
SLAC{PUB{8210

July 1999

Nonlinear Longitudinal Waves in High Energy Stored
Beams �

Stephan I. Tzenov

Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309

Abstract

We solve the Vlasov equation for the longitudinal distribution function and �nd

stationary wave patterns when the distribution in the energy error is Maxwellian.

In the long wavelength limit a stability criterion for linear waves has been ob-

tained and a Korteweg-de Vries- Burgers equation for the relevant hydrodynamic

quantities has been derived.
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1 Introduction.

Nonlinear wave interaction in high energy synchrotrons has recently received a great deal of

attention (see e.g. [1], [2], [3]), since it has proven its importance for understanding a variety

of phenomena in high intensity beams.

Perhaps, the simplest problem to study is the evolution in longitudinal direction only of

a intense coasting beam inuenced by a broad-band resonator type impedance. This model

exhibits a surprisingly vast variety of interesting features, part of which have already been

experimentally observed and theoretically investigated [1], [2], [3]. Di�erent types of beam

equilibria can be detected due to the collective (nonlinear) interaction between beam particles

and resonator waves, the latter being induced by the beam itself. Solutions describing

similar types of plasma equilibria [Bernstein-Greene-Kruskal (BGK) modes] are well-known

in plasma physics [4]. Structures of arbitrary shape can be formed in the nonlinear stationary

regime, which substantially depend on the type of the initial velocity distribution.

It is the purpose of the present paper to apply techniques borrowed from plasma physics

to study nonlinear patterns in coasting beams that are in close analogy with BGK modes.

In sections 3 and 4 we solve the Vlasov equation by expanding the distribution function in

a power series of the resonator potential [5], and in the case of initial Maxwellian energy

error distribution we obtain an equation, describing the evolution of stationary waves on the

resonator. In section 5 we �nd a stability criterion for linear waves in the long wavelength

limit and derive a Korteweg-de Vries-Burgers equation for the beam density, current velocity

and resonator voltage.

2 Model.

We consider the longitudinal dynamics of a high energy stored beam governed by the set of

equations [2], [3]:
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= 0; (2:1)
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I(�;T ) =

Z
dvvf(�; v;T ): (2:3)

The �rst equation (2.1) is the Vlasov equation for the longitudinal distribution function

f(�; v;T ) of an unbunched beam, while the second equation (2.2) governs the variation per

turn of the voltage V (�;T ) on a resonator. All dependent and independent variables, as well

as free parameters in equations (2.1-3) are dimensionless and have been rescaled according

to the relations:
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Here !s is the angular revolution frequency of the synchronous particle, �E is the energy

error, !R is the resonant frequency, Q is the quality factor of the resonator, R is the resonator

shunt impedance and �0 is the uniform beam density distribution in the thermodynamic limit.

Furthermore

k0 = �
�!s

�2
s
Es

(2:5)

is the proportionality constant between the frequency deviation of a non synchronous particle

with respect to the synchronous one, while � = �M � �2
s

(�M - momentum compaction

factor) is the phase slip coe�cient. The voltage variation per turn V (�;T ), the beam current

I(�;T ) and the longitudinal distribution function f(�; v;T ) entering equations (2.1-3) have

been rescaled as well from their actual values Va(�;T ), Ia(�;T ) and fa(�; v;T ) as follows:

Va = 2e!s�0RV ; Ia = e!s�0I ; fa = �0f: (2:6)

From the Vlasov equation (2.1) it is straightforward to obtain the continuity equation:

@

@T

Z
dvf +

@

@�

Z
dvvf = 0; (2:7)

which will be needed for the exposition in the next section.

3 Solution of the Vlasov Equation.

Let us now try to solve the Vlasov equation by the simple separation of variables ansatz:

f(�; v;T ) = g(v) (�;T ): (3:1)

Substitution of (3.1) into the continuity equation (2.7) yields:
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= 0; (3:2)

where


 =

R
dvvg(v)R
dvg(v)

: (3:3)

The Vlasov equation (2.1) with (3.1-3) in hand can be further transformed to

@ 
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=
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g(
� v)

dg
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:

The separation of variables ansatz (3.1) implies
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which leads to the well-known equilibrium Maxwell-Boltzmann distribution:
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The solution (3.4-6) suggests further generalization [5] of the separation of variables

ansatz (3.1)

f(�; v;T ) =
1X
k=0

gk(v)'
k(�;T ): (3:7)

Instead of equations (3.2) and (3.3) we now have
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= 0; (3:2a)

where
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: (3:3a)

Ak =

Z
dvvgk(v) ; Bk =

Z
dvgk(v): (3:8)

In order to determine the yet unknown functions gk(v) we make the assumption:


(�;T ) = const; (3:9)

which will be proved a posteriori to hold and substitute (3.7) into the Vlasov equation (2.1).

