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Abstract

Chaos is a general phenomenon in nonlinear dynamical systems. Accel-

erators { storage rings in particular { in which particles are stored for 1010

revolutions constitute a particularly intricate nonlinear dynamical system.

(In comparison, the earth has revolved around the sun for only 109 turns.)

Storage rings therefore provide an ideal testing ground for chaos physics. In

fact, it is the chaos phenomenon that imposes one of the key design criteria

for these accelerators. One might arguably say that the demise of the Su-

perconducting Super Collider project originated from a misjudgement in its

chaos analysis at one point along its design path, leading to its �rst substan-

tial cost escalation. This talk gives an elementary introduction to the study

of chaos in accelerators.
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Chaos is a general phenomenon in nonlinear dynamical systems. Accelerators {

storage rings in particular { in which particles are stored for 1010 revolutions con-

stitute a particularly intricate nonlinear dynamical system. (In comparison, the

earth has revolved around the sun for only 109 turns.) Storage rings therefore

provide an ideal testing ground for chaos physics. In fact, it is the chaos phe-

nomenon that imposes one of the key design criteria for these accelerators. One

might arguably say that the demise of the Superconducting Super Collider project

originated from a misjudgement in its chaos analysis at one point along its design

path, leading to its �rst substantial cost escalation. This talk gives an elementary

introduction to the study of chaos in accelerators.

1 Introduction

The problem being studied is illustrated in Fig.1. Consider a particle that
starts on the \design orbit" as in Fig.1(a). It returns exactly to its starting
point turn after turn. This particle is stable, i.e. it always stays within the
accelerator con�nement. However, in Fig.1(b), a particle starting with a small
deviation (x; x0) from the design orbit will not return to where it starts from
even in its next turn. As it circulates around the accelerator, its deviation from
the design orbit may stay con�ned, or may grow with time. The question to
be addressed is: does the accelerator provide an environment for particles with

small deviations to stay in the accelerator con�nement for � = 1010 turns?
Note that accelerator physicists are not interested in � =1, which would

be a very di�erent question perhaps of academic interest. In this sense, the
question being raised here is a rather pragmatic one.

Instability results from nonlinearities. Particle motion is stable if the ac-
celerator is perfectly linear (assuming the accelerator is properly designed).
This leads to the practice that all accelerators are designed to be \as linear as
possible" with the hope that nonlinearities can be treated as small perturba-
tions. However, would the small nonlinearities cause an ever-so-slow growth
of the oscillation amplitudes, and thus lead to an eventual loss of particles in
1010 turns?

There are many sources of nonlinearities in an accelerator. For example,
the magnets may not have perfect �eld pro�les. (Another example is the
so-called beam-beam interaction { see later.) Of course, one tries to build
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Figure 1. A particle moving (a) along the design orbit, (b) with a small deviation from the

design orbit.

magnets as perfectly as possible, but that would be expensive. To minimize

cost, one must build the magnets at their lowest tolerable degree of linearity,

while providing 1010-turn lifetime of the beam. A miscalculation or misjudge-

ment, like what happended to the SSC, can be a serious matter. Typically,

thanks to the advances made by the magnet builders, the magnet �eld nonlin-

earities are very small, at the level of 10�4. But unfortunately, even that does

not assure a 1010-turn lifetime { the existence of the KAM invariant surfaces

is not of much help here.

2 E�ects of Nonlinearities

Consider the particle in Fig.1(b). Let it start with (x0; x
0

0
) and register its

motion turn after turn as (x1; x
0

1
); (x2; x

0

2
), .... [See Fig.2(a) { note that (x; x0)

forms the phase space of the dynamical system. Observing the particle motion

at discrete periodic times is called the Poincar�e section.] If the accelerator is

perfectly linear, (xi; x
0

i
) will trace out a circle as shown in Fig.2(b), with

Amplitude

q
x2

i
+ x0

i

2
= constant A

(phase angle advance per turn)=2� = tune �0 (1)

In a linear system, di�erent particles have di�erent amplitudes, but all parti-

cles have the same �0, i.e. � = �0 6= �(A). We have assumed �0 is an irrational

number. (The tune is sometimes called the winding number in other �elds.)

If �0 is a rational number, then a particle trajectory traces out a chain of

discrete unconnected dots in the phase space.

