]. As

before, we break N = 2 down to N = 1 by requiring that under the identification

y ↔−y the superfields transform as,

(
V

Φ

)
(xµ,−y) =

(
V

−Φ

)
(xµ, y), (4.1)

(
Ψ

Ψc

)
(xµ,−y) =

(
Ψ

−Ψc

)
(xµ, y). (4.2)

where Ψ and Ψc together form one of the matter hypermultiplets. Under y ↔ y+2πR,

the two gauginos and two sfermions are twisted into each other by an element of the
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SU(2)R symmetry of the 5d theory,
(
λL
λR

)
(xµ, y + 2πR) = e−i2πασ2

(
λL
λR

)
(xµ, y), (4.3)

(
f̃

f̃ c

)
(xµ, y + 2πR) = e−i2πασ2

(
f̃

f̃ c

)
(xµ, y) (4.4)

where σ2 is the Pauli matrix, and α is a dimensionless parameter specifying the

amount of twisting. The vectors, gauge scalars, and fermions are untwisted, and will

thus remain as zero modes in the low energy theory.

The additional boundary conditions on the fields modify the KK expansion for

the gaugino modes to,
(
λL
λR

)
(xµ, y) =

∑

n

e−iαy/Rσ2

(
λnL cos [ny/R]

λnR sin [ny/R]

)
, (4.5)

which, substituted into the 5d action 3.2 and integrating over y results in universal

masses α/R for the gaugino zero modes. Assuming a compactification scale close to

the GUT scale, this requires α ∼ 10−13 in order to have gaugino masses at the weak

scale.

The scalar masses are slightly more subtle. First, we note that the matter

fermions have untwisted boundary conditions, and so are localized exactly as before,

with wave functions F n(y) for the fermions (including a zero mode) and wave func-

tions Gn(y) for the mirror fermions. In this basis the KK expansion for the sfermions

is (
f̃

f̃ c

)
(xµ, y) =

∑

n

e−iαy/Rσ2

(
f̃n F

n(y)

f̃ cn G
n(y)

)
. (4.6)

Inserting this expansion into the 5d the kinetic term produces universal sfermion

masses α2/R2. Flavor-dependent corrections to the wave functions and masses will

appear at order α/R and thus are negligibly small.

This model manages to generate the correct fermion spectrum while avoiding

supersymmetric flavor problems. This is in contrast to a Froggatt-Nielsen type of

mechanism which, if the flavor-breaking scale is at least somewhat below the com-

pactification scale, will produce flavor-violation in the scalar sector through renor-

malization group running. Unfortunately, the mechanism of flavor generation has

virtually no impact on the superpartner spectrum and thus would be difficult to

study experimentally at energies far below the compactification scale.

4.2 Gaugino Mediation

In order to simply imbed the model of Section 3.2 in a model of gaugino-mediation,

we consider a theory with two extra dimensions compactified as T 2/Z2, a 2-torus
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Figure 3: Schematic of the 6d model, indicating the locations of the Higgs and

supersymmetry-breaking 3-branes, the matter 4-brane, and the gauge and gaugino fields

in the bulk.

with two points mapped into each other by a π rotation in the plane of the compact

dimensions identified. The coordinates in the extra dimensions can be expressed as

a 2-vector ~y = (y1, y2), with the physical space lying inside the rectangle bounded by

the four orbifold fixed points at (0, 0), (πR5, 0), (0, πR6), and (πR5, πR6) [30]. For

simplicity, we consider the case where the two compact dimensions are orthogonal,

and both radii are equal, L = πR5 = πR6. The gauge fields live in the entire 6d

bulk, with the quarks and leptons confined to a 4-brane stretching between two of

the orbifold fixed points (with zero modes localized along the small brane direction

in order to produce flavor as in Section 3.2), and the Higgses live in a 3-brane located

at one of these two points. Supersymmetry is broken at one of the two-fixed points

outside of the matter-brane. The situation is shown schematically in Figure 3.

