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Abstract

Operation with colliding beams at PEP-II has progressed
remarkably well with over half the design specific lumi-
nosity and5:2�1032 cm�2s�1 in multiple bunches demon-
strated during the last commissioning period before instal-
lation of the BABAR detector. Further luminosity increases
are anticipated as the vertical beam size is reduced and
beam currents are raised towards design values. At high
currents interesting multibunchdynamics, which depend
strongly on current distribution, have been observed dur-
ing single-beam commissioning studies. Transverse beam
instabilities nominally controlled using bunch-by-bunch
feedback were observed to be significantly suppressed, in
the absence of feedback, with beams in collision.

1 OVERVIEW

A PEP-II overview showing the injector subsystems, the
positron low-energy ring (LER, top) and the electron
high-energy ring (HER, bottom) is shown in Fig. 1. The
SLAC linac is a powerful and time-efficient injector for
PEP-II. In the linac, both electron and positron beams are
accelerated to smaller than required beam emittances and
to the required beam energies of 9.0 and 3.1 GeV respec-
tively. Since the relative rf phase of the PEP-II rings is
maintained constant, different bunches are filled by shifting
the beam timing in upstream accelerator subsystems. With
up to 850�A per pulse in the linac, it is anticipated that less
than 3 minutes will be required to fill PEP-II to the design
beam currents of 0.75 A electrons and 2.1 A positrons at a
reduced repetition frequency of 60 Hz. The design bunch
population consists of 1658 equidistant bunches with a 5%

ion clearing gap.
A comparison of some selected PEP-II design parame-

ters with those achieved to date prior to installation of the
BABAR detector is given in Table 1. The specific lumi-
nosity has already been measured to be over one-half of
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Figure 1: Overview of SLAC linear accelerator showing
injection into the PEP-II asymmetric collider including the
BABAR detector which is presently being installed.

design [1]. The luminosity measurements are made with a
radiative Bhabha detector. A recent cross-calibration with
a crystal-ring detector, displaced 17 cm from the IP detect-
ing electrons and positrons at 90 degrees in the center of
mass, showed excellent agreement.

During colliding beam experiments, the PEP-II beams
have mostly been injected while maintaining head-on col-
lisions. Occasionally the beams were separated at the in-
teraction point (IP) with a relative vertical IP orbit offset of
about 100�m. Longitudinally once the beam arrival times
at the IP have been measured and set (at the start of a colli-
sion shift), the rf phase is held constant. The optical func-
tions also remain fixed between injection and establishing
collisions. High luminosity experiments to date indicate
that the 150 ms interval used for reducing the last 3�y

of vertical separation is sufficient not to cause significant
beam loss. The speed of the final alignment of the beams
may require further study at higher beam currents with em-
phasis on the beam-beam induced backgrounds which will
be measured by the BABAR detector.



Parameter design achieved

Ee� (GeV) 9.0 9.0
Ee+ (GeV) 3.1 3.1
Itote� (A) 0.75 0.75
Itote+ (A) 2.14 1.17
Nppb

e� 2:1� 1010 4:2� 1011

Nppb
e+ 5:8� 1010 3:2� 1011

Nc (total) 1658 1571
��x;e� ,��y;e� (cm) 50, 1.5 50, 1.5
��x;e+ ,��y;e+ (cm) 50, 1.5 50, 1.5
�z;e� ,�z;e+ (cm) 1.1, 1.2 1.2, –
�x,�y (�m) 220, 6.6 220, 12
�x;e� ,�y;e� 24.57, 23.64 24.57, 23.59
�x;e+,�y;e+ 38.57, 36.64 38.61, 36.58
�s;e� 0.045 0.045
�s;e+ 0.033 0.026
�x;e� ,�y;e� 0.03, 0.03 0.020, 0.009
�x;e+ ,�y;e+ 0.03, 0.03 0.030, 0.015
L (cm�2s�1) 3�1033 5.2�1032