We now consider the e�ects introduced by a small nonlinearity in the ac-

celerator. The �rst thing that happens is that the tune will no longer be the

same for all amplitudes, i.e. now there is a tune spread, and � = �(A). As

soon as this happens, the tune no longer stays irrational, and takes on rational
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Figure 2. Observing particle motion in the phase space (x; x0). (a) Registering the observa-

tion turn after turn. (b) If the accelerator system is perfectly linear, the trajectories trace

out a circle in phase space. Two circles are indicated, each traced out by one particle.

(c) When a tune spread is introduced, the phase space spontaneously transforms into an

in�nitely layered topology. (d) Around each layer corresponding to a rational tune, a chain

of islands with thin chaotic coating emerges. (e) The width of the islands increases with

amplitude A. Beyond a certian maximum A, the dynamic aperture, the islands overlap and

particles are lost from the accelerator.

and irrational values depending on the amplitude of the particle under con-

sideration. The phase space thus spontaneously degenerate into an in�nitely

layered sandwich of circles and dot-chains, as shown in Fig.2(c). Each circle

corresponds to one irrational tune, while each chain of dots corresponds to

one rational tune.
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In spite of its intricacy, the system remains integrable (and soluble) at

this point. However, those \dots" in Fig.2(c) in fact have �nite sizes, i.e.

they are actually \islands". There is one chain of islands for each resonance

condition

� = rational number n=m (2)

The �nite sizes of the islands necessarily a�ect the neighboring circles. Some

circles are more resistent and the only thing happening to them is that their

shapes are distorted. For some other less resistant circles, however, their turn-

by-turn trajectories break into chaotic layers. For those particles, their motion

is now nonintegrable. Fig.2(d) shows some distorted circles, some islands, and

some chaotic layers.

Whether a circle is break-resistant or not depends on its tune value. It

turns out that not all irrational numbers are created equal; some are more

irrational than others, and the more resistant circles correspond to the more

irrational tunes, which turn out to take the form

�(most irrational) =
n+ `

p
5

m
(3)

(It is somewhat surprising that
p
5 has this fundamental signi�cance.) Circles

whose tunes are of the form (3) tend to break last. Unbroken circles, although

distorted, have the signi�cance of invariant surfaces. Finding an invariant

surface is always a signi�cant step because all particles inside the invariant

surface will stay inside for all times (in a 1-D system) and are therefore stable.

It is a property of accelerator magnet �eld errors that the nonlinearity

increases as one deviates more from the design orbit. Increasing A therefore

implies the corresponding islands get larger, which in turn means more neigh-

boring circles get broken. When A is increased further, it can reach a value

ADA beyond which islands \overlap" into a continuum and no invariant sur-

faces exist beyond it. Particles with A > ADA are therefore unstable. This

limiting amplitude ADA { the last invariant surface of the system { is called

the dynamic aperture of the accelerator.

3 Chirikov Criterion and Beam-Beam Interaction

The criterion of large-scale chaos due to overlapping resonances in a 1-D

system is called the Chirikov criterion.1 To apply the Chirikov criterion, one

typically �rst performs a simpli�ed calculation of the widths of all resonances,

valid to �rst order of the nonlinearity strength and assuming each resonance

is isolated from all others. (This calculation is doable because under these
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assumptions the system is integrable.) One then adds up the widths of all

resonances to obtain a total width ��tot. A large-scale chaos occurs when

��tot � 1.

The above calculation has been applied, for example, to the important

problem of beam-beam interaction. In a collider storage ring, two beams of

charged particles collide at an interaction point. At this interaction point,

each beam is strongly perturbed by the electromagnetic �eld of the on-coming

beam. This perturbation is highly nonlinear, and its strength is characterized

by a parameter called the beam-beam tune shift �. The beam-beam induced

nonlinear resonance widths, and therefore ��tot, are proportional to �. An

application of the Chirikov criterion to a 1-D beam-beam problem yields the

conclusion that the beams are unstable if � > 0:095.2

Unfortunately, the maximum �'s achieved in the many existing colliders

range only from 0.03 to 0.06 for electron beams and even lower for proton

beams. One possible explanation is that an accelerator operates in a 3-D

world, while the Chirikov criterion applies to a 1-D world. In a real 3-D

accelerator system, nonlinearities may cause other more subtle instabilities

such as the Arnold di�usion.3

Another important complication is due to noise or ripple in the magnet

settings or ground motion (see later). When these e�ects are included, the

dynamic aperture determination again becomes more subtle.

