
SLAC-PUB-8241

September 1999

Warped Phenomenology �

H. Davoudiasl, J.L. Hewett and T.G. Rizzo

Stanford Linear Accelerator Center

Stanford CA 94309, USA

Abstract

We explore the phenomenology associated with the recently proposed localized

gravity model of Randall and Sundrum where gravity propagates in a 5-dimensional

non-factorizable geometry and generates the 4-dimensional weak-Planck scale hierarchy

by an exponential function of the compacti�cation radius, called a warp factor. The

Kaluza-Klein tower of gravitons which emerge in this scenario have strikingly di�erent

properties than in the factorizable case with large extra dimensions. We derive the

form of the graviton tower interactions with the Standard Model �elds and examine

their direct production in Drell-Yan and dijet events at the Tevatron and LHC as well

as the KK spectrum line-shape at high-energy linear e+e� colliders. In the case where

the �rst KK excitation is observed, we outline the procedure to uniquely determine the

parameters of this scenario. We also investigate the e�ect of KK tower exchanges in

contact interaction searches. We �nd that present experiments can place meaningful

constraints on the parameters of this model.
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The large disparity between the electroweak and apparent fundamental scale of grav-

ity, known as the hierarchy problem, is a primary mystery of particle physics. Traditionally,

new symmetries, particles, or interactions have been introduced at the electroweak scale to

stabilize this hierarchy. However, it is possible that our 4-dimensional vision of gravity does

not represent the full theory and that the observed value of the Planck scale, MP l is not

truly fundamental. A scenario of this type due to Arkani-Hamed, Dimopoulos, and Dvali[1]

(ADD) proposes the existence of n additional compact dimensions and relates the funda-

mental 4 + n dimensional Planck scale, M , to our e�ective 4-dimensional value through the

volume of the compacti�ed dimensions, M2
P l = VnM

2+n. Setting M � TeV to remove the

above hierarchy necessitates a large size for the extra dimensions with a compacti�cation

scale of �c = 1=rc � eV�MeV for n = 2 � 7. This, unfortunately, introduces another hier-

archy between �c and M , which must somehow be stabilized. Nonetheless, this scenario has

received much attention as it a�ords concrete phenomenological tests. Since it is experimen-

tally determined that the Standard Model (SM) �elds do not feel the e�ects of additional

dimensions of this size, they are con�ned to a wall, or 3-brane, while gravity is allowed to

propagate freely in the full higher-dimensional space, or bulk. Kaluza-Klein (KK) towers of

gravitons, which can interact with the wall �elds, result from compacti�cation of the bulk.

The coupling of each KK excitation is MP l suppressed, however the mode spacing is deter-

mined by �c and is thus very small compared to typical collider energies. This allows the

summation over an enormous number of KK states which can be exchanged or emitted in a

physical process, thereby reducing the summed suppression from 1=MP l to 1=M , or �TeV�1.
This has resulted in a vast array of phenomenological[2] and astrophysical[3] studies with

present collider data bounding M >� 1 TeV for all n and Supernova 1987A cooling and 
 ray


ux constraints setting M >� 50� 110 TeV for n = 2 only.

An alternative higher dimensional scenario has recently been proposed by Randall
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and Sundrum[4] (RS), where the hierarchy is generated by an exponential function of the

compacti�cation radius, called a warp factor. They assume a 5-dimensional non-factorizable

geometry, based on a slice of AdS5 spacetime. Two 3-branes, one being visible with the

other being hidden, with opposite tensions reside at S1=Z2 orbifold �xed points, taken to

be � = 0; �, where � is the angular coordinate parameterizing the extra dimension. The

solution to Einstein's equations for this con�guration, maintaining 4-dimensional Poincare

invariance, is given by the 5-dimensional metric

ds2 = e�2�(�)���dx
�dx� + r2cd�

2 ; (1)

where the Greek indices run over ordinary 4-dimensional spacetime, �(�) = krcj�j with rc

being the compacti�cation radius of the extra dimension, and 0 � j�j � �. Here k is a scale

of order the Planck scale and relates the 5-dimensional Planck scale M to the cosmological

constant. Similar con�gurations have also been found to arise in M/string-theory[5]. An

extension of this scenario where the higher dimensional space is non-compact, i.e., rc !1,

is discussed in Ref. [6] and several aspects of this and related ideas have been investigated in

