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ABSTRACT

We calculate one-loop corrections to the e�ective Lagrangian for the D3 brane.

We perform the gauge-�xing of the �-symmetric Born-Infeld D3 brane action in the

at background using Killing gauge. The linearized supersymmetry of the gauge-

�xed action coincides with that of the N = 4 Yang-Mills theory. We use the helicity

amplitude and unitarity technique to calculate the one-loop amplitudes at order �4.

The counterterms and the �nite 1-loop corrections are of the form (@F )4 and their

supersymmetric generalization. This is to be contrasted with the Born-Infeld action
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1 Introduction

The action for supersymmetric D3-branes in at and curved type IIB supergravity

backgrounds has been studied extensively during the last few years [1, 2, 3, 4]. In

addition to extended supersymmetry these actions have a local �-symmetry and half

of the 32 fermionic �elds can be \gauged away" by �xing the �-gauge. Moreover,

of the 32 supersymmetries of type IIB supergravity, 16 are realized linearly and 16

non-linearly. The interpretation of all these supersymmetries is closely related to

the problem of the correspondence between supersymmetric N = 4 U(N)-symmetric

Yang-Mills theories and D3-brane Born-Infeld-type U(1)-symmetric actions [4]. The

N = 4 Yang-Mills theory in d=4 is not only renormalizable but even �nite [5]. The

D3 brane action has been considered so far only as an e�ective action as it is not

renormalizable by power counting in d=4 . Still, there are 16+16 linear and non-linear

global symmetries in the gauge-�xed action (or equivalently a local �-symmetry of

the classical action). Is it possible that these symmetries are strong enough to forbid

the counterterms in the D3 brane action which have a higher number of derivatives

than the classical Born-Infeld action? One has to take into account that the D3

brane action has terms of the form ((F��)
n + : : :) however, terms of the form (@F )n

or (@2
F )n are not present.

As a �rst step in resolving these issues, in particular to clarify the relation between

the e�ective action of the open string theory, Yang-Mills theory and e�ective action

of the D3-brane theory, we will treat the �-symmetric action of the D3-brane on

the same footing as supergravity in d=4 or supersymmetric Yang-Mills theory in

d > 4. A priori these theories are not renormalizable. However a careful analysis of

supersymmetric higher derivative counterterms was performed in the past, as well as

some actual calculations [6].

In this paper we will present one-loop corrections to the D3-brane Abelian Born-

Infeld action in a at background, and we will show that there are ultraviolet diver-

gences, in contrast to the �nite d=4 N = 4 Super-Yang-Mills [5], and that the form

of the couterterm is (s2 + t
2 + u

2)F 4 � (@F )4. To �x the �-symmetry we will employ

the so-called Killing gauge used in [7] for gauge-�xing of the GS type IIB string in
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the AdS5�S5 background. In this gauge we will be able to directly identify the linear

supersymmetries of the gauge-�xed D3 brane action with the YM supersymmetries.

We will compare this to the symmetries of the D3 brane action in �1 = 0 gauge, pro-

posed in [3]. The calculation of the tree amplitudes and one-loop corrections gives the

same results in the other gauge, of course. However, in the Killing gauge the lowest

order Lagrangian contains only quartic interaction terms while in �1 = 0 gauge there

are cubic as well as quartic interactions. Therefore it is easier to perform one-loop

calculations in the Killing gauge.

It is interesting that the terms with the (@F )4 structure were found in the e�ective

action for the open superstrings in the paper by Andreev and Tseytlin [8] from the

string S-matrix term (s2+ t2+u2)F 4
: This kind of terms were also found in the more

recent papers by Hashimoto and Klebanov [9] in which they computed the scattering

amplitude for massless vectors on a D-brane in string theory. In the low energy limit

their result also contain the term proportional to (s2+ t2+u2)F 4
: The appearance of

this structure in our calculations and in the string e�ective action could mean that the

supersymmetry �xes this structure in the unique way. This would also mean that the

local �-symmetry after gauge �xing corresponds to the global N = 4 supersymmetry

at least in this approximation.

To perform one-loop calculations we will use the helicity amplitude method that

has been developed extensively in the last 10 years (for reviews see [10, 11]). The main

ideas of this method that we will employ here are the spinor helicity representation for

polarization vectors [12], supersymmetry identities [13] and unitarity cuts [14]. This

method has been used for loop calculations in Yang-Mills theory and recently also in

gravity [15]. It turns out that it is extremely useful for the D3 brane calculations.