If we parameterize the supersymmetry-breaking by a chiral superfield X whose

auxiliary component FX has a non-vanishing VEV, gauginos acquire a mass at tree-

level from effective interactions such as,
∫
d6x

∫
d2θ

λX
M3
∗
X W αWα δ(~y), (4.7)

where λX is a dimensionless coupling of order unity, and ~y = (y1, y2) are the coordi-

nates in the extra dimensions. This results in a mass for the zero-mode gaugino of

λX〈FX〉/M3
∗L

2, suppressed by the volume of the extra dimension.

The sfermions are prevented from getting masses (or A terms) directly from

X by 6d locality, and must instead acquire masses at one loop from the gauginos

through Feynman graphs such as that shown in Figure 4. Below the compactifica-

tion scale, the only relevant contribution from this graph has the gaugino zero-mode

in the loop (which in fact corresponds to the usual renormalization group evolu-

tion of the sfermion mass induced by the gauginos in 4d). Since the zero-mode has
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Figure 4: Loop diagram showing how gauginos carry supersymmetry-breaking information

to the sfermions. The ⊗’s represent insertions of the operator in Eq. (4.7).

flavor-blind couplings to the sfermions, this results in universal sfermion masses, as

desired. However, above the compactification scale the higher KK modes of the

gaugino will also contribute to the sfermion masses, and since they have wave func-

tions which vary across the extra dimension, they couple flavor-diagonally, but not

flavor-independently. This is potentially a problem, because after the rotation from

the gauge to mass basis, the sfermions will, in general, pick up off-diagonal entries

proportional to the mass2 differences multiplied by rotation angles.

These contributions may be estimated by expressing the 6d gaugino propagator

P[q;~a,~b] in mixed position and momentum space (see, for example [6]), and evalu-

ating the 6d effective action at one loop, summing over all of the gaugino KK modes

in the loop†† and identifying the term relevant for sfermion masses,

Γ6

[
f̃∗, f̃

]
=

∫
d4x dy1 dy2 f̃

∗(xµ, y1) f̃ (xµ, y2)M
2(y1, y2), (4.8)

where y1(2) are positions along the matter 4-brane, and we have explicitly used the

fact that a 4d mass term must be evaluated for both fields at the same 4d space-

time point, and that the (s)fermions are confined to a 5d subspace. The coefficient

M2(y1, y2) is,

M2(y1, y2) =
α

4π
M2

1/2

∫
d4qTr

[ 6q
q2
P[q; (L, y1),~0]P[q;~0,~0]P[q;~0, (L, y2)]

]
, (4.9)

where α is defined in terms of the 4d gauge coupling, and we have dropped Casimirs

and factors of 2. One may then compactify down to four dimensions, inserting the

wave functions for the (s)fermions and determining the effective mass of the sfermion

“zero-mode” at the compactification scale,

m̃2 =

∫
dy1 dy2 ψ

0∗
f̃

(y1) ψ
0
f̃
(y2)M

2(y1, y2). (4.10)

The weak scale superpartner masses are then obtained by rotating to the quark mass

basis, and applying the usual 4d renormalization evolution from the compactification

scale to the weak scale.
††In six dimensions, this introduces some dependence on how the sum over KK modes is cut-off;

we have adopted a hard cut-off at M∗.
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For simplicity we assume Mc ∼MGUT , with the gaugino masses given by a single

parameter M1/2. The boundary conditions for the scalar mass2 matrices at Mc for

the specific localized Higgs model described in Section 3.2 results in,

m̃2
q1
∼ 0.024 M2

1/2, m̃2
u1
∼ 0.023 M2

1/2, m̃2
d1
∼ 0.023 M2

1/2,

m̃2
q2
∼ 0.040 M2

1/2, m̃2
u2
∼ 0.072 M2

1/2, m̃2
d2
∼ 0.025 M2

1/2,

m̃2
q3
∼ 0.140 M2

1/2, m̃2
u3
∼ 0.140 M2

1/2, m̃2
d3
∼ 0.030 M2

1/2, (4.11)

which after applying the CKM rotations and evolving down to the weak scale will

result in, i.e.,

δLLsd ∼
m̃2
s − m̃2

d

m̃2
s

× Vus ∼ 5× 10−4, (4.12)