Ref. [7]. Examination of the action in the 4-dimensional e�ective theory in the RS scenario

yields[4]

M
2

P l =
M3

k
(1� e�2krc�) (2)

for the reduced e�ective 4-D Planck scale. Assuming that we live on the 3-brane located

at j�j = �, it is found that a �eld on this brane with the fundamental mass parameter m0

will appear to have the physical mass m = e�krc�m0. TeV scales are thus generated from

fundamental scales of order MP l via a geometrical exponential factor and the observed scale

hierarchy is reproduced if krc ' 12. Hence, due to the exponential nature of the warp factor,

no additional large hierarchies are generated. In fact, it has been demonstrated[8] that the

size of �c in this scenario can be stabilized without �ne tuning of parameters, making this
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theory very attractive.

The graviton KK spectrum is quite di�erent in this scenario than in the case with

factorizable geometry, resulting in a distinctive phenomenology. As we will see below, the

masses and couplings of each individual KK excitation are determined by the scale �� =

MP le
�krc� � TeV. This implies that these KK states can be separately produced on resonance

with observable rates at colliders up to the kinematic limit. We will examine the cases of

KK graviton production in Drell-Yan and dijet events at hadron colliders as well as the

KK spectrum line-shape at high-energy linear e+e� colliders. In the circumstance where

a resonance is observed, we outline the procedure to be employed in order to uniquely

determine the parameters of this model. In the case where no direct production is observed,

we compute the bounds on the parameter space in the contact interaction limit. We �nd

that data from present accelerators already place meaningful constraints on the parameter

space of this scenario. The phenomenology of these KK gravitons is similar in spirit to

the production of traditional KK excitations of the SM gauge �elds[9], but di�ers in detail

because of the form of the KK wavefunction due to the non-factorizable metric and their

spin.

We now calculate the mass spectrum and couplings of the graviton KK modes in

the e�ective 4-dimensional theory on the 3-brane at � = �. The starting point is the 5-

dimensional Einstein's equation for the RS con�guration, which is given in Ref. [4]. We

parameterize the tensor 
uctuations h�� by taking a linear expansion of the 
at metric

about its Minkowski value, Ĝ�� = e�2� (��� + �� h��), where �
� is an expansion parameter.

In order to obtain the mass spectrum of the tensor 
uctuations, we consider the 4-dimensional

�� components of Einstein's equation with the replacement G�� ! Ĝ��, keeping terms up

to O(��). We work in the gauge with @�h�� = h�� = 0. Upon compacti�cation the graviton
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�eld h�� is expanded into a KK tower

h��(x; �) =
1X
n=0

h
(n)
�� (x)

�(n)(�)p
rc

; (3)

where the h
(n)
�� (x) correspond to the KKmodes of the graviton on the background of Minkowski

space on the 3-brane. In a gauge where ���@�h
(n)
�
 = ���h

(n)
�� = 0, the equation of motion of

h
(n)
�� is given by

�
���@�@� �m2

n

�
h(n)�� (x) = 0 ; (4)

corresponding to the states with masses mn � 0. Using the KK expansion (3) for h�� in Ĝ��,

Einstein's equation in conjunction with the above equation of motion yields the following

di�erential equation for �(n)(�)

�1
r2c

d

d�

 
e�4�

d�(n)

d�

!
= m2

n e
�2��(n) : (5)

The orthonormality condition for �(n) is found to be
R �
�� d� e�2��(m)�(n) = �mn. In deriving

Eq. (5), we have used (d�=d�)2 = (krc)
2 and d2�=d�2 = 2krc [�(�)� �(�� �)], as required

by the orbifold symmetry for � 2 [��; �] [4]. The solutions for �(n) are then given by[10]

�(n)(�) =
e2�

Nn

[J2(zn) + �n Y2(zn)] ; (6)

where J2 and Y2 are Bessel functions of order 2, zn(�) = mne
�(�)=k, Nn represents the

wavefunction normalization, and �n are constant coe�cients.

