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Abstract

We discuss two classes of supersymmetric grand uni�ed theories based on

extended gauge groups SO(10) � SO(10) and SO(10)� SO(10)� SO(10).

E�ective adjoint �elds of each gauge group SO(10) are argued to be formed

from combining two Higgs �elds in fundamental representation of the ex-

tended gauge groups, one obtaining its VEV along the diagonal SO(10)D di-

rection and the other acquiring its VEV along the diagonal SU(5)D�U(1)D
or its subgroup direction. Thus experimently acceptable fermion mass ma-

trices, such as Georgi-Jarlskog ansatz, with successful GUT mass relations

can be constructed in these theories.
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1 Introduction

The Standard Model (SM) provides a successful description of physics up to

the weak scale. However, it provides some 18 parameters which are input by

hand to �t experiment data. Most of these input parameters are associated

with 
avor physics and are included to parameterize the fermion mass hierar-

chy, Cabibbo-Kobayashi-Maskawa (CKM) angles, and neutrino oscillations.

Many theories, either supersymmetric (SUSY) or non-supersymmetric, are

constructed to address the 
avor problem and, hopefully, make predictions

on new physics. Among these theories beyond the Standard Model (SM), su-

persymmetric grand uni�cation provides an elegant framework that explains

not only the gauge quantum numbers of fermions transforming under the SM

gauge group SU(3)C � SU(2)L � U(1)Y , but also the prediction of �s(MZ).

This remarkable success of the prediction of �s(MZ) motivates further ex-

ploration of SUSY grand uni�cation [1].

Among the ideas of grand uni�cation, gauge groups such as SU(5), E6,

and SO(10) are frequently used in GUT model construction [2, 3]. However,

there are reasons that make SO(10) theories more attractive than others.

First, SO(10) is the smallest group in which all matter �elds in one family can

�t into one irreducible representation. Second, the two light Higgs doublets

needed in any SUSY theory �t into one 10 of SO(10). This allows the

Yukawa couplings of up-type and down-type quarks to be determined by

Clebsch-Gordan coe�cients, thus making SO(10) theories more predictive.

There is a problem with this approach, however. Typical SUSY SO(10)

models need to use Higgs �elds in higher representations, the 126 or 45, to

achieve successful GUT relations for Yukawa matrices. These representations

are complex in their own right, and theories which contain tensor �elds of

rank higher than two cannot be constructed from the simplest string-derived

GUT theories [4, 5]. This motivates the use of extended GUT gauge groups

such as G � G or G � G � G, where G denotes the usual GUT group, in

SUSY GUT model construction [6, 7, 8].

Supersymmetric GUTmodels based on the gauge groups SO(10)�SO(10)
and SO(10)� SO(10)� SO(10) have been discussed in the literature [6, 7].

In these models, the breaking of the GUT gauge group was done when fun-

damental Higgs �elds in the (10; 10) representation, acquire their vacuum ex-

pectation values (VEVs) along the embedded diagonal subgroup directions

of SO(10) � SO(10) and SO(10) � SO(10) � SO(10), while the spinorial
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Higgs �elds 	i; �	i acquire VEVs along SU(5)-preserving directions. Four

sets of the (10; 10) �elds carrying charges of di�erent discrete symmetries

were introduced; the large number of �elds is needed not only to achieve the

desirable Higgs doublet-triplet splitting, but also give the desirable asym-

metry between the up and down quark mass matrices. As a result, typical

predictions of SUSY GUT SO(10) models, such as the top-bottom Yukawa

uni�cation �t = �b, and Clebsch-Gordan relations in Yukawa matrices are

not valid in their models.

In this paper, we follow the idea of using SO(10)�SO(10) and SO(10)�
SO(10)� SO(10) as the SUSY GUT gauge groups. However, we show that

the traditional merits of the SUSY GUT SO(10) models can be preserved in

our SO(10)� SO(10) and SO(10)� SO(10)� SO(10) model construction.

Although it is motivated from the string constructions, our model construc-

tion is self-contained and does not make explicit reference to string theories.

In our models, all Higgs �elds are in the fundamental representations of the

gauge groups and no rank two tensors of any SO(10) gauge group are re-

quired.