In Sec. 2 we will discuss the D3-brane action and �nd the SUSY transformations

in the Killing gauge. In Sec. 3 the N = 4 supersymmetric Lagrangian of the Born-

Infeld theory will be presented up to the quartic order in the �elds. In Sec. 4 we will

apply the helicity amplitude formalism to the D3-brane action. We will present tree

and one-loop amplitudes for the quartic Lagrangian in the Killing gauge and give the

expressions for the one-loop corrections and counterterms in this theory. In Sec. 5
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we will discuss the form of the Lagrangian up to the quartic order in �1 = 0 gauge

and Sec. 6 is a conclusion.

2 The D3 brane action in a at background

In this paper we will closely follow the notations of [4]. The supersymmetric D3-

brane action is a sum of the Born-Infeld (BI) and Wess-Zumino (WZ) terms [1, 3, 4]

that depend on superspace coordinates XM = (xâ;�I) and an Abelian world-volume

gauge �eld strength dA

S = SBI + SWZ ; (1)

where the Born-Infeld part is

SBI = �T3

Z
M4

d
4
�

q
� det (Gij + 2��0Fij) (2)

where T3 � 1
(2��0)2

is the D3-brane tension [16] and 2��0 is the inverse string tension.

Gij is the pullback to the d=4 world-volume metric of the d=10 Minkowski metric

�
âb̂ = (�+ :::+) with i; j = 0:::3; â; b̂ = 0:::9 :

Gij = L
â
i �

âb̂
L
b̂
i ; L

â(X(�)) = d�
i
L
â
i (3)

and in the at background the supervielbeins are

L
I = d�I

; I = 1; 2

L
â = dx

â � i ��I�âd�I
: (4)

The �eld strength F = 1
2
Fijd�

i ^ d�j is the supersymmetric extension of dA:

F = dA+ 2i
Z 1

0
dt L

â
t ^ ���ab�b̂KLt : (5)

The WZ part of the action is

SWZ = 2iT3

Z
M4

Z 1

0
dt

�
1

6
��bLt^ bLt^ bLtELt+2��0 ��bLt^Ft^JLt

�
+T3

Z
M4



(bos)
4 ; (6)
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where bL = L
â�â and Lâ

t (x;�) � L
â(x; t�); Lt(x;�) � L(x; t�): The � independent

part of the 4-form in the at background is 

(bos)
4 = d

4
�: The �â are the d=10 Dirac

matrices and the matrices E ;J ;K in (6) and (5) act on the SO(2) indices of type IIB

spinors �I:

E =

0
B@ 0 1

�1 0

1
CA ; J =

0
B@ 0 1

1 0

1
CA ; K =

0
B@ 1 0

0 �1

1
CA : (7)

The supersymmetry transformations with global parameter " and �-symmetry

transformations with local parameter �(�) for this action are [1, 4]

�"�
I = "

I (8)

�"x
â = �i( ���â") (9)

�"A = idxâ ���âK"� 1

6
(d���â�)(���

âK")� 1

6
(d���âK�)(���â") (10)

���
I = �

I (11)

��x
â = i(���â�) (12)

��A = �idxâ ���âK� + 1

2
(d���â�)(���

âK�) + 1

2
(d���âK�)(���â�); (13)

where the SUSY parameter "I is a constant type IIB Majorana-Weyl spinor. Half of

the components of the �-transformation parameter are projected out by the condition

� =
1

2
(1 + �)� ; �2 = 1; (14)

with

� =

0
B@ 0 �

~� 0

1
CA =

�
i1:::i4

�
1
4!
�i1:::i4E + 2��0

4
�i1i2Fi3i4J + (2��0)2

8
Fi1i2Fi3i4E

�
q
� det(Gij + 2��0Fij)

(15)

where �i1:::in � bL[i1 : : :
bLin]:

Following [7, 17] we will choose the \Killing gauge" for the �-symmetry. In [7] �1;2

were choose to be the Killing spinors of the AdS5 background, for the at background

we can simply introduce new variables #�

#
� = U�1;2 )

0
B@ #

+

#
�

1
CA =

1p
2

0
B@ 1 �(4)

1 ��(4)

1
CA
0
B@ �1

�2

1
CA (16)
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where �(4) = �0�1�2�3 with

�p = 
p 
 1; p = 0; : : : ; 3

�t = 
5 
 ~t; t = 4; : : : ; 9 (17)

Here p, and 5 are standard Dirac matrices with
n

p
; 

p0

o
= 2�pp

0

and ~t are 8� 8

six-dimensional Dirac matrices with
n
~t; ~t

0

o
= 2�tt

0

:

The supersymmetry and �-symmetry transformations (10) and (13) with the new

parameters "� = U "I , �� = U�I are
0
B@ ��+"#

+

��+"#
�

1
CA =

0
B@ "

+

"
�

1
CA+

1

2

0
B@ 1� 1

2
C

1
2
A

�1
2
A 1 + 1

2
C

1
CA
0
B@ �

+

�
�

1
CA : (18)

Here the matrices A and C are

A = ��(4) + �(4)~�; C = ��(4) � �(4)~� (19)

and explicit expressions for � and ~� are given in (15).