De�ning xn � zn(�), and working in the limit that mn=k � 1 and ekrc� � 1, the

requirement that the �rst derivative of �(n) be continuous at the orbifold �xed points yields

�n � x2ne
�2krc� ; and J1(xn) = 0 ; (7)
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so that the xn are simply roots of the Bessel function of order 1. Note that the masses of

the graviton KK excitations, given by mn = kxne
�krc�, are dependent on the roots of J1

and are not equally spaced, contrasted to most KK models with one extra dimension. For

xn � ekrc�, we see that �n � 1, and hence Y2(zn) can be neglected compared to J2(zn) in

Eq. (6). We thus obtain for the normalization

Nn ' ekrc�p
krc

J2(xn) ; n > 0 ; (8)

and the normalization of the zero mode is simply N0 = 1=
p
krc.

Having found the solutions for �(n), we can now derive the interactions of h
(n)
�� with

the matter �elds on the 3-brane. Starting with the 5-dimensional action and imposing the

constraint that we live on the brane at � = �, we �nd the usual form of the interaction

Lagrangian in the 4-dimensional e�ective theory,

L = � 1

M3=2
T ��(x)h��(x; � = �) ; (9)

where T��(x) is the symmetric conserved Minkowski space energy-momentum tensor of the

matter �elds and we have used the de�nition �� = 2=M3=2. Expanding the graviton �eld

into the KK states of Eq. (3) and using the above normalization in Eq. (8) for �(n)(�) we

�nd via Eq. (2)

L = � 1

MP l

T ��(x)h
(0)
��(x)�

1

��

T ��(x)
1X
n=1

h
(n)
�� (x) : (10)

Here we see that the zero mode separates from the sum and couples with the usual 4-

dimensional strength, M
�1

P l , however, all the massive KK states are only suppressed by ��1� ,

where we �nd that �� = e�krc�MP l, which is of order the weak scale.
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Our calculations have been performed with the assumption k < M with M � MP l,

so that the 5-dimensional curvature is small compared to M and the solution for the bulk

metric can be trusted[4]. This implies that the ratio k=MP l cannot be too large and we take

k=MP l � 1 in our analysis below. As we will see, the value of this ratio is central to the

phenomenological investigation of this model. In order to get a feel for the natural size of this

parameter, we perform a simple estimate using string theoretic arguments. The string scale

Ms can be related[11] to MP l in 4-dimensional heterotic string theories by Ms � g
YM

MP l,

where g
YM

is the 4-dimensional Yang-Mills gauge coupling constant, and the tension �3 of a

D 3-brane is given by

�3 =
M4

s

g (2�)3
; (11)

where g is the string coupling constant. For g
YM
� 0:7 and g � 1, we �nd �3 � 10�3M

4

P l. In

the RS scenario, the magnitude of the 3-brane tension is given by V = 24M
2

P lk
2. Requiring

that V = �3, suggests

k

MP l

� 10�2: (12)

We take the range 0:01 � k=MP l � 1 in our phenomenological analysis, however, the above

discussion suggests that string theoretic and curvature considerations favor the lower end of

this range. We note that recent work[12] on gauge uni�cation in a modi�ed RS scenario also

favors smaller values for this ratio.