In section 2, we show that the extended GUT gauge group breaking can

be implemented when Higgs �elds acquire VEVs along diagonal SO(10)D
directions, diagonal SU(5)D�U(1)D directions, or other diagonal directions.

Most importantly, we argue that the e�ective adjoint �elds for each SO(10)i
group can be formed by combining two VEV-acquiring Higgs �elds. In sec-

tion 3, we construct an explicit model based on SO(10) � SO(10). We

show that the Higgs doublet-triplet problem is naturally solved through the

Dimopoulos-Wilczek mechanism [9] without destabilizing the gauge hierar-

chy. The doublet-triplet splitting mechanism also guarantees strong suppres-

sion of proton decay, since the contributions from heavy Higgsino triplet

exchange diagrams are absent or highly suppressed. We also show that

this model gives Yukawa matrices of the type similar to Georgi-Jarlskog

ansatz. An explicit model which was analyzed by Anderson et al. [10] is

constructed by using e�ective adjoint operators. In section 4, we present

an SO(10)� SO(10)� SO(10) model with each family of matter multiplets

transforming under di�erent SO(10) groups. In section 5, we make our con-

clusion.
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2 E�ective adjoint operators for SO(10)

As pointed out in the literature [6, 7], the breaking of extended GUT gauge

groups G � G and G � G � G can be achieved by a set of Higgs �elds

in the fundamental representation. For example, an SO(10)1 � SO(10)2
model breaks down to its diagonal subgroups when �elds in the fundamental

representation (10; 10) develop VEVs. We will denote (10; 10) �elds in this

paper as S or Z depending on the VEV patterns. We denote �elds with the

following three canonical patterns of VEVs < SX >, < SB�L >, < ST3R >,

corresponding to

< SX >=
vDp
10
� ( 1 0

0 1
)
 diag(1; 1; 1; 1; 1) (1)

< SB�L >=
vGp
10
� ( 1 0

0 1
)
 diag(a; a; a; 0; 0) (2)

< ST3R >=
vGp
10
� ( 1 0

0 1
)
 diag(0; 0; 0; b; b): (3)

The VEVs of SX , SB�L, and ST3R break SO(10)1 � SO(10)2 down to its

embedded diagonal subgroups SO(10)D, SO(6)D � SO(4)1 � SO(4)2, and

SO(6)1� SO(6)2� SO(4)D respectively. Usually, a tree level superpotential

has many SUSY vacua which include the VEVs in Eq. (3); a typical form

includes

W � �M

2
Tr(SST ) +

A

4M
(Tr(SST ))2 +

B

4M
Tr(SSTSST ): (4)

However, there are other SUSY vacua which lie along the direction of the

embedded diagonal SU(5)D � U(1)D, or other directions such as SU(3)D �
U(1)D�SO(4)1�SO(4)2 and SO(6)1�SO(6)2�SU(2)D�U(1)D. We denote

the associated (10; 10) �elds as Z and again refer to the VEV patterns using

subscripts:

< ZX > =
v10p
10
� ( 0 1

�1 0
)
 diag(2; 2; 2; 2; 2)

< ZB�L > =
v5p
10
� ( 0 1

�1 0
)
 diag(2a=3; 2a=3; 2a=3; 0; 0)

< ZT3R > =
v5p
10
� ( 0 1

�1 0
)
 diag(0; 0; 0; b=2; b=2): (5)
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As an alternative to generating scales or VEVs by minimizing a tree level

superpotential, it has been shown that the scale < SX > could also be dy-

namically generated through a strongly coupled supersymmetric dynamics

[11]. Following the same line of thinking, we can introduce two supersym-

metric gauge groups SU(Nc) and Sp(nc) with �elds in their fundamental

representations q(Nc; 1; 10; 1), �q( �Nc; 1; 1; 10), and Q(1; 2nc; 1; 10), where the

numbers in brackets denote the dimensionality of each �eld under the two

strong groups and the GUT gauge group SO(10)1 � SO(10)2. With the im-

position of some discrete symmetry, say ZN � ZK, that keeps the �eld SX
from coupling directly to ZX , the lowest order of tree level superpotential is

given by

Wtree =
A

2NM2N�3
S2N
X +

B

2KM2K�3
Z2K
X + �1SXq�q +

�2

M
(SXZX)

abQaQb (6)

where A and B are coe�cients, M is the superheavy scale or Planck scale,

and �i denote the dimensionless coupling constants. To this should be added

the dynamical superpotential resulting from the strong dynamics,

Wdyn =
C

Nc � 10

"
�3Nc�10
1

detq�q

# 1
Nc�10

+
D

nc + 1� 5

"
�3nc�2
2

Pf(QQ)