Lsp (cm�2s�1mA�2) 3.11�1030 1.71�1030

Table 1: PEP-II design parameters and those achieved as of
February 1999 including the beam energies Ee� and Ee+ ,
total current Itot, the charge per bunch Nppb, the total num-
ber of bunches used in collision Nc, the IP beta functions
��, the bunch lengths�z, the effective IP spot size�x=y =p
�2x=y;e� + �2x=y;e+ , where� is the single-beam IP spot

size, the betatron and synchrotron tunes�x; �y; �s, the in-
coherent beam-beam parameters�x and �y, the total lu-
minosity L, and the specific luminosity Lsp. The listed
beam currents indicate obtained peak values. Below the
line the parameters correspond to the peak measured lumi-
nosity for whichItote+ = 680 mA (limited at the time of
this measurement to below 700 mA by chamber heating)
andItote� = 354 mA in Nc = 786 colliding bunches.

With a head-on collision geometry at the single IP, par-
asitic crossings are of some concern. The beam trajec-
tories are magnetically separated using strong dipoles lo-
cated�21 cm from the IP. With the bunches spaced by only
4.2 ns in the design fill pattern, there are 4 parasitic cross-
ings spaced longitudinally by 0.63 m on either side of the
IP. It is expected [2] that only the first of these, where the
beams are transversely separated by about 3.5 mm, is non-
negligible. Long range beam-beam interactions with the
design fill pattern have not yet been extensively explored
as collider commissioning has necessarily taken place at re-
duced total beam current thus allowing for increased bunch
spacings. A brief experiment at the nominal bunch spac-
ing with 1571 bunches, a 10% gap, andIe+ :Ie� currents
of 680:440 mA showed no appreciable change in specific
luminosity but a slight degradation in capture efficiency at
injection.

In this report we first summarize the knowledge gained
with beams in collision at PEP-II to date (section 2). We

then focus on multibunch beamdynamics as observed first
during single-beam commissioning studies (section 3) and
later with high current, multibunch beams in collision (sec-
tion 4). In particular we demonstrate with experimental
data that the nonlinearity of the beam-beam interaction sig-
nificantly stabilizes collective beam instabilities. A conclu-
sion and outlook is presented in section 5.

2 RECENT COMMISSIONING RESULTS

Since the completion of the LER in the summer of 1998,
about 20 days have been dedicated to colliding-beam ex-
periments [3]. The sequence used for establishing colliding
beams includes the following. First the beams are longi-
tudinally phased roughly to within about0:3�z using the
beam arrival time at two shared beam position monitors
(BPMs) located at 0.72 m on either side of the IP. Next the
trajectory of the positron beam through the IP is adjusted
for optimal centering on the radiative Bhabha luminosity
monitor. The electron beam is then steered, using the same
BPMs to determine the relative position offsets, for head-
on collisions. The position resolution of the monitors is
effectively about 5�m. Each ring is then decoupled for a
minimum tune separation of< 10�3 and the residual verti-
cal dispersion� is nominally corrected to be less than 1 cm
rms in the accelerator arc regions. The residual dispersion
at the IP, which is measured by taking the sum (�) and dif-
ference (�0) of the two IP BPMs at different accelerating
frequencies, was typically corrected to be less than 1 mm.

2.1 Betatron Tunes

During early commissioning with single beams, experi-
ments were undertaken to find optimal operating points in
the tune diagram for each ring [4]. These studies revealed
a preference, in terms of long beam lifetimes, for betatron
tunes in the LER below the major diagonal. In the HER,
based on maximum luminosity, the fractional horizontal
and vertical betatron tunes were set nearly equal (but with a
difference in fractional tunes still more than the minimum
tune separation) and with the vertical betatron tune almost
equal to the vertical positron tune. With beams in collision,
the tune window was observed to be less than(2�3)�10�3

at the highest beam luminosity. As the beam currents were
increased while maintaining collisions, it was also found
necessary to correct the electron beam orbit and to contin-
ually maintain its betatron tunes which changed due to the
current dependence of short-range wakefields.