Constraints on the parameters of this model can be obtained by direct collider searches

for the �rst graviton excitation at the Tevatron or LHC. The cleanest signal for graviton

resonance production will be either an excess in Drell-Yan events, q�q; gg! G(1) ! `+`� (in

analogy to searches for extra neutral gauge bosons), or in the dijet channel, q�q; gg! G(1) !
q�q; gg. Note that gluon-gluon initiated processes now contribute to Drell-Yan production.
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This di�ers from the ADD scheme where individual resonances associated with graviton

exchange are not observable due to the tiny mode spacing. Using the above Lagrangian

(10), the production cross section, decay widths, and branching fractions relevant for graviton

production can be obtained in a straightforward manner. We assume that the �rst excitation

only decays into SM states, so that for a �xed value of the �rst graviton excitation mass, m1,

the value of k=MP l completely determines all of the above quantities. In fact, the total width

is found to be proportional to (k=MP l)
2. Keeping in mind that theoretic arguments favor a

smaller value for this parameter, and to get a handle on the possible constraints that arise

from these channels, we employ the narrow width approximation. This is strictly valid only

for values of k=MP l <� 0:3 but well approximates the true search reach obtained via a more

complete analysis[13]. We then compare our results with the existing Tevatron bounds[14].

The lack of any signal for a new resonance in either the Drell-Yan or dijet channel in the

data then provides a constraint on k=MP l for any given value of m1 as shown in Fig. 1(a).

We also perform a similar analysis to estimate the future 95% C.L. parameter exclusion

regions at both Run II at the Tevatron and at the LHC under the assumption that no signal

is found; these results are displayed in Figs. 1(a) and (b). The dijet constraints for Run II

were estimated by a simple luminosity (and
p
s) rescaling of the published Run I results.

Note that the Drell-Yan and dijet channels play complementary roles at the Tevatron in

obtaining these limits. We expect a dijet search at the LHC to yield poor results due to the

large QCD background at this higher center-of-mass energy.

The discovery of the �rst graviton excitation as a resonance at a collider will immedi-

ately allow the determination of all of the fundamental model parameters through measure-

ments of its mass and width, m1 and �1, respectively. To demonstrate this, we make use of

the two relations �� = m1MP l=kx1 and �1 = �m1x
2
1(k=MP l)

2, where x1 is the �rst non-zero
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Figure 1: Exclusion regions for resonance production of the �rst KK graviton excitation
in (a) the Drell-Yan (corresponding to the diagonal lines) and dijet (represented by the
bumpy curves) channels at the Tevatron and (b) Drell-Yan production at the LHC. (a) The
solid curves represent the results for Run I, while the dashed, dotted curves correspond to
Run II with 2, 30 fb�1 of integrated luminosity, respectively. (b) The dashed, solid curves
correspond to 10, 100 fb�1 . The excluded region lies above and to the left of the curves.
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root of the J1 Bessel function and � is a constant which depends on the number of open decay

channels; it is �xed provided we assume that the graviton decays only to SM �elds. Using

these relations we immediately �nd that rc = � log[m1=kx1]=k� with k =MP l[�1=m1�x
2
1]
1=2.

In addition, the spin-2 nature of the graviton can be determined via angular distributions of

its decay products.

To exhibit how the tower of graviton excitations may appear at a collider, Fig. 2

displays the cross section for e+e� ! �+�� as a function of
p
s, assuming m1 = 600 GeV

and taking various values of k=MP l for purposes of demonstration. We see that for small

values of k=MP l the gravitons appear as ever widening peaks and are almost regularly spaced,

with the widths and the spacing both being dependent on successive roots of J1. However, as

k=MP l grows, the peaks become too wide to be identi�ed as true resonances and the classic

KK signature of successive peaks becomes lost. Instead, it would appear experimentally that

there is an overall large enhancement of the cross section, similar to what might be expected

from a contact interaction. One may worry that at some point the cross section may grow so

large as to violate the partial wave unitarity bound of �U = 20�=s, which is appropriate[15]

to the case of initial and �nal fermion states with helicity of 1. However, even for values of

k=MP l as large as unity we �nd that unitarity will not be violated until
p
s is at least several

TeV.