# 1
nc�4

: (7)

By stabilizing the superpotential in Eqs (6) and (7) along the < SX > and

< ZX > directions, we obtain the following equations for the VEVs:

A

M2N�3
s2N�1 +

5C

(nc + 1)s

"
�2sz

M�2

# 5
nc+1

�3
2 +

10D

Ncs

"
�1s

�1

# 10
Nc

�3
1 = 0 (8)

B

M2K�3
z2K�1 +

5C

(nc + 1)z

"
�2sz

M�2

# 5
nc+1

�3
2 = 0; (9)

where s = vD=
p
10 and z = 2v10=

p
10. It is easily seen that solving Eq.s (8)

and (9) could lead to nonzero vD and v10 when either one of the following

conditions is satis�ed:

2(nc + 1)

Nc

> 1 +
10

Nc

; or (10)

2(nc + 1)

Nc

� 1: (11)
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Given VEVs of the S and Z �elds, we can form e�ective rank two tensors

which carry quantum numbers of the gauge group SO(10)2 by combining

any two of the S and Z �elds. In this way, we can form e�ective adjoint

operators of SO(10)2, which we call � and �0, given by

�bc
X � 1

M
Tr1(Z

T
XSX) =

1

M
Zab
X S

ac
X ;

�bc
B�L � 1

M
Tr1(Z

T
B�LSX) =

1

M
Zab
B�LS

ac
X ;

�bc
T3R

� 1

M
Tr1(Z

T
T3R

SX) =
1

M
Zab
T3R

SacX ;

�0bc
B�L � 1

M
Tr1(S

T
B�LZX) =

1

M
SabB�LZ

ac
X

�0bc
T3R

� 1

M
Tr1(S

T
T3R

ZX) =
1

M
SabT3RZ

ac
X (12)

We can also form e�ective identity operators of SO(10)2, such as I =
1

M
Tr1(S

T
XSX)

or I 0 = 1

M
Tr1(Z

T
XZX). Reciprocally, we can form e�ective adjoint and iden-

tity operators of SO(10)1. All of these e�ective tensors can arise physically

from integrating out heavy states which transform under one of the SO(10)'s.

For example, we can generate the structure Tr1(Z
TZ 0) by integrating out the

heavy states 101 and 1001 from the following superpotential:

M110110
0
1 + 101Z102 + 1001Z

01002 �!
1

M1

102Tr1(Z
TZ 0)1002 (13)

Once we are equipped with these e�ective rank two tensors, it is possible

to construct supersymmetric GUT models with realistic fermion masses and

CKM angles. A systematic analysis of the construction of SO(10) GUT

models has been done by Anderson et al. [10]. Our treatment, with the �,

�0, I and I 0 e�ective �elds, now maps directly onto that analysis.

3 A SUSY SO(10)� SO(10) GUT model

In this section, we present an example based on the SX and Z VEVs which

demonstrates that typical SUSY SO(10) GUT predictions can actually be
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preserved in SO(10)1 � SO(10)2 gauge theories with experimentally accept-

able Yukawa matrices. We assume four fundamental Higgs �elds SX , ZX ,

ZB�L, and ZT3R of representation dimensionality (10; 10) in our SO(10) �
SO(10) GUT model. We construct the superpotential so that each of the

(10; 10) Higgs �elds acquires a VEV along the indicated direction as described

in Section 2.