2.2 Collisions at Low Beam Currents

The measured luminosity at low beam currents improved
with each collision run as the beam trajectories and op-
tics continued to converge towards design values. Shown
in Fig. 2 is the luminosity measured using the radiative
Bhabha monitor during horizontal (top) and vertical (bot-
tom) beam-beam scans at low beam current after succes-
sive iterations of local coupling and dispersion correction.



As will be discussed further, in contrast to data taken with
strongly interacting beams, these measurements are well
represented by Gaussian distributions. The beam size over-
lap, from the Gaussian fits was�x = 215�6 �m horizon-
tally and�y = 8:6�0.2�m vertically.
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Figure 2: Measured luminosity as a function of horizontal
(top) and vertical (bottom) beam separation at the IP with
Nc = 786, Itote+ = 280 mA, andItote� = 60 mA.

2.3 Observations of Weak-Strong Dynamics

Relative to the positrons, the electron beam has in gen-
eral been more robust under the mutual interaction of the
colliding beams. Operational experience shows that if the
electron bunch current exceeds 0.4 mA or1:8� 1010 ppb,
the positron beam experiences a reduction in beam lifetime
with beams in collision. In a special study aimed at colli-
sions with maximum single-bunch positron current, it was
found that with up to 3 mA positrons and 0.4 mA elec-
trons, the positron lifetime was significantly reduced while
the electron beam lifetime was unaffected.

Figure 3: Measured positron beam current during a hori-
zontal beam-beam scan with 1 colliding bunch. The elec-
tron current was constant at 0.2 mA. The full scales on the
horizontal and vertical axes respectively are 8 minutes and
0.5 mA.

Shown in Fig. 3 is the positron beam current measured
very early in colliding beam commissioning as the beams
were scanned horizontally across one another while con-
tinually injecting positrons. When the beams were sepa-
rated by about��x, the positron beam was nearly lost and
further accumulation was difficult as evidenced by the two
characteristic dips.

Another example of a strong-weak interaction is shown
in Fig. 4. In the top plot the measured luminosity is de-
picted as the relative horizontal separation between the
beams was stepped at an average rate of 16�m per sec-
ond in 50�m steps. Again we observe pronounced dips at
about��x. In this case, with both beams stored, the lumi-
nosity at about�2�x was unchanged which is surprising
since about 15% (middle plot) of the positron beam was
lost at the onset of collisions.
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Figure 4: Measured luminosity (top), positron current
(middle), and positron beam lifetime (bottom) during a hor-
izontal beam-beam scan with 522 colliding bunches. The
total electron current was 200 mA.



2.4 Observations of Strong-Strong Dynamics

Coherent centroid motion of colliding bunches has been
observed for the special case in which the fractional ver-
tical betatron tunes of the beams were made nearly equal.
Shown in Fig. 5 are measured� and� modes observed with
a single bunch in collision, multi-bunch feedback off, and
the vertical betatron tunes separated by��y = 0:0002 with
��x � 0:02 andh�xi � h�yi � 0:07. With an Ie+ :Ie� cur-
rent ratio of 1:0.4 mA, the beam-beam parameter deduced
from this measurement was unexpectedly small even taking
into account a correction factor for non-rigid beams.

Figure 5: Measured coherent dipole modes. The peaks
from left to right are the unperturbed positron vertical tune
(measured before injecting electrons), the�-mode, and the
�-mode.

3 SINGLE BEAM, MULTIBUNCH BEAM
STABILITY

With such closely spaced bunches, coupled-bunch insta-
bilities, if not well controlled, have the potential of limit-
ing high-current, multibunch performance. During single-
beam commissioning studies, multibunch instabilities were
observed in both accelerators. In the LER with well-
separated bunches, with the exception of a singular higher-
order longitudinal mode, both the transverse and longitu-
dinal instability thresholds are reasonably consistent with
expectation. In the HER however, while the beam is lon-
gitudinally stable with a threshold a factor of 2 higher than
expected, transverse beam instabilities have been recently
observed with thresholds considerably lower than expecta-
tion [6].

