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Abstract

We present an empirical analytic approximation for the luminosity \de-enhancement"

factor HD in e�e� collisions, as a function of the disruption parameters Dx, Dy,

the hour-glass parameters Ax, Ay, and the beam aspect ratio R � �x=�y. We

treat Gaussian beams with essentially arbitrary aspect ratio, assuming only that

the vertical beam size is less than or equal to the horizontal beam size and that

the vertical beta function is less than or equal to the horizontal beta function.

Presented at Worldwide Study on Physics and Experiments with Future Linear e+e-

Colliders, April 28 - May 5, 1999, Sitges (Barcelona), Spain

�Work supported by Department of Energy contract DE{AC03{76SF00515.



LUMINOSITY AND DISRUPTION IN e�e� LINEAR COLLIDERS

K.A. Thompson and P. Chen

Stanford Linear Accelerator Center, P.O.Box 4349, Mail Stop 26,

Stanford, CA 94309, USA

We present an empirical analytic approximation for the luminosity \de-

enhancement" factor HD in e�e� collisions, as a function of the disruption pa-

rameters Dx, Dy, the hour-glass parameters Ax, Ay, and the beam aspect ratio

R � �x=�y. We treat Gaussian beams with essentially arbitrary aspect ratio, as-

suming only that the vertical beam size is less than or equal to the horizontal beam

size and that the vertical beta function is less than or equal to the horizontal beta

function.

1 Introduction

The purpose of this note is to give simple analytic formulas for use in e�e� collider

physics programs and design studies. Such formulas complement those previously

given in the literature1 for e+e�. We use simple physical arguments to guide us

toward empirical �ts to beam-beam simulations using the GUINEAPIG program2.

The geometric luminosity per bunch, not taking account of disruption or hour-

glass e�ect, is given by

L0 �
N2

4��x�y
; (1)

where N is the number of particles per bunch and �x;y are the horizontal and

vertical beam sizes. We assume the beam distributions are Gaussian longitudinally

and transversely.

The hour-glass e�ect reduces the undisrupted luminosity unless the parameters

Ax;y �
�z

��x;y
(2)

are much less than 1. Here �z is the bunch length and ��x;y are the horizontal and

vertical betatron functions at the collision point.

The disruption parameters Dx;y are de�ned by

Dx;y =
2re�zN


�x;y(�x + �y)
: (3)

We de�ne the luminosity pinch enhancement factor by

HD �
LD
L0

: (4)

Here LD denotes the actual luminosity with disruption and hour-glass e�ect taken

into account. (Caution: HD is sometimes de�ned as LD=LA where LA is the

luminosity with hour-glass e�ect taken into account.) For e+e� collisions, HD > 1

is greater than one, while for e�e� collisions, HD < 1.
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2 Simulation of HD and analytic approximation for round beams

We begin by focusing on the case of round beams (�x = �y). We also assume

�x = �y, so that Ax = Ay (it would be possible to have di�erent horizontal and

transverse beta functions if the horizontal and transverse emittances also di�ered,

but this is not generally the case for round beam designs).

First we checked that turning beamstrahlung on and o� in simulations does not

have a large e�ect on the luminosity. We found that even for fairly extreme param-

eter regimes (i.e., HD � 0:25), simulation results with and without beamstrahlung

turned on di�er by only a few percent. We then went on to simulate a number of

cases, varying A and D. The results are plotted as the solid curves in Figure 1.

The major features of these curves can be easily understood on physical grounds.

For very small disruption, HD asymptotically approaches the value expected from

the hour-glass e�ect alone:

HD � �A �
2p
�A

Z 1

0

e�u
2=A2

1 +A2u2
du ; (5)

For 0 < A < 1, a reasonably good expansion is �A � 1�A2=4.

One might try to factorize HD as HD = FD�A. Note, however, that for very

large disruption the divergence of the beam due to the �nal focus system, repre-

sented by A, will be completely overwhelmed, explaining why the simulation curves

for di�erent A converge at large D. For D � 1, the beams disrupt each other away

within a distance �z=D and the e�ective value of A becomes

~A = A=D =
2(
�)

reN
; (6)

depending only on inherent properties of the beam.

To smooth the transition between the regimes of D, we take

�(A;D) � 1� 1

4

�
A

1 + bD

�2

: (7)

where b is an adjustable parameter (we can in addition adjust the parameter 1/4

in front).