3.1 Higgs doublet-triplet splitting

The Higgs structure is constructed by the requirement of Higgs doublet-

triplet splitting. Higgs triplets, if they are not heavy enough, could contribute

to the evolution of the gauge couplings, and thus spoil the uni�cation of

the gauge couplings. In addition, Higgsino triplets may also mediate fast

proton decay. So we might begin by analyzing the constraints imposed by

the splitting mechanism.

In conventional SO(10) models, Higgs triplet �elds may acquire heavy

masses by coupling to the adjoint �elds which have their VEVs along the

B � L direction

W (H1; H2) = H1AH2; with

< A > = V � ( 0 1

�1 0
) � diag(1; 1; 1; 0; 0); (14)

where H1 and H2 are the fundamental Higgs �elds, and A denotes the adjoint

Higgs �eld which acquires its VEV of the Dimopolous-Wilczek forms. As seen

from Eq. (14), the triplet �elds inH1 andH2 get heavy masses V and splitted

from their doublet partners.

In our SO(10)�SO(10) model, among the four fundamental Higgs, ZB�L

and ZT3R acquire their VEVs of the Dimopoulos-Wilczek (DW) forms through

the stabilization of a tree level superpotential as in Eq. (4). However, the

DW forms of VEVs may be seriously destabilized when some cross coupling

terms, such as Tr(ZT
B�LZT3R) � Zab

B�LZ
ab
T3R

, Tr(ZT
XZB�L), Tr(Z

T
XZT3R), and

Tr(ZT
XZB�L) are present in the superpotential. For instance, the presence

of the term Tr(ZT
XZT3R) would destabilizes the gauge hierarchy in ZT3R since

the F-
atness condition FZT3R = 0 would give a term proportional to ZX .

As a result, these cross coupling terms must be excluded to implement the

DW mechanism for the Higgs doublet-triplet splitting problem. Although
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SUSY allows unwanted superpotential terms to be dropped by hand, it is

less arbitrary to forbid them by a discrete symmetry.

Barr [12] has suggested that a discrete symmetry may do the job of for-

bidding the above cross coupling terms. In our model, there is a possible

choice K = ZT3R
2 � Z

T 0
3R

2 � ZB�L
2 � Z1

5 � Z2
5 , and under which the various Z

�elds transform as

ZT3R
2 : ZT3R ! �ZT3R

Z
T 0
3R

2 : ZT3R ! �ZT3R
ZB�L
2 : ZB�L ! �ZB�L

Z1
5 : SX ! e6�i=5SX

Z2
5 : (SX ; ZX)! e2�i=5(SX ; ZX): (15)

The ZB�L
2 and ZT3R

2 symmetries in Eq. (15) are designed to forbid the

dangerous cross coupling superpotential terms noted above but still allow

the coupling terms at the quartic level

Tr(ZB�LZ
T
B�L)Tr(ZT3RZ

T
T3R

) ; [Tr(ZB�LZ
T
T3R

)]2

Tr(ZB�LZ
T
B�LZT3RZ

T
T3R

) ; Tr(ZB�LZ
T
T3R

ZB�LZ
T
T3R

): (16)

The terms in Eq. (16) might change the values of the scales appearing in

< ZB�L > and < ZT3R >, but they do not destabilize the DW forms of

VEVs. The last two terms of Eq. (16) would have zero contribution to the

F-
atness conditions. However, they remove the would-be Goldstone modes

that are not eaten by the gauge bosons in the �elds ZB�L and ZT3R. The

Z
T 0
3R

2 discrete symmetry prevents the e�ective identity operator Tr1(Z
T
XZT3R)

from coupling to the spinorial superheavy states 	1 and �	7 in our model.

However, this Z
T 0
3R

2 symmetry is basically construction-dependent and may

not be necessarily introduced into our SO(10)�SO(10) model. We will come

to this point again when discussing fermion spectrum in the next subsection.