To date there is no single interpretation which explains
all the single-beam measurements [7] in the HER. In ad-
dition, experiments performed in both rings with closely
spaced bunches evidenced similar dynamics indicating
possibly a common instability source. In this section we
present a selection of recent measurements made to better
characterize the multibunch beamdynamics. In the next
section we present measurements which demonstrate the
stabilizing influence that the beam-beam interaction has on
transversely excited beams.

3.1 Experiments with large bunch separation

A measurement showing the instability threshold measured
in the HER is shown in Fig. 6 for the case of an evenly

spaced train of bunches, about 75 ns apart, with a 10 bunch
gap at the end. Plotted on the vertical axes are the measured
root mean square (rms) of the position distribution; i.e. the
standard deviation of the beam centroid motion obtained
from 100 measurements of the beam position on consecu-
tive turns. From these data the threshold of the transverse
instability was about 50 mA.
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Figure 6: Threshold measurement in the electron ring with
transverse feedback off in the horizontal (top) and vertical
(bottom) planes.

In a separate set of measurements [7] taken using the mul-
titurn, multibunch data acquisition capabilities of the lon-
gitudinal feedback system to record transverse motion [5],
the characteristic frequency with this fill pattern was diag-
nosed as being primarily mode-0 motion with a growth rate
of about 100 ms�1 at 100 mA.

3.2 Experiments with small bunch separation

Multi-bunch beamdynamics observed with short bunch
trains may or may not be important with the design PEP-II
fill pattern. The two filling patterns do, however, share an
every-other-bucket fill sequence (i.e. 4.2 ns bunch spac-
ing), and high single-bunch intensities. Multibunch beam
instabilities with bunch trains were first noted in the elec-
tron accelerator as an inability to inject sequential high cur-
rent bunches with (about 1 mA compared to the design
single-bunch beam current of 0.45 mA) with the nomi-
nal interbunch spacing and transverse feedback turned off.
Shown in Fig. 7 are measurements from the HER of the
charge along the train for the indicated total current ob-
tained after sequential-pulse filling. Interestingly, the same
current distribution resulted after filling the train uniformly
and then turning off the horizontal feedback loop.

To better understand the cause of beam loss, beam posi-
tion monitors (BPMs) were used to measure the transverse
motion for selected bunches. In this measurement the beam
was first injected to 1 mA per bunch in a 50 bunch train with
feedback on. The vertical feedback loop was then opened.
The data acquisition was then synchronized to acquire data
while opening the horizontal feedback loop. To improve
the probability of time-overlap between these events, the
position detectors were sampled every100th or 200th turn.



Figure 7: Bunch intensity monitor data with a 100-bunch
train with the nominal bunch spacing and transverse multi-
bunch feedback turned off.

These data are shown in Fig. 8. The first column shows
the measurements with the BPMs gated1 on a low-current
bunch. The second column shows measurements gated on
a bunch for which there was more current in the final state.
While the horizontal motion is significantly larger in am-
plitude, when the data are normalized to the beam size, the
vertical motion was observed to dominate.

Figure 8: Transverse motion of selected bunches in a 50
bunch train recorded as transverse feedback was turned off.
Plotted are the measured horizontal (top) and vertical (mid-
dle) beam centroid positions, and the beam intensity (bot-
tom) measured in the HER.