4 Chirikov Criterion and Incompressible Fluid

Chirikov criterion Incompressible uid

particle motion in phase space uid motion in real space

Hamilton equation Navier-Stokes equation

smooth contours laminar ow

chaos turbulence

overlapping resonances Reynolds' condition

Table 1. Analogy between the Chirikov criterion in 1-D nonlinear dynamics and the

Reynolds' condition for an incompressible uid.

As suggested by Teng, it is interesting to draw an analogy between chaos

in 1-D nonlinear dynamics and turbulence in uid dynamics.4 The idea is

based on the observation (Liouville theorem in a Hamiltonian system) that

the beam distribution in phase space behaves as a viscous incompressible uid

in the real space. By writing down the Hamilton equation on the one hand

and the uid equation on the other, it is possible to establish the analogy

as given in Table 1. Chirikov criterion is then equivalent to the Reynolds
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condition in uid dynamics that the viscosity must be large enough in order

to prevent turbulence from occurring. This o�ers an alternative derivation of

the Chirikov criterion { although the result takes a form which is very close

but not exactly identical.

5 Accelerator Modeling and Simulation

Numerical simulation is an essential tool to study chaos physics. To simulate

the nonlinear dynamics in an accelerator, one must �rst have a dependable

computer model of the accelerator. Typically the accelerator is modeled as a

string of beam-line elements. (A beam-line element could be a dipole magnet,

a quadrupole magnet, a drift space, an rf cavity, etc.) Each beam-line element

is then represented as a map which relates the incoming and outgoing beam

dynamical variables as a particle traverses through the element:

~Xout = ~F ( ~Xin) (4)

Explicit expressions of the function ~F can be obtained from the Hamiltonian

(and can be a Lie map5 or a Taylor map depending on whether it is expressed

in a Lie algebraic language or as a Taylor series). Given the initial launching

conditions ~X0, the subsequent trajectory of a particle in the accelerator can

be followed numerically by sequentially applying the known element maps (4).

Unfortunately, this element-by-element tracking is severely limited by the

computer capacity. Take the SSC for example. The SSC contains a string

of 5000 superconducting magnets, each having its own set of �eld errors. An

element-by-element model of the SSC therefore contains 5000 nonlinear kicks

per revolution, and it took 200 CRAY hours (1993) to track the SSC for 106

turns. Tracking for 1010 turns is obviously not practical.

To proceed, one then presents the tracking results in the form as Fig.3.6

Such a presentation is called a survival plot. The number of turns a particle

survives in the accelerator is plotted against the launching amplitude of the

particle. As the launching amplitude is lowered, the survival time increases

until a point when computer time becomes a limit. What one wished is to be

able to extrapolate the curve to �nd out the launching amplitude when the

survival time reaches 1010 turns, and that amplitude is then identi�ed as the

dynamic aperture.

It is obvious that the survival plot technique is not too assuring, and one

might ask if there are ways to speed up the simulation. One such method has

been the concatenation techniques. The 5000 nonlinear maps in the SSC, for

example, can be concatenated into one single nonlinear map, which represents

the one-turn map of the SSC. To save speed, this one-turn map must be
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Figure 3. Survival plot for an SSC model.

severely truncated to a su�ciently low order (e.g. 10-th order). On the

other hand, once truncated, particle tracking can be sped up greatly. How

to appropriately use one-turn map to calculate the dynamic aperture is an

important area of study.

6 Near the Dynamic Aperture

It should not be a surprise that the underlying dynamics is extremely complex

and there are many curious observations to be made, especially when one

approaches the dynamic aperture. One of the most striking can be observed

on the particle in Fig.3 that was lost near the 106-th turn. As shown in Fig.4,7

this particle seems to stay stable happily for all of its 106-turn lifetime, but

is suddenly lost in the last 30 turns without any apparent warning. Fig.4

rules out any \di�usion" e�ect as the instability mechanism. Ideas have been

proposed by accelerator physicists of methods to search for early warning

signals of a long-term particle loss. Fig.4 is an indication that the task is not

an easy one.