In general, the symmetry K would keep �elds SX and ZX from coupling to

ZB�L and ZT3R up to a very high order, e.g. Tr(ZXZB�L)Tr(ZXZB�LS
8
X)

as implied by Table 1. Thus the DW forms of VEVs are protected up to

corrections of the order of the weak scale when the GUT gauge group breaking

parameters vD=M , v10=M and v5=M are su�ciently small.
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An explicit superpotential giving Higgs doublet-triplet splitting by the

above mechanism is:

WDT = 10HZB�L10H0 +
1

M
10H0SXZT3R10H00 +X10H0010H00 (17)

where 10H , 10H0 and 10H00 denote Higgs �elds in (1,10), (10,1), (10,1) repre-

sentations respectively. X is a gauge singletz that acquires a GUT scale VEV

and this makes 10H00 superheavy. The introduction of the singlet X is re-

quired by the fact that if 10H0010H00 is a singlet and present in superpotential,

so is the non-renormalizable term SXSX10H010H0. This term SXSX10H010H0,

if exists, will give superheavy mass to the triplet states living in 10H0 and

generates heavy Higgsino triplets exchange diagrams that mediate proton

decay and spoil the strong suppression of proton decay. As in generating the

e�ective rank two tensors, the non-normalizable term in Eq. (17) may rise

from integrating out heavy states in the (1, 10) representation. The insertion

of the �eld SX in this term is designed to protect 10H from coupling 10H00 to a

high order level. In order to achieve DW mechanism, these Higgs �elds must

transform non-trivially under the discrete symmetry K. In general, there are

many possible ways of assigning K charges to all �elds in our model. One

assignment for the K charges is given and can be found in Table 1

Here it is clear that the discrete symmetry Z1
5 � Z2

5 would play the role

of forbiding unwanted terms in superpotential. According to Table 1, the

Higgs mass terms MHH10H10H and MH0H010H010H0 are forbidden by this

discrete symmetry up to (< XS8
X > =M8+ < X3S2

XZ
2
X=M

6 >)10H10H and

< S2
XX

4 > =M510H010H0 respectively, and MHH0010H10H00 are very highly

suppressed by the discrete symmetry K. Therefore, up to the order of weak

scale, the mass matrix MHT
and MHD

for Higgs triplets and doublets are

given as

MHT
=

0
B@

0 < ZB�L > 0

< ZB�L >
<S2

X
X4>

M5 0

0 0 < X >

1
CA ;

zThe singlet X may or may not be the e�ective rank two tensor �elds I or I 0 depending

on how the K symmetry is chosen in our model.
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MHD
=

0
BB@

0 0 0

0
<S2

X
X4>

M5 <
SXZT3R

M
>

0 <
SXZT3R

M
> < X >

1
CCA : (18)

Therefore, as from Eq. (18), only one pair of the doublets in 10H would

remain light after the breaking of the GUT gauge group. However, as seen

from Eq. (18), one pair of the heavy Higgs triplets may receive a GUT

scale MG � v5 mass, while the corresponding Higgs doublets �elds receive a

mass v2Dv
2
5= < X > which is less than the scale v5. This may a�ect the gauge

uni�cation in our model depending upon the scale hierarchy between the two

masses. Actually, this mass discrepancy results from forbidding dangerous

high order nonrenormalizable operators which also contribute to the mass

matrices MHT
and MHD

. If we assume that only renormalizable terms in

superpotential are allowed at the superheavy scale M and all high order

terms are generated from the Heavy Fermion Exchange mechanism (HFE)

[13], than the scale ratio < SX > =M can be of order O(1) thus all heavy

Higgs states, doublets and triplets, would have GUT scale masses m � v5
and we have the gauge uni�cation as that of the minimal supersymmetric

standard model (MSSM). In this paper, we simply assume negligible e�ects

on gauge uni�cation caused by the mass discrepancy among the heavy Higgs

multiplets.

Finally, we discuss the implications for proton decay. Eq. (18) also im-

plies a strong suppression of proton decay. Since the high order operator

S2
XX

410H010H0=M5 is present, then the dimension 5 operators (dimension

4 in superpotential) that mediate proton decay are formed by exchanging

heavy Higgsino triplets

�

M�
QQQL; ; (19)

with the e�ective mass M�

M� � M5 < ZB�L >
2

< S2
XX

4 >
� 1031 GeV >> Mpl: (20)

Here we use Q and L to represent the associated quarks and leptons in

proton decay processes. The estimated value for M� in Eq. (19) is obtained

by assuming M � Mpl, < ZB�L > = < SX >� 10�2, and < X > =M �
10�4. The coupling strength parameter � � 10�7 comes from multiplying the
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associating Yukawa coupling constants in the color-Higgs exchange Feynman

diagrams. To saturate current experiment limits on proton decay [14], , the

coupling strength �=M� for the dimension 5 operators should be no large

than about 10�24 GeV�1. Obviously, the estimated strength in Eq. (19) is

far more less than the limit, therefore proton decay is highly suppressed in

our model.