Taking into account (3.2a) we obtain:

(v � 
)
1X
k=1

kgk(v)'
k�1(�;T ) + �

1X
k=0

dgk(v)

dv
'k(�;T ) = 0: (3:10)

Equating coe�cients in front of powers of ' yields the following recurrence relation

(v � 
)(k + 1)gk+1(v) = ��
dgk(v)

dv
;
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or

gk+1(v) =
�

k + 1
bDgk(v); (3:11)

where we have introduced the operator [5]

bD =
1


� v

d

dv
: (3:12)

Noting that the formal solution of the recurrence relation (3.11) has the form

gk(v) =
�k

k!
bDkg0(v) (3:13)

we �nally arrive at the general solution of the Vlasov equation

f(�; v;T ) =
1X
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�k'k(�;T )

k!
bDkg0(v): (3:14)

What remains now is to verify the condition (3.9). It su�ces to note that [5]
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and similarly

Bk = �
�k

k!

Z
dv

(
� v)
2
bDk�1g0(v):

Thus

Ak = 
Bk; (3:15)

which proves equation (3.9).

Clearly the solution (3.14) is uniquely determined by the generic function g0(v). The

simplest choice is when g0(v) is the Maxwellian (3.4), that is g0(v) itself is an eigenfunction

of the operator bD with an eigenvalue ��2
v

[c.f. equation (3.4a)]. In this case we immediately

recover the distribution (3.1) with (3.4-6).

4 Nonlinear Stationary Waves.

In order to derive an equation for the potential '(�;T ) we insert (3.1) and (3.4-6) into (2.2)

and obtain:
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Making use of relation (3.2a) we cast equation (4.1) into the form

@3'

@T 3
+ 2

@2'

@T 2
+ !2

@'

@T
= �Z
2 @

@T

"
exp

 
�'

�2
v

!#
: (4:2)

Integrating once equation (4.2) with due account of the initial condition

'(�;T = 0) =
@'(�;T = 0)

@T
=
@2'(�;T = 0)

@T 2
= 0 (4:3)

we obtain
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Expanding the factor in square brackets on the right-hand-side of equation (4.4) around the

stationary solution 's = 0 yields
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Above the transition energy s > T
�
T = �

�1=2

M

�
the parameter � is negative, so that

two cases can be distinguished. De�ning

!0 = !2 � j�jZ
2

�2
v

; (4:6)

we can state the two cases mentioned above in a more explicit way:

Case I: Provided !0 > 0, equation (4.5) can be transformed to a damped Du�ng equation

with an additional quadratic nonlinearity

@2'

@T 2
+ 2

@'

@T
+ j!0j' = ��

2Z
2

2�4
v

 
'2 � j�j

3�2
v

'3
!
: (4:7)

Case II: For !0 < 0 equation (4.5) takes the form
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In the limit  ! 0 equation (4.8) can be solved when neglecting the cubic term. The result

is:

'(�;T ) =
3j!0j�4v

�2Z
2 cosh2
�p

j!0j

2

(� � 
T )

� : (4:9)

This is a drifting hump-like structure that is well-known as a solitary wave of the Korteweg-de

Vries (KdV) type.
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5 The Korteweg-de Vries-Burgers Equation.