We gauge away half of the fermionic coordinates by imposing #� = 0: This condi-

tion also requires that ��+"#
� = 0: Gauge �xing �-symmetry by the condition �+ = 0

we get:

��+"#
+ =

1

4
A�

� + "
+ (20)

��+"#
� =

1

2
(1 +

1

2
C)�� + "

� = 0: (21)

Eq. (21) gives a relation between �� and "�;

�
� = �2(1 + 1

2
C)�1

"
�
: (22)

Finally we get

��+"#
+ =

1� ��(4)

1 + ��(4)
"
� + "

+
: (23)

Using this transformation on Ap and xâ = x
p
; y

t (p = 0; � � � ; 3; t = 4; � � � ; 9 ):

��+"x
p = i�#+�p(�"� � "

+) (24)

��+"y
t = �2i�#+�t"� (25)

��+"A
p = 2i�#+�p"� � 2

3
@p
�#+�a#

+ �#+�a"� � i@py
t �#+�t(�"� � "

+) (26)
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where

� =
1� ��(4)

1 + ��(4)
: (27)

The additional general coordinate reparametrization is necessary to satisfy the static

gauge (xp = �
p) condition �xp = 0

��# = �
p
@p# (28)

��x
â = �

p
@px

â (29)

then from ��+"+�x
p = 0 and @ix

p = �
p
i it follows that �

i = �i�#+�i(�"� � "
+): Finally

the SUSY-transformations for remaining nonzero fermions, scalars and vectors are:

��+"+�#
+ = (�"� + "

+) + �
i
@i#

+ (30)

��+"+�y
t = �2i�#+�t"� + �

i
@iy

t (31)

��+"+�A
i = 2i�#+�i"� � 2

3
@i
�#+�a#

+ �#+�a"� (32)

� i@iy
t �#+�t(�"� � "

+) + (�j@jA
i + @i�

j
A
j) (33)

It is easy to see that the transformations for yt are linear and do not contain an "+

part.

From here on we will drop the \+" in the spinor notation i.e. #+ ) #: In the new

variables the supervierbeins (4) are:

L = d#; L
p = dx

p � i�#�pd#; L
t = dy

t
: (34)

3 The Quartic N = 4 Lagrangian

The D3-brane BI action (2) simpli�es considerably in the Killing gauge. In this case

Gij + 2��0Fij = �
ij � i�#�i@j#� i�#�j@i#� �#�p@i#�#�p@j# + @iy

t
@iy

t

+ 2��0(Fij � i@iy
t �#�p@j# + i@jy

t �#�t@i#) (35)

where Fij = @iAj � @jAi and the WZ-term is

LWZ = �T3(i�� 6@� �
i

2
@l
���jkl�t�t

0

�@jy
t
@ky

t0 +
1

2
((�� 6@�)2 � ���i@j����

j
@i�)
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� 1

4
�
ijkl
@k
���c�@l���c�

(4)�t�t
0

�@iy
t
@jy

t0 � 1

2
�
ijkl
@k
���t�(4)

�@l
���t

0

�@iy
t
@jy

t0

+
i

6
�
ijkl
�abcl

���a@i����
b
@j�

���c@k� +
1

24
�
ijkl
�abcd

���a@i����
b
@j�

���c@k����
d
@l�

� (2��0)
i

2
@l
���ijklFij�

t
�@ky

t) (36)

Using a series expansion for
q
det (Gij + 2��0Fij) and a standard rede�nition of the

�elds we get the e�ective Lagrangian up to the fourth order in �elds (and coupling

constant � = 2��0):

L4
BI+WZ = 2i�� 6@� + 1

4
FijFji �

1

2
@iy

t
@iy

t + �
2((�� 6@�)2 � ���i@j����

j
@i�)

+
�
2

8
(FijF

jkFklF
li � 1

4
(FijFji)

2) +
�
2

4
(@iy

t
@jy

t
@iy

t0
@jy

t0 � 1

2
(@iy

t
@iy

t)2)

� �
2

2
(@iy

t
@jy

tFikF
kj � 1

4
@iy

t
@iy

tFjkF
kj)

� i�
2((���i@j�)(@iy

t
@jy

t)� 1

2
(�� 6@�)(@iyt@iyt) +

1

2
@k
���ijk@iy

t�t@jy
t0�t

0

�)