3.2 Fermion masses

Anderson et al. [10] showed that, with adjoint operators � in a SUSY GUT

SO(10) gauge theory, experimentally acceptable fermion mass spectrum as

well as CKM angles can be obtained when these �elds acquire their VEVs

and break the GUT SO(10) gauge group down to Standard Model gauge

group. We can generate the same Yukawa matrices by using e�ective higher

dimension operators. These can be obtained by integrating out heavy �elds.

Then, following the choices made by Anderson et al., we show that viable

fermion mass matrices, such as those incorporating Georgi-Jarlskog ansatz

[10, 15], can be constructed in the SO(10)1 � SO(10)2 model.

We need to introduce additional heavy �elds in the 16 and 16 of SO(10)2.

We assume that all other matter multiplets also transform under the gauge

group SO(10)2. From Table 1 , it is easy to see that non-renormalizable terms

at the quartic level, for instance the 	1Tr1(Z
T
XSX)

�	1, are allowed to occur

in our SO(10)1 � SO(10)2 model. This term may come from integrating

out a pair of superheavy spinorial �elds 	0
1(16; 1) and

�	0
1(16; 1) from the

renormalizable superpotential

W �M 0
1	

0
1
�	0
1 +	1SX �	0

1 +	0
1ZX

�	1; (21)

whereM 0
1 denotes the super-heavy mass of 	0

1 and
�	0
1. At the renormalizable

level with the generated quartic terms, the most general tree level superpo-

tential consistent with the discrete symmetry K in Table 1 and responsible

for giving masses to quarks and leptons has the form

Wmass � 16316310H + 163�B�L
�	2 + 162	110H + 162�X

�	8 + 161�X
�	3

+ 	1�X
�	1 +	2�X

�	2 +	2�B�L
�	1 +	3�X

�	4 +	4�X
�	5

+ 	5	610H + �	6�X	7 + �	7�X	8 +XS162 �	2
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+
8X
i=3

	i � I � �	i; (22)

where the gauge singlet �eld XS is introduced to give mass to 162 and �	2

when acquiring a superheavy VEV.

From Eq. (22), only the third family matter multiplet 163 could get

a mass of weak scale due to the discrete symmetry K. When the e�ective

adjoint operators �X and �B�L acquire their VEVs, the spinorial �elds 	i; �	i

become heavy and can be integrated out in the low energy e�ective theory.

The higher dimension operators Oij that give masses to matter quarks and

leptons are thus generated after diagonalizing the mass matrices of these

superheavy spinorial �elds [10].

O23 = 16210H
�2
B�L

�2
X

163

O22 = 16210H
XS�B�L

�2
X

162

O12 = 161(
�X

I
)310H(

�X

I
)3162: (23)

The generation for the Oij operators is much easier to be seen from the dia-

grams in Fig.(1). As seen from Eq. (23), fermion mass hierarchy is explained

due to the hierarchy of the GUT breaking scales M > vD > v10 > v5. The

e�ective adjoint operators �X and �B�L act on fermion states and give dif-

ferent quantum numbers to the states as described in Table 2. As a result,

Eq. (23) leads to the following typical Georgi-Jarlskog ansatz for the Yukawa

matrices at GUT scale

Mu = < H >

2
64 0 1

27
C 0

1

27
C 0 B

0 B A

3
75 ; Md =< �H >

2
64 0 �C 0

�C E B

0 1

9
B A

3
75 ;

Me = < �H >

2
64

0 �C 0

�C 3E B

0 9B A

3
75 ; (24)

with A � O(1), B � v25=v
2
10, C � 27(v610=v

6
D), and E � v5M < XS >

=(vDv
2
10). As seen from Eq. (24), we have the following successful GUT
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relations

�t = �b = �� (25)

�u22 : �
d
22 : �

e
22 = 0 : 1 : 3 (26)

m� = mb; ; m� � 3ms; md � 3me; (27)

where �'s denote the e�ective Yukawa coupling constants for corresponding

mass operators.