The exact solution of the Vlasov equation obtained in the preceding sections was found based

on the stationary wave condition given by the continuity equation (3.2). In order to provide

a more general treatment of the problem we introduce the new coordinates and variables

along with the moving beam particles

z = � � T ; u = v � 1: (5:1)

Then the basic equations (2.1-3) can be written as:

@f

@�
+ u

@f

@z
+ �V

@f

@u
= 0; (5:2)

@2V

@z2
� 2

@V

@z
+ !2V = � @

@z

Z
du(1 + u)f(z; u; �): (5:3)

Let us now pass to the hydrodynamic description of the longitudinal beam motion. The gas

dynamic equations read as

@F

@�
+

@

@z
(FU) = 0; (5:4)
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v

F
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; (5:5)
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� 2
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+ !2V =

@F

@�
� @F

@z
; (5:6)

where

F (z; �) =

Z
duf(z; u; �) ; F (z; �)U(z; �) =

Z
duuf(z; u; �): (5:7)

Obviously the stationary solution of the gas dynamic equations (5.4-6) is given by

F0 = 1 ; U0 = 0 ; V0 = 0:

The dispersion law of linear waves of the form

(F; U; V ) = (FL; UL; VL) exp [i (
� � kz)]

is governed by the following equation

1� i�Z(k)
k + 



2 � k2�2
v

= 0; (5:8)

where Z(k) is the well-known impedance function

Z(k) =
ik

k2 + 2ik � !2
: (5:9)

7



In the long wavelength limit (small k) the dispersion equation (5.8) has two roots given by

the expression


1;2 =
k

2!2

�
��

q
�2 + 4�!2 + 4!4�2

v

�
; (5:10)

which are real below transition energy. However, the situation when the energy of the

synchronous particle is above transition energy is di�erent. The solutions (5.10) to the

dispersion equation are real, provided

j�j � �1 ; j�j � �2 ; �1;2 = 2!2
�
1�

q
1� �2

v

�
: (5:11)

An instability occurs when 
1;2 are complex, that is when

�1 < j�j < �2: (5:12)

In what follows we will study the case when our system is linearly stable, that is either below

transition energy or in the stability region (5.11).

The solution of the dispersion equation in the long wavelength limit suggests that new

scaled coordinates should be introduced [6], [7]

� =
p
�(z � ��) ; � = �3=2�; (5:13)

where � is a formal small parameter. Then the gas dynamic equations can be rewritten as

��@F
@�

+
@
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(FU) + �

@F
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= 0; (5:14)
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v

F
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; (5:15)

�
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@�2

� 2�0
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@�
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@F

@�
+ �

@F
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; (5:16)

where

V =
p
� eV ;  =

p
�0; (5:17)

!2�2 � ��� �� !2�2
v
= 0 ;

�
� =


1;2

k

�
: (5:18)

Assuming the perturbation expansions:

F = 1 +
1X
m=1

�mFm ; U =
1X
m=1

�mUm ; eV =
1X
m=1

�mVm (5:19)

for the �rst and second-order terms in � we obtain respectively
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; (5:20)

or

U1(�; �) = �F1(�; �) +G(�); (5:21)

where G(�) is a generic function of the variable �, and
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+
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: (5:22c)

Eliminating F2, U2 and V2 from equations (5.22) we �nally arrive at the Korteweg-de Vries-

Burgers equation

@F1

@�
+ (c1F1 + c2G)

@F1

@�
+D

@3F1

@�3
� 2D

@2F1

@�2
= h

dG

d�
; (5:23)

where

c1 =
!2(3�2 � �2

v
)

2�!2 � �
; c2 =

2�!2

2�!2 � �
; (5:24a)

D =
�2
v
� �2

2�!2 � �
; h =

!2

�� 2�!2
: (5:24b)

It is important to note that ��1U1 and �(�
2
v
� �2)

�1R
d�V1 satisfy exactly the same equation

(5.23).

Similar Korteweg-de Vries-Burgers equation in the case below transition energy has been

recently derived by A. Aceves employing the method of multiple scales [8].

6 Concluding Remarks.

We have studied the longitudinal dynamics of a high energy coasting beam moving in a

resonator. The coupled Vlasov equation for the longitudinal distribution function and the

equation for the resonator voltage have been solved by closely following the method of

Karimov and Lewis [5]. The key point of this method consists in the representation of the

distribution function as a power series in the resonator potential. Further self-consistent

stationary wave patterns have been found in the simplest equilibrium case of Maxwellian

distribution in the energy error.
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In the long wavelength (small wavenumber) limit a stability criterion for linear waves

has been obtained and a Korteweg-de Vries-Burgers equation for the relevant hydrodynamic

quantities has been derived.

An important (and interesting) extension of the results obtained here involves the longi-

tudinal dynamics of a bunched beam. These will be reported elsewhere.
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