With a 100-bunch train and 4.2 ns bunch spacing, the

1The finite bandwidth of the BPM electronics (around 20 MHz) dilutes
the single-bunch measurement by including about�10 buckets (or�5
bunches in the every-other-bucket fill pattern) centered on the bunch of
interest.

transverse position rms along the train was measured for
different beam currents as shown in Fig. 9. These data from
the HER show clearly the self-excitation of the beam mov-
ing towards the front of the train as the beam current was
increased. These data also support previous results indi-
cating that the excitations are preceeded by motion in the
horizontal plane.
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Figure 9: Growth in distribution of horizontal (top) and
vertical (bottom) bunch centroid motion along a 100-bunch
train with bunches spaced by two buckets.

As mentioned previously, multibunch beamdynamics
with bunch trains in the low-energy ring evidenced simi-
lar features of beam loss along the fill pattern [7].

4 MULTIBUNCH BEAM STABILITY
WITH BEAMS IN COLLISION

During early commissioning with high-current multibunch
beams it was found that the required gains of the trans-
verse feedback system could be substantially reduced with
beams in collision. Two experiments were performed to
better quantify this effect. For these measurements the cur-
rent distribution consisted of 786 bunches spaced at twice
the nominal bunch separation with a 10% gap in the fill
pattern.

4.1 Experimental Data

In the first measurement the transverse feedback gain re-
quired to damp the measured 0-mode excitation was mea-
sured as function of electron beam current. The data are
shown in Fig. 10. The single-beam measurements show
that with 150 mA electron beam current about 15 dB of
gain was needed to damp the horizontal centroid motion
to the�120 dB noise floor of the spectrum analyzer. In
the vertical plane, with a maximum relative gain of 30 dB,
above 150 mA there was insufficient gain to fully damp the
coherent motion.

With the beams nominally colliding head-on, the mea-
surement was repeated as indicated using crosses in
Fig. 10. With these beam currents, it was possible to turn
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Figure 10: Required feedback gain (rfbg) versus electron
beam current with beams in (crosses) and out (circles)
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planes. In this measurement the total positron beam current
was fixed at 0.5 A and there were 786 colliding bunches.

off entirely the horizontal multibunch feedback loop. In
the vertical plane, the beam-beam interaction damped the
residual motion by 30 dB. The apparent increase in gain
required at high beam currents may have resulted from a
relative beam separation of about one to two�y (see be-
low).

In a separate measurement, the 0-mode instability am-
plitude was measured as a function of the vertical sepa-
ration between the beams as shown in Fig. 11 (top) with
transverse feedback off. Under these conditions with rela-
tive separations of up to about 5�y the horizontal motion
of the beam remained fully damped. Comparing with the
simultaneously measured luminosity (bottom) reveals that
the residual motion was smallest with the beams best cen-
tered vertically.

4.2 Quantitative Analysis

We interpret the observed behavior as a consequence of the
nonlinearities in the beam-beam interaction; recalling that
the beam-beam tune shift is amplitude dependent (being
larger the smaller the amplitude of the particle motion), the
beam-beam interaction introduces an increased tune spread
within the beam. This increased tune spread allows for
more Landau damping.

Notice the distinct difference in dynamics of the last two
figures. In Fig. 10 the beams were nominally maintained
in head-on collision. In Fig. 11 the relative separation be-
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Figure 11: Measured horizontal (crosses) and vertical (cir-
cles) instability amplitude (top), and luminosity (bottom)
versus relative separation of the colliding electron and
positron beams. In this measurement the total currents of
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tween the beams was varied. For head-on collisions, the
resulting tune shifts may be easily expressed by averaging
the beam-beam potential over betatron phase. From ref-
erence [8], the horizontal (��x) and vertical (��y) tune
shifts are
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I0(x) � I1(x)

�
Z2(x) = e�xI0(x): (2)

Here
p
�x and

p
�y denote the particle amplitudes normal-

ized by the beam sizes,a = �y=�x is the beam aspect ra-
tio (assuming matched IP beam sizes), andI0 andI1 are
the modified Bessel functions. Using these expressions,
with the measured aspect ratio ofa = 0:06, we find that
for large vertical separation (in units of�y), the horizontal
tune shift greatly exceeds the vertical tune shift; at 10�y for



example,��x � 10��y . The measurements in Fig. 10 are
therefore not surprising since particles displaced to large
vertical amplitude still experience strong horizontal beam-
beam forces.