Conclusively, it is suggested that the breaking of our GUT model is ar-

ranged as

SO(10)1 � SO(10)2
vD�! SO(10)D

v10�! SU(5)D � U(1)D
v5�! SU(3)C � SU(2)L � U(1)Y ;(28)

with approximate ratios vD=M � 1=30, v10=vD � O(10�1), v5=v10 � O(10�1),

and < XS >=< X >� vDv5=M . Detailed analysis for the mass operators

Oij can be found in [10], and will not be discussed in this paper.

As in more familiar GUT SO(10) models, we can also analyze the neutrino

masses in our SO(10)1 � SO(10)2 model. First we observe that the matrix

M�c� for Dirac masses of neutrinos has a nonzero 22 entity also coming from

O22, and is far from identical to the up-quark mass matrix.

M�c� =< H > �

2
64

0 �125C 0

�125C � 6

25
E B

0 9

25
B A

3
75 (29)

Since 125C is almost the same order of magnitude as A, the Dirac mass

matrix for neutrino is no longer as hierarchical as quark and charged lepton

mass matrices. To form Majorana mass for the right handed neutrinos, we

introduce a set of spinorial Higgs �elds 	Vi(1; 16),
�	Vi(1; 16) which VEVs

preserve the SU(5)2 subgroup of SO(10)2. In general, the following neutrino

mass operators can also be formed from heavy fermion exchanges

1

M

X
i;j

( �	Vi�
(126)
a

�	Vj )(16i�
(126)
a 16j); (30)

where i; j are 
avor indices. For simplicity, we would assume the Majorana

mass matrix MR for right handed neutrinos to be a diagonal matrix with

13



eigenmasses mR1
, mR2

and mR3
. Thus, from Eqs (29) and (30), the e�ective

left handed Majorana mass matrix is

M�� �M+
�c�M

�1
R M�c�: (31)

Taking C=E � 0:22 � 6=25 as implied by the Cabibbo angle, it thus lead to

the following three Majorana eigenmasses for left handed neutrinos

m�� �
m2

t

mR3

; m�� �
(125mdtan�)

2

mR2

; m�e �
(125mdtan�)

2

mR1

: (32)

Although all the VEVs of 	Vi need not to be the same, we might take all <

	Vi > to be equal to v10 for illustration. This givesmRi = mR � 2�1014 GeV
and leads to m�� � 1=20 eV, m�u � m�e � O(10�3 eV) for tan� = 45. Visi-

ble �� ��� and �� ��e oscillations with very small neutrino oscillation angles

sin22�osc�� and sin22�osc�e are favored when taking such assumption. However,

other mass spectra for left handed neutrinos as well as large neutrino mixing

angles may be obtained [16, 17]. This is because the right handed neutrino

mass matrixMR may itself be nontrivial and have a hierarchical structure in

our SO(10)� SO(10) model.

4 An SO(10) � SO(10) � SO(10) model

It is straightforward to extend the GUT gauge group to SO(10)1�SO(10)2�
SO(10)3 and have all matter multiplets transform under one of the SO(10)

gauge groups. However, this extension is basically a replication of the SUSY

GUT SO(10)1�SO(10)2 model described in the previous sections. Di�erent

from the above direct generalization, in this section, we assign each mat-

ter multiplet 16i to transform under di�erent gauge group SO(10)i. We also

assume the existence of the three Higgs �elds 10H(1; 1; 10), 10H0(1; 10; 1), and

10H00(1; 10; 1), and a set of fundamental Higgs �elds SX(1; 10; 10), ZX(1; 10; 10),

ZB�L(1; 10; 10), ZT3R(1; 10; 10), Z
0
B�L(10; 10; 1), and Z

0
T3R

(10; 10; 1) for imple-

menting the DW mechanism. The complete set of assignment is shown in

Table 3.