+ i�
2(���i@j�F

jkFki �
1

4
�� 6@�FijFji)

+ i�
2(��@iy

t�t@j�Fij �
1

2
��@iy

t�t�(4)
@l�Fjk�

ijkl) (37)

To establish the analogy between this theory and N = 4 super-Yang-Mills theory

it is helpful to use the chiral representation for ~t (see Appendix) where the SU(4)

symmetry is manifest. Using this representation we will introduce new notations

for the scalar �elds sIJ = 1
2
(~��1

t )IJyt with SU(4) indices I; J = 1; 2; 3; 4: The 16-

component spinor � will be represented as four d=4 Majorana spinors,

� =
~ (I)

2
=

0
B@ ��I

�� _�I

1
CA ; (38)

where the extra factor 2 was introduced for convenience and the d=4 chiral projections

are

~ +
I =

1

2
(1 + 

5) ~ (I); ~ �I =
1

2
(1� 

5) ~ (I)
:

The quartic N = 4 Lagrangian in terms of the new 4-dim YM variables (g; ~ I
; s

IJ)

with gi = A
i is

L4
BI+WZ = i

1

2
�~ I 6@ ~ I +

1

4
FijFji �

1

2
@is

IJ
@isIJ
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+
�
2

16

�
(
�~ I 6@ ~ I)

2

� �~ I
i
@j

~ I �~ J
j
@i
~ J
�

+
�
2

8

�
FijF

jkFklF
li � 1

4
(FijFji)

2) +
�
2

4
(@is

IJ
@jsIJ@is

I0J 0

@jsI0J 0 � 1

2
(@is

IJ
@isIJ)

2
�

� �
2

2

�
@is

IJ
@jsIJFikF

kj � 1

4
@is

IJ
@isIJFjkF

kj
�

� i�
2

4

�
(
�~ I

i
@j

~ I)(@is
IJ
@jsIJ)�

1

2
(
�~ I 6@ ~ I)(@is

IJ
@isIJ)

� 2@k
�~ I

ijk
@is

IJ
@jsJK

~ K
�

+
i�

2

4

��~ I
i
@j

~ IFjkFki �
1

4
�~ I 6@ ~ IFijFji

�

+
i�

2

2

��~ +

I @is
IJ

5
@j

~ +
J Fij � �~ 

I�

@is
IJ

5
@j

~ J�Fij

+
1

2
�~ 
+

I 
ijkl
@is

IJ

5
@l
~ +
J Fjk �

1

2
�~ 
�

I 
ijkl
@is

IJ

5
@l
~ �

J Fjk

�
: (39)

where i1���ik � 1
k!

[i1 � � �ik]: The parameter � from Eq.(27) is, up to linear order in

the �elds:

�IJ �
1

2
6@yt�tIJ �

1

4

ijFij�IJ : (40)

The supersymmetry transformation now looks like:

�susy
~ (I) =

0
B@ �1

2

ijFij�IJ 2 6@5

sIJ

�2 6@5
s
IJ �1

2

ijFij�IJ

1
CA �

0
B@ "

�

J

�"�J

1
CA

�susyg
i = i

�~ i"�

�susysIJ = i"
�
I
~ J � i"

�
J
~ I + i�"�K

�~ L�
IJKL

:

Finally, using a chiral representation for i we get

�susy
~ I = �1

2
�
ijFij"

�
I � 2�i@isIJ �"

�J (41)

�susyg
i = �i"�I �i

�~ I + i ~ I
�
i(�"�)I (42)

�susysIJ = i"
�
I
~ J � i"

�
J
~ I + i�"�K

�~ L�
IJKL (43)

which is exactly the N = 4 transformation given in [18].
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4 Helicity amplitudes.

To calculate one loop corrections to the D3-brane action we use the helicity amplitude

technique (see for example the review paper [10] and references therein). In the spinor

helicity formalism, positive- and negative-helicity massless spinors  are represented

as

jp�i =  �(p) =
1

2
(1� 

5) (p) (44)

with antisymmetric spinor products

hpi � jpj+i � hpipji � hiji (45)

hpi + jpj�i � [pipj] � [ij] (46)

hiji[ji] = 2pi � pj � sij: (47)

Negative- and positive-helicity polarization vectors also can be represented through

spinors jp�i;

"
+
� (p; k) =

hk � j�jp�ip
2hkpi

; "
�

� (p; k) = �hk + j�jp+ip
2[kp]

; (48)

where k� (k2 = 0) is a \reference" momentum which corresponds to the particular

choice of gauge for the external legs. Due to the gauge invariance of the amplitudes,

the vector k drops out of the �nal expressions. The supersymmetry transformations