Being able to turn off the horizontal feedback loop with
beams in collision indicates that the tune spread generated
by the beam-beam interaction was large compared to the
instability growth rate. Taking as an approximate measure
of the Landau damping rate�frev and the larger of the elec-
tron and positron vertical tune shifts for the data of Fig. 11,
the imperfect damping of the multibunch instability during
head-on collisions suggests an instability growth time less
than(�frev)�1 � 0:5 ms with�y;e+ = 0:015. With multi-
bunch feedback designed [9] to damp up to three times the
predicted resitive wall instability growth rate of 0.3 ms�1,
it is expected that with this high-current, multibunch fill
pattern, any residual motion may not be fully suppressed.
In the future we hope to make similar measurements both
with and without multibunch feedback to better character-
ize the growth time of observed multibunch instabilities.

It is also worth pointing out the apparent absence of the
coherent�-mode in the data presented. We have come to
understand this observation as a result [10] of unequal frac-
tional betatron tunes. With unequal tunes, the�-mode fre-
quency is shifted into the continuum where Landau damp-
ing takes place [11].

5 CONCLUSION AND OUTLOOK

Colliding beam commissioning at PEP-II has been a fruit-
ful and rewarding experience with encouraging prospects
for multibunch, high current collisions with BABAR; the
measured luminosity, listed chronologically in Table 2, has
increased steadily with each colliding beam experiment.
The increase in specific luminosity is seen to result from
minimization of the vertical spot size. This together with
increased beam currents led to steady gains in total lumi-
nosity.

An illustrative current scan is shown in Fig. 12. In this
measurement 786 bunches with twice the design bunch
spacing were in collision. Interestingly, the highest three
data points were obtained after raising the electron vertical
tune very slightly (less that 0.005) to be nearly equal to that
of the positrons. The deviation from the design luminos-
ity probably results from an increased vertical beam size
which was measured at this time to be about twice nomi-
nal. Further correction of the beam optics (including cou-
pling and dispersion) should allow the design vertical spot
size at the IP to be attained. For increased total luminosity,
the beam currents will be raised towards design values as
vacuum conditioning and detector backgrounds allow.

To date, there has been no direct evidence of reduced lu-
minosity due to transverse beam instabilities at PEP-II. For
most current distributions, the strong transverse, coupled-
bunch motion has been successfully damped by the trans-

Date Nc Ie� Ie+ �x �y L Lsp

11/98 1 0.6 1.3 209 40 0.003 0.55
11/98 11 6.6 14.3 209 40 0.027 0.55
12/98 261 84 260 320 14 0.8 1.02
2/99 786 354 680 220 12 5.2 1.71

design 1658 750 2140 220 6.6 30 3.11

Table 2: Peak luminosity history showing progres-
sive improvements with each colliding beam run. The
units are I(mA),� (�m), L(�1032 cm�2s�1), and Lsp
(�1030cm�2s�1mA�2).
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Figure 12: Measured luminosity as a function of the prod-
uct of the beam currents scaled by the number of collid-
ing bunches. These data were taken with 786 bunches
and positron/electron currents in the range of 275-720/60-
350 mA respectively. The dashed line shows the expecta-
tion assuming design parameters.

verse bunch-by-bunch feedback system. Moreover, even
without feedback, the beam-beam interaction was quali-
tatively observed to stabilize such motion. Surprisingly,
the increase in Landau damping, resulting from the be-
tatron tune spread induced by the beam-beam collisions,
exceeds the amount of damping offered by the high-gain
multibunch feedback system. Whether or not future col-
liders like the LHC could potentially benefit from similar
dynamics, while very likely, is an open question.
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