In the circumstance that gravitons are too massive to be directly produced at colliders,

their contributions to fermion pair production may still be felt via virtual exchange. For

smaller values of k=MP l, this would be similar to observing the e�ects of the SM Z boson

before the resonance turns on, or for larger values, to searching for contact interactions.

The 4-fermion matrix element is easily computed from the Lagrangian (10) and is seen to

reproduce that derived for the scenario of ADD with large extra factorizable dimensions[16]
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Figure 2: The cross section for e+e� ! �+�� including the exchange of a tower of KK
gravitons, taking the mass of the �rst mode to be 600 GeV, as a function of

p
s. From top

to bottom the curves correspond to k=MP l = 1:0; 0:7; 0:5; 0:3; 0:2; 0:1.

with the replacement

�

M4
s

! i2

8�2
�

1X
n=1

1

s�m2
n

: (13)

The advantage in this scenario over the factorizable case is that there are no divergences

associated with performing the sum since there is only one new dimension, and hence uncer-

tainties associated with the introduction of a cut-o� do not appear. In the limit of m2
n � s,

the sum over the KK graviton propagators becomes [k��=MP l]
�2P

n 1=x
2
n which rapidly con-

verges. The 95% C.L. search reach in the ���k=MP l plane are given in Fig. 3 for various (a)

e+e� and (b) hadron colliders. In e+e� annihilation we have examined the unpolarized (and

polarized for the case of high energy linear colliders) angular and � polarization distribu-

tions, summing over e; �; �; c; b (and t, if kinematically accessible) �nal states, and included

initial state radiation, heavy quark tagging e�ciencies, an angular cut around the beam pipe,

and 90% beam polarization where applicable. For hadron colliders we examined the lepton
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pair invariant mass spectrum and forward-backward asymmetry in Drell-Yan production,

for both e and � �nal states. We also investigated the case where the �rst two excitations

are too close to the collider center-of-mass energy to use the approximation m2
n � s. The

bounds in e+e� annihilation for this case are given by the solid curves in Fig. 3(a). We see

that there is very little di�erence in the resulting constraints.

As a last point, we note that whereas graviton tower emission was an important probe

of the ADD scenario, this is no longer true in the RS model since the graviton states are so

massive and can be individually examined on resonance.

In this paper we have explored the phenomenological implications of the Randall-

Sundrum localized gravity model of non-factorizable 5-dimensional spacetime, and contrasted

it with the ADD scenario. We (i) derived the interaction of the KK tower of gravitons

with the SM �elds, (ii) obtained limits on the model parameters using existing data from

colliders, both through direct production searches and via virtual exchange contributions,

and estimated what future colliders can do to extend these bounds. (iii) We described

the appearance of KK tower production at high energy linear colliders, the possible loss of

the conventional KK signature of successive peaks due to the ever growing widths of these

excitations, and (iv) demonstrated how measurements of the properties of the �rst KK state

would completely determine the model parameters.

We �nd the scenario of gravity localization to be theoretically very attractive, and

even more importantly, to have distinctive experimental tests. We hope that future experi-

ment will eventually reveal the existence of higher dimensional spacetime.
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Figure 3: Constraints in the �� � k=MP l plane from virtual exchange of the tower of KK
gravitons. The excluded region lies below the curves. (a) The dashed curves assume the
entire tower lies far above

p
s, while the solid curves correspond to the case where the �rst

two excitations are close to
p
s. From bottom to top the pairs of curves correspond to LEP

II at 195 GeV with 2.5 fb�1 of integrated luminosity; a linear e+e� collider at 500 GeV with
75 fb�1; 500 GeV with 500 fb�1; and 1 TeV with 200 fb�1. (b) From bottom to top the
curves correspond to the Tevatron Run I with 110 pb�1, Run II with 2 fb�1, Run II with 30
fb�1, the LHC with 10 fb�1, and 100 fb�1.
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