(41),(42) and (43) can also be rewritten in terms of bosonic states with de�nite helicity

g
�(p) = "

�
� (p)g

� and spinors ~ �(p) = jp�i as [13]

[QI(p); ~ 
�

J (k)] = ���(k; p)g�(k)�IJ � ��(k; p)s�IJ ; (49)

[QI(p); g
�(k)] = �i��(k; p) ~ �

I ; (50)

[QI(p); s
�

JK(k)] = �i���IJ ~ �

K � i���IK ~ �

J � i�� ~ �

L �
IJKL

; (51)

where �+(k; p) = ��[pk]; ��(k; p) = �hpki; and � is a numerical Grassmann param-

eter.

Using the Lagrangian (39) it is easy to �nd the tree-level helicity amplitudes. For

the vector bosons we have:

4!(FijF
jkFklF

li � 1

4
(FijFji)

2) = (t8)�1�1�2�2�3�3�4�4F�1�1F�2�2F�3�3F�4�4

= 16(t8)�1�1����4�4k
�1
1 k

�2
2 k

�3
3 k

�4
4 �

�1
1 �

�2
2 �

�3
3 �

�4
4 (52)
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where (t8) is given in eq.(9.A.19) in [19]

(t8)�1�1�2�2�3�3�4�4 =
�
�1

2
(��1�2��1�2 � ��1�2��1�2)(��3�4��3�4 � ��3�4��3�4)

+
1

2
(��1�2��2�3��3�4��4�1 + antisym: of [�i�i])

�

+
�
(1324) + (1342) permutations

�
(53)

and ki and �i are the momentum and polarization vectors for an external vector

boson leg.

In the YM theory with non-Abelian gauge group SU(Nc) the tree amplitudes are

usually represented according to color decomposition [10, 20] as a sum of partial sub-

amplitudes with �xed cyclic ordering of external legs multiplied by the color factors:

Atree
n (1; 2; � � �n) =

X
�2 Sn

Zn

Tr(T a�(1)T
a�(2) � � �T a�(n))Atree

n (�(1); �(2); � � ��(n)) (54)

where Sn
Zn

is the set of all non-cyclic permutations and T
a�(n) are matrices of the

fundamental representation of the SU(Nc) color group. In the D3-brane case the

gauge group is an Abelian U(1) and color factors will be simply reduced to 1.

All four-particle tree amplitudes are proportional to �2 (39) and to simplify the

notations we will let �2 = 1: Due to the supersymmetric Ward identities (SWI) [13]

the only nonzero four vector-boson tree amplitude in this case is Atree
4 (g�1 g

�
2 g

+
3 g

+
4 )

(with two � and two + helicity bosons)

A
tree
4 (1�; 2�; 3+; 4+) = �i4!

8
h3; 4j(FijFjkFklFli �

1

4
(FijFji)

2)j1; 2i

= �i4
2
(t8)�1�1�2�2�3�3�4�4k

�1
1 k

�2
2 k

�3
3 k

�4
4 �

�1
1 �

�2
2 �

�3
3 �

�4
4

=
i

2

sth12i4

h12ih23ih34ih41i (55)

where s = s12; t = s14; u = s13 are Mandelstam variables. This amplitude is

related to the standard N = 4 SYM four-gluon color-ordered sub-amplitude [10] by:

A
tree
4 (1�; 2�; 3+; 4+) =

1

2
stA

tree;YM
4 (1; 2; 3; 4): (56)
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It is important to notice that the RHS of (56) is totally symmetric under external leg

permutations [13].

The nonzero vector-scalar tree amplitudes are:

A
tree
4 ( g

�
; s

�

IJ ; s
+
IJ ; g

+) =

= �i4
2
(t8)�1t�2t�3�3�4�4k

�1
1 k

�2
2 k

�3
3 k

�4
4 �

�3
3 �

�4
4

=
i

2
h12ih13i[43][42]

=
sth12i2h13i2

2h12i4 A
tree;YM
4 (1; 2; 3; 4): (57)

g
�

g
+

sIJ sIJ

There are two kinds of four-scalar amplitudes:

A
tree
4 ( s

�
IJ ; s

�

KL; s
+
IJ ; s

+
KL) =

i

2
st (58)

=
sth12ih23ih34ih41i

2h12i4 A
tree;YM
4 (1; 2; 3; 4)

A
tree
4 ( s

�
IJ ; s

�
IJ ; s

+
IJ ; s

+
IJ) = � i

2
s
2 (59)

=
sth12i2h34i2

2h12i4 A
tree;YM
4 (1; 2; 3; 4):

sIJ sIJ

sKL(IJ) sKL(IJ)