A large-scale chaos (e.g. the type predicted by Chirikov) can be detected

relatively easily by tracking a single particle. To detect more subtle e�ects

(e.g. local chaos, Arnold di�usion, etc.), one often uses the technique of
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Figure 4. The last 512 turns of the particle that survives 106 turns in Fig.3. The particle
seems to take o� suddenly in its last 30 turns of life without any warning.
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Figure 5. Two particles for the SSC initially very close to each other become separated and
follow distinctly di�erent trajectories after some number of turns. This is an indication
of chaos { although a small-scaled one because both particles seem to be stable up to the
number of turns tracked. (a) �ne scale, (b) gross scale.

Lyapunov in which two particles initially very close to each other in phase

space are tracked, and their distance of separation registered as a function

of time. A local chaos is identi�ed when this distance grows exponentially.

Local chaos however may or may not lead to true instability. Fig.5 shows an

example of local chaos which is apparently stable for a long time.8

A slight variation of the Lyapunov method is shown in Fig.6 for the col-

lider LHC.9 The unperturbed tunes are indicated by a star in Fig.6. The
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Figure 6. The wondering paths of the instantaneous tunes of two neighboring particles in

the (�x; �y) plane for the LHC. Resonances up to 29-th order are indicated by dotted lines.

instantaneous tunes are obtained by sampling 1000 turns for each reading on
the tune path. The two neighboring particles start with the same tunes, follow
each other closely for 4000 turns and then depart to take on their own destiny,
encountering very di�erent sets of resonances. Eventually both particles are
lost, one in 65000 turns, the other in 15000 turns.

7 Nonlinear Dynamics Experiments

As mentioned, accelerators are ideal tools to study nonlinear dynamics. In
the Indiana Univeristy Cyclotron, for example, an electron-cooled beam has a
small transverse emittance and a small energy spread, which makes it ideal for
probing the phase space. To explore the phase space, the cooled beam is kicked
and its subsequent turn-by-turn motion detected by two position monitors.
Fig.7 shows one such results when the horizontal tune �x is close to a 4-th
order resonance.10 From such measurements, one obtains detailed information
on the nonlinear Hamiltonian of the accelerator system. In particular, it was
measured that the \island tune" (the tune value corresponding to motion
around the islands instead of around the origin) is 0.0013.

The IU Cyclotron has also been used to study the nonlinear dynamics of
a dissipative parametric resonance system.11 The beam dynamics is observed
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Figure 7. Measurements at the IUCF showing detailed phase space topology when �x �

15=4.

in the longitudinal motion of the stored proton beam. The dissipation was

provided by electron cooling. The parametric driving was done by kicking

the beam transversely by a kicker whose strength is modulated at a frequency

close to the longitudinal synchrotron frequency of the stored beam. The

longitudinal beam distribution was found to split into two beamlets, each

following one stable attractor. These observations were in agreement with

expectation. Fig.8 shows the numerical simulation of what is expected. The

complexity as well as the chaotic nature (especially outside the rf bucket) of

the dynamics are clearly seen.

In the e�ort to compare detailed tracking simulation with the measured

dynamic apertures in storage rings, it is often found important to include any

rippling e�ects on the otherwise-static accelerator parameters even to very

low levels. In particular, the beam lifetime (and dynamic aperture) is often

found to depend sensitively on a small ripple in the tune. Long-term di�usion

e�ects in the presence of intentional nonlinearities (eight sextupoles) and tune

ripple were studied experimentally at SPS. Fig.9 shows some of the results. In

the absence of tune ripple, the beam had a long lifetime. When a tune ripple

with an amplitude of 1:65� 10�3 and frequency of 9 Hz was introduced, the

lifetime dropped to 7 hrs. When the same rippling amplitude was divided
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Figure 8. Black dots show the initial phase-space points which damp to either the inner

(upper graphs) or outer (lower graphs) attractors at modulation frequencies 230 Hz (left

frames) and 240 Hz (right frames) obtained from numerical simulations.

between two rippling frequencies at 9 Hz and 180 Hz, the lifetime dropped

further to 2 hrs. The observations that a small tune ripple of 10�3 causes

signi�cant di�usion and that richness in tune rippling frequency enhances the

di�usion agree qualitatively with simulation results.

8 Summary

1. Nonlinear dynamics and chaos e�ects play a very important role in ac-

celerator physics. Choice of critical design parameters of the modern, high-

performance accelerators depends on a clear understanding of the dynamics

involved.

2. Once constructed, an accelerator can serve as a particularly powerful

and versatile experimental tool to study various intricate aspects of nonlinear

dynamics.
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Figure 9. Di�usion measurements at the SPS in the presence of nonlinearities and tune

ripple.
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