A derivation of FD for round, Gaussian beams and small D3 goes through for

e�e� with only a change of sign from that for e+e�, and yields

FD � 1� 2D

3
p
�

: (8)

This is just the small-argument expansion of exp (� 2D
3
p
�
) so we might try match-

ing onto that for larger D. One �nds that the exponential drops o� too quickly, but

a modi�ed Bessel function I0 can be introduced to moderate this drop-o�. We try

FD = exp

�
� 2D

3
p
�

�
I0(

2D

3
p
�
) : (9)
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Figure 1: Disruption \de-enhancement" factor HD as a function of D, for round beams. From top

to bottom, the curves shown are for A = 0:1, A = 0:5, A = 0:8, A = 1. The solid curves are the

simulation results and the dotted curves are the analytic approximation.

We could also adjust the coe�cient 2

3
p
�
� 0:376 that appears in front of D in

both the exponential and in I0. But we did not gain a signi�cant improvement by

changing this coe�cient in either or both of these places where it appears.

The modi�ed Bessel function has expansions for large and small x that agree

well for x � 1 and thus can be used to cover the entire range of D. These are given

by:

1 +
x2

4
+
x4

64
+

x6

2304
(x < 1)

I0(x) =

exp
2�x

�
1 +

1

8x
+

9

128x2

�
(x > 1) : (10)

Finally, to get a good �t for 1 � D � 100 we needed to introduce a purely

empirical fudge factor fch given by:

1 (0 � D � 1)

fch(D) =

1 + 0:1 lnD (1 � D � 100) : (11)

Our �nal analytic approximation for HD for round, Gaussian e�e� collisions,

is:

HD =

�
1� 0:3

A2

(1 + 0:4D)2

�
exp

�
� 2D

3
p
�

�
I0

�
2D

3
p
�

�
fch(D) ; (12)
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Figure 2: Disruption \de-enhancement" factor HD as a function of Dy, for 
at beams (R = 100).

From top to bottom, the curves shown are for Ay = 0:1, Ay = 0:5, Ay = 0:8, Ay = 1. The solid

curves are the simulation results and the dotted curves are the analytic approximation.

Figure 3: Disruption \de-enhancement" factor HD as a function of Dy, for Ay = 0:1 and assuming

Ax � 1. From top to bottom, the curves shown are for R = 100, R = 10, R = 3, R = 1. The

solid curves are the simulation results and the dotted curves are the analytic approximation.

where we use the expansion for I0 given above. This analytic approximation is

shown as the dotted curves in Figure 1.

4



3 Generalization of HD approximation to non-round beams

Next we generalize our results to non-round beams. Let the vertical dimension be

the smaller dimension of the beam, and de�ne the aspect ratio of the beam by

R � �x=�y.

Simulation results for the case of a very 
at beam are plotted as the solid curves

in Figure 2. The results shown are for the case R = 100 but are not very sensitive

to R provided it is signi�cantly greater than 1 | for example, we see from Figure 3,

which shows HD as a function of D for Ay = 0:1 and R varying from 1 to 100 (with

Ax � 1), that the curves for R = 10 and R = 100 are not very di�erent.

We look for an approximation to HD that is a function of Dy, Ay, and R, and

is valid for beams of any aspect ratio (R = 1 to 1). We will assume Ax is small

enough that the hour-glass e�ect is not signi�cant in the horizontal plane unless the

beam is close to round and Ay is near 1, i.e., if the beam is not round, we will assume

Ax � 1, and if it is round, we will assume Ax = Ay. These assumptions generally

hold in linear collider designs, since �?x > �?y for 
at-beam designs, �?x = �?y for

round-beam designs, and Ay � 1.

Let us de�ne

f(R) � 1 +
1

R2
: (13)

Thus f(R) = 2 for round beams and f(R) � 1 for 
at beams. We �nd that the

following simple generalization of our round beam expression works very well for

arbitrary R � 1:

HD =

�
1�0:15f(R)

�
Ay

1 + 0:4Dy

�f(R)�
exp

�
� f(R)Dy

3
p
�

�
I0

�
f(R)Dy

3
p
�

�
fch(Dy) ;

(14)

where the expansion for I0 and the expression for fch are given in the previous

section. This expression is identical to that in the previous section when R = 1.

Our analytic approximation for the 
at beam case (R � 1) is shown as the

dotted curves in Figure 2. We show also the result of this analytic approximation

for R= 1, 3 ,10, and 100, and Ay = 0:1, as the dotted curves in Figure 3.

In summary, our expression forHD agrees with simulations to within about 10%

(as is the case for the e+e� expressions given in Reference 1) over the parameter

ranges of interest for linear colliders. The agreement is even better over the most

interesting parameter ranges, namely those where HD is not too much less than 1.
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