The four fermion tree amplitudes include two nonzero ones:

A
tree
4 ( ~ �

I ;
~ �

J ;
~ +
J ;

~ +
I ) = � i

2
[13][42]h12i2

=
�h12i2h13ih24i

h12i4 A
tree
4 (1; 2; 3; 4) (60)

A
tree
4 ( ~ �

I ;
~ �

I ;
~ +
I ;

~ +
I ) = � i

2
[12][43]h12i2

=
�sth12i3h34i

2h12i4 A
tree;YM
4 (1; 2; 3; 4): (61)

~ �

I
~ +
I

~ �

J(I)
~ +
J(I)

The next set of diagrams contains a mixture of two fermions and two bosons.

There are �ve nonzero tree amplitudes:

11



A
tree
4 ( g

�
; ~ �

I ;
~ +
I ; g

+) = �(i) i
2
[43][24]h12i2 (62)

= (i)
�sth12i3h13i

2h12i4 A
tree;YM
4 (1; 2; 3; 4) (63)

g
�

g
+

~ �
I

~ +
I

A
tree
4 ( ~ �

I ; s
�

JK; s
+
JK;

~ +
I ) = �(i) i

2
[13][24]h12ih13i

= (i)
sth12ih13i2h24i

2h12i4 A
tree;YM
4 (1; 2; 3; 4) (64)

A
tree
4 ( ~ �

I ; s
�

JK; s
+
IJ ;

~ +
K) = �(i) i

2
[14][23]h12ih13i

= (i)
sth12ih13ih14ih23i

2h12i4 A
tree;YM
4 (1; 2; 3; 4) (65)

~ �
K

~ +
K

sIJ
�

sIJ
+

A
tree
4 ( ~ �

I ;
~ �
J ; s

+
IJ ; g

+) = (66)

= i
sth12i2h13ih23i

2h12i4 A
tree;YM
4 (1; 2; 3; 4)

A
tree
4 ( g

�
; s

�

IJ ;
~ +
I ;

~ +
J ) = (67)

= �isth12i
2h13ih14i

2h12i4 A
tree;YM
4 (1; 2; 3; 4)

~ �
K

~ �
K

g
�

sIJ
�

This set of tree amplitudes has exactly the same relative factors between them

as for N = 4 SUSY Yang-Mills theory given in [15] (extra i's come from di�erence

between metrics signature which are g�� = (+���) in [15] and g�� = (�+++) in

this paper ). The general expression connecting SYM amplitudes and the D3 brane

12



amplitudes is:

A
tree
4 (l1; l2; l3; l4) =

st

2
A
tree;YM
4 (l1; l2; l3; l4) (68)

where l1; l2; l3; l4 are the momenta of the particles from N=4 SUSY multiplet.

The main di�erence between the standard N = 4 SYM and the D3-brane e�ective

theory (39) is that the �rst one is �nite in d=4. The following calculation shows that

the D3-brane action is not one-loop �nite in the at background.

A very useful relation for one-loop calculations in the standard N = 4 SYM theory

is [15, 21]:

X
S1;S22(N=4)

A
tree;YM
4 (�lS11 ; 1; 2; lS22 )� A

tree;YM
4 (�lS22 ; 3; 4; lS11 )

=
�istAtree;Y M

4 (1; 2; 3; 4)

(l1 � k1)2(l2 � k3)2
(69)

where the sum is over all particles in the N = 4 multiplet and 1; 2; 3; 4 stands for the

momenta of the external particles. This statement is true for any dimension and its

proof can be found in [21, 22]. For our case (with relation (68)) it becomes:

X
S1;S22(N=4)

A
tree(D3)
4 (�lS11 ; 1; 2; lS22 )� A

tree(D3)
4 (�lS22 ; 3; 4; lS11 ) (70)

=
�is2
4

stA
tree;YM
4 (1; 2; 3; 4)

=
�is2
2

A
tree(D3)
4 (1; 2; 3; 4)

here A
tree(D3)
4 (1; 2; 3; 4) is the four vector-boson D3-brane amplitude (56).

The N = 4 supersymmetry of the D3-brane action allows us to use a unitarity-

based construction of the one loop amplitudes, as it has done in N = 4 Super-

Yang-Mills theory (see review [11] and references therein). In this technique, one

obtains the imaginary part of the one-loop amplitude from the product of the tree

amplitudes, and then reconstructs the real part up to a possible polynomial function.

The good ultraviolet behavior of N = 4 super-Yang-Mills theory makes it possible

to reconstruct the whole amplitude without the additive polynomial ambiguity. The

one-loop amplitudes that can be reconstructed that way (\cut-constructible") must

13



satisfy a certain loop-momentum \power-counting" criterion given, for example, in

[11].