(with similar results for δRR), acceptably small [31]. And for the leptons we have,

m̃2
l1
∼ 0.016 M2

1/2, m̃2
e1
∼ 0.017 M2

1/2,

m̃2
l2
∼ 0.026 M2

1/2, m̃2
e2
∼ 0.050 M2

1/2,

m̃2
l3
∼ 0.026 M2

1/2, m̃2
e3
∼ 0.140 M2

1/2. (4.13)

The much larger corrections to the masses of q3, u
c
3, and ec3 are a direct result of

those fields being localized around the Higgs brane, and thus having wave functions

concentrated closer to the supersymmetry breaking brane. The Higgses receive negli-

gibly small soft masses at Mc. Thus, we see that the flavor model has left an imprint

of sorts on the sparticle mass spectrum.

The resulting weak scale sparticle masses (with the µ term fixed by the require-

ment of proper EWSB - for specific gaugino-mediation solutions to the µ-problem, see

[6, 29, 32]) show some distinct differences from standard gaugino-mediation. First,

the lightest superpartner is typically a neutralino as opposed to a stau, because of

the additional contribution to stau masses in Eq. (4.13). This feature allows us

to more simply connect with a standard picture of cosmology. Further, there is

non-degeneracy of the squarks and sleptons of different families, and for different

chiralities, with the most pronounced difference for the third generation. This is a

direct consequence of the fact that the extra dimensions play a nontrivial role both

in generating flavor breaking and in supersymmetry breaking, and represents a way

in which future experiments could make progress to unravel the flavor puzzle, by

making precision measurements of the supersymmetry-breaking parameters.

5. Conclusion

In this article we have examined a variety of tools, both in supersymmetric and

non-supersymmetric contexts, by which one can recover the spectrum of fermion
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masses through the localization of matter fields in an extra dimension. Orbifold

boundary conditions allow us to complete the Arkani-Hamed-Schmaltz model for

the first time, resulting in a theory which actually contains chiral matter. Going

further, we construct two new non-supersymmetric models which successfully realize

quark and lepton flavor from an underlying theory containing only parameters of

order one. We have examined the constraints from flavor-changing neutral currents

and CP violation as applied to the Kaon system, and find that our new models relax

the experimental bounds on the fundamental scale compared to those on the AS

model.

However, these constraints remain strong, requiring M∗ >∼ 103MW , and disfavor

the use of large extra dimensions to explain both flavor and the hierarchy problem.

Thus we consider supersymmetric theories, where we can use much smaller extra

dimensions, safe from flavor constraints related to KK modes of the gauge bosons.

After reviewing the powerful notation that expresses 5 dimensional supersymmetry

in terms of superfields, we find non-trivial flat directions which preserve N = 1

supersymmetry and can themselves be used to localize chiral superfields.

These tools allow us to supersymmetrize our most successful non-supersymmetric

flavor model, by invoking an orbifold and odd mass terms for hypermultiplets which

result in chiral fields localized around the orbifold fixed points. One possible origin of

this odd mass could be from the N = 2 superpartners of the 5d gauge superfield for

a U(1) gauge group which is maximally broken. Another interesting supersymmetric

model is compactified without the orbifold, and generates a chiral theory by project-

ing chiral brane fields into the bulk through mixing with bulk hypermultiplets. This

allows us to consider a supersymmetric version of the AS model, where the Higgses

(as members of hypermultiplets) as well as the fermions are localized across the extra

dimension.

If supersymmetry-breaking is also extra-dimensional, as in gaugino-mediation,

the fact that the extra dimension plays a dual role can manifest itself in the low en-

ergy superpartner mass spectrum, and allows one to see evidence for the mechanism

of flavor by carefully measuring the superparticle masses. If instead supersymme-

try is broken by an exponentially small twist in the boundary conditions (i.e., the

Scherk-Schwarz mechanism), our model successfully realizes a field theory mecha-

nism for small Yukawas without disrupting the flavor degeneracy of the sfermions.

Unfortunately, we do not know of any new weak-scale predictions in this case.

To summarize, an extra dimension allows for a new perspective on many of the

puzzles in particle physics today. In assembling specific tools for one exciting feature

- the localization of fields - it is our hope that these will prove useful in building

models that are on the one hand beautiful and elegant, and on the other complete

and realistic.
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