One-loop amplitudes in the standard N = 4 SYM theory obtained by using the

cut-reconstruction formalism can be expressed as:

A
N=4;1�loop
4 (1; 2; 3; 4) = ig

2
s12s23A

tree
4 (1; 2; 3; 4)(C1234I

1�loop
4 (s12; s23)

+ C3124I
1�loop
4 (s12; s13) + C2314I

1�loop
4 (s23; s13)) (71)

where C1234 is a color factor for the non-Abelian gauge group and I
1�loop
4 is a one-loop

four-point (box) integral,

I
1�loop
4 (s12s23) =

Z
d
D
p

(2�)D
1

p2(p� k1)2(p� k1 � k2)2(p+ k4)2
: (72)

The expression (69) was used to simplify the direct product of the tree amplitudes.

The expressions (69)and (70) for N = 4 amplitudes are correct in all dimensions

and can be used [15, 23] to reconstruct complete massless loop amplitudes. The D3-

brane e�ective Lagrangian (39) in the Killing gauge does not contain three-particle

vertices, hence only bubble diagrams will contribute to the one-loop corrections to

the four-particle amplitudes. In this case the expression for one-loop corrections

considerably simpli�es and can be written as:

A
D3;1�loop
4 (1; 2; 3; 4) =

=
i�

4

4
s12s23A

tree;YM
4 (1; 2; 3; 4)(s212I

1�loop
2 (s12) + s

2
13I

1�loop
2 (s13) + s

2
14I

1�loop
2 (s14))

=
i�

4

2
A
tree(D3)
4 (1; 2; 3; 4)(s2I 1�loop

2 (s) + t
2I

1�loop
2 (t) + u

2I
1�loop
2 (u)): (73)

Here we have taken into account that s12s23A
tree;YM
4 (1; 2; 3; 4) from (56) is symmetric

under momenta permutations and color factors are gone because gauge �eld in (5)

is an Abelian one. Instead of the box integrals (72) expression (73) contains only

two-point one-loop integrals:

I
1�loop
2 (s12) =

Z
d
4�2�

p

(2�)4�2�

1

p2(p� k1 � k2)2
: (74)

This integral is ultra-violet divergent and in dimensional reduction it has the form:

I
1�loop
2 (s) = i(4�)��2 �(1 + �)�2(1� �)

�(1� 2�)�(1� 2�)
(
�s
�2

)
��
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� i

(4�)2
1

�
[1 + �(2�  � log

�s
�2

+ log 4� + � � �)] (75)

as � ! 0:

It is easy to �nd counterterms for e�ective D3-brane Lagrangian (39). Their

structure at the quartic level will be

(s2 + t
2 + u

2)(t8)F
4 ! (t8)�1�1�2�2�3�3�4�4@�F�1�1@�F�2�2@�F�3�3@�F�4�4; (76)

or, in the notations of [15] and [6], the counterterms are:

T
D3
4 (FijF

jkFklF
li � 1

4
(FijFji)

2); (77)

where

T
D3
4 = � �

4

(4�)2
1

16�
(s2 + t

2 + u
2) (78)

Using the relations (55)-(67) between the amplitudes with di�erent particle con-

tent it is easy to �nd the corrections and the counterterms for all other four-particle

interactions of N = 4 multiplets in this theory.

5 Di�erent �-gauges

The Killing gauge is obviously not the only choice for �xing the �-gauge. In [3] it

was proposed to use the gauge where �1 = 0 and �2 = �. Then the supersymmetry

transformations will be:

��� = ��+ ��(1� �) + �
�
@�
��

�X
m = ���m� � ��(1� �)�m� + �

�
@�X

m
: (79)

where � =

0
B@ 0 �

~� 0

1
CA was de�ned in (15).

The requirement ���1 = 0 and the static gauge condition �X
p = 0 determine

the connection between the � and � parameters, so that the �nal supersymmetry
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transformations are [3]:

��+"+�
�� = ��2 + ��1� + �

�
@�
��;

��+"+�y
t = (��2 � ��1�)�

t
�+ �

�
@�y

t
;

��+"+�A� = (��1� � ��2)(�� + �t@�y
t)�

+(
1

3
��2 � ��1�)�m����

m
@��+ �

�
@�A� + @��

�
A�: (80)

The index m is a d=10 index, which includes both �(p) and t values (t is a six-

dimensional index for scalar �elds). The induced world-volume metric in this case

is:

G�� = �mnL
m
� L

n
� ; L

m
� = @�X

m � i���m@�� (81)

and

F�� = F�� � i��(�� + �t@�y
t)@��+ i��(�� + �t@�y

t)@��: (82)

The choice of �-gauge a�ects only the part of the Lagrangian that contains

fermions leaving the purely bosonic terms unchanged. In the �1 = 0 gauge the

fermionic part of the Lagrangian up to the quartic order in the �elds is:

L
(4)
ferm = i�� 6@� + i����t@�y

t
@
�
� +

i�

2
(����@�� � i����@��)F��

+
�
2

2
(���t@�����

t
@�� � (�� 6@�)2)� i�

2(@�y
t
@�y

t����@�� �
1

2
@�y

t
@�y

t�� 6@�)

+
i�

2

2
((����@�� + ����@��)F��F�� �

1

2
�� 6@�F��F��)

+
i�

2

2
F��(���

t
@�y

t
@�� � ���t@�y

t
@��): (83)

In this gauge the Lagrangian contains the three-particles vertices along with the

quartic terms. Four-particle tree amplitudes with fermions will contain a set of tree

diagrams where line denotes both gauge A� and scalar yt bosons and stands

for the fermions � :

= + + � � �
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+ � � �+=

Calculations of these tree amplitudes show that they are the same for both cases

of the �-gauges. Both theories have the same one loop corrections and nontrivial

counterterms in d=4.

6 Conclusion

The Born-Infeld type actions have received a lot of attention in the last few years.

This type of action plays a crucial role for the D3 brane theory. The rich structure

of interaction terms in this theory makes it especially interesting to study them. The

other interesting question that arises in this theory is a question about the form of

supersymmetry transformations after the �xing of the ��gauge.
We have presented the supersymmetry transformations, Feynman rules and one-

loop corrections to the �-gauge �xed D3 brane Born-Infeld theory up to the quartic

order. We would like to stress here that the Feynman rules following from the gauge-

�xed supersymmetric Born-Infeld action turned out to be rather simple at least for

the 4-point one loop calculations, which has allowed us to perform the quantum

calculation in this very unusual theory.

Our calculations show that D3 brane theory in the at IIB background has a

nontrivial counterterm in d=4. We have found that the structure of the counterterm

as well as �nite corrections includes terms like (@F)4: We hope that our calculations

may help to shed some light on the relations between the properties of the fundamental

theory including the D3 branes and the quantum N = 4 supersymmetric YM gauge

theory.

We also consider these calculations as a preparation for the studies of the more

complicated theories, e.g. the D3 brane action in AdS5�S5 background or, possibly,

for a few interacting D3 branes with non-Abelian gauge �eld in the action. We have

17



found that the use of the Killing gauge for � -symmetry combined with the helicity

amplitudes technique has simpli�ed our calculations signi�cantly. Hopefully these

methods will be useful for calculations in some other class of interesting problems.
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Appendix

We use chiral representation for d=6 dimensional (6) matrices followingM. Sohnius

notations [18]. In this representation (6) is written as

~t =

0
B@ 0 (~�t)IJ

(~��1
t )IJ 0

1
CA (84)

where matrices (~�t)IJ satis�es the conditions:

tr~�t~�
�1
t0 = 4�tt0

(~��1
t )IJ = �1

2
�
IJKL(~�t)KL (85)
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A general d=10 32 component complex spinor will be:

� =

0
BBBBBBB@

��I

�
I
�

�! _�
I

�' _�I

1
CCCCCCCA
; �� =

�
!
�I
; '

�
I ;

��I_� ; �� _�I

�
(86)

The d=10 Majorana and chirality conditions [18] are:

� = C
(10)��T ; C

(10) = C
(4) 
 C

(6) =

0
B@ ���� 0

0 �� _� _�

1
CA


0
B@ 0 1

1 0

1
CA (87)

� =
1

2
(1� �(11))� ; �(11) = 

5 
 
(7) = i

5 


0
B@ 1 0

0 �1

1
CA : (88)

They will give the constraints on the spinors components:

�' _�I = �� _�I = (��I)
y
�
_� _�
; �! _�

I = �� _�I = (�I�)
y
�
_� _� (89)

�! _�
I = �

I
� = 0: (90)

The surviving 16 components are

� =

0
BBBBBBB@

��I

0

0

�� _�I

1
CCCCCCCA
; �� =

�
0 ; ��I ;

��I_� ; 0
�
: (91)

The new scalar �elds sIJ with manifest SU(4) indexes I; J = 1; � � �4 are

sIJ = �1

2
(~�t)IJy

t; sIJ =
1

2
(~��1

t )IJyt

and ytyt = s
IJ
sIJ :
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