The fundamental Higgs �elds acquire their VEVs along some GUT break-

ing directions as described in the previous sections. To protect the DW forms

of the VEVS, some discrete symmetries above the GUT scales must typically

14



be expected to restrict possible tree level superpotential terms. Without giv-

ing the discrete symmetries explicitly, we note that the superpotential re-

sponsible for giving heavy masses to Higgs triplet �elds must be restricted

to the following form:

10HZB�L10H0 +
1

M
10H0SXZT3R10H00 +X10H0010H00; (33)

where M denotes the superheavy scale and X is again a gauge singlet with a

GUT scale VEV. By the HFE mechanism mentioned in Section 3, the second

term in Eq. (33) may also come from integrating out some superheavy states.

In the worst case, if all allowed nonrenormalizable operators are present in

superpotential, the gauge hierarchy as well as the DW forms of VEVs could

still be protected up to a very high order by some discrete symmetries. As

a result, only the pair of the Higgs doublets states in 10H remain light down

to the weak scale and proton decay could be suppressed strongly.

In the following, we will brie
y discuss the construction of realistic fermion

mass matrices without going into details of how the �elds transform under

the needed discrete symmetries.

As usual, only the third family of matter multiplet 163 gets a weak scale

mass through the tree level dimension four operator O33 = 16316310H . Other

Oij operators are generically nonrenormalizable because 161 and 162 both

carry no SO(10)3 gauge quantum numbers. However, it is impossible to form

Oij operators for the o�-diagonal entries of fermion mass matrices by simply

using matter multiplets and the Higgs �elds in fundamental representations.

A set of additional heavy �elds in the 16 + 16, 	Vi and
�	Vi , which trans-

form under the GUT gauge group as (16; 1; 1), (16; 1; 1), (1; 16; 1), (1; 16; 1),

(1; 1; 16) and (1; 1; 16), must be introduced into the model and acquire VEVs

along the SU(5)i singlet directions. The VEV's can be stabilized by the

superpotential of the following form [18]

Y (	V
�	V )

2=M2
V + f(Y ); (34)

where Y is a singlet �eld and f(Y ) is a polynomial function that contains a

linear term. Notice that the would-be Goldstone modes in the spinors 	Vi

and �	Vi can be removed by adding more terms to the superpotential [18].

Although there are many possible nonrenormalizable operators which may

or may not survive from imposing the discrete symmetries, the following
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high dimensional operators could also arise from the HFE mechanism, and

are interesting because they may help to realize the Gerogi-Jarlskog type of

Yukawa matrices in the model.

O23 = (	V2 � SX � SX � 162) � (	3 � 10H �
1

�2
X

163) (35)

O22 = (162 � SX �
�B�L

�2
X

162) � 10H (36)

O
(1)

12 = (	V1 � Z 0
B�L � 161) � (	V2 � SX � 162) � 10H (37)

O
(2)

12 = (	0
V1
� Z 0

T3R
� 161) � (	V2 � SX � 162) � 10H (38)

O
(3)

12 = (	V1 � Z 0
B�L � Z 0

B�L � 161) � (	0
V2
� SX �

�3
X

I3
162) � 10H (39)

O
(4)

12 = (	V1 � Z 0
T3R
� Z 0

T3R
� 161) � (	0

V2
� SX �

�3
X

I3
162) � 10H (40)

O
(5)

12 = (	0
V1
� Z 0

B�L � Z 0
T3R
� 161) � (	0

V2
� SX �

�3
X

I3
162) � 10H (41)

Again, the e�ective adjoint operator �X of the gauge group SO(10)2 gives

di�erent quantum numbers to the fermion states in the matter multiplets 16i.

Since the Higgs �elds Z 0
B�L and Z 0

T3R
must at least carry di�erent charges of

some global Z2 symmetry to avoid the breaking of gauge hierarchy, we thus

need two additional VEV-acquiring spinors 	0
Vi and 	0

Vi , where i = 1; 2, to

make the operators O12 respect the Z2 symmetry.

Let us parametrize the contributions of the operators 16316310H and the

Oij as A;B;E; ::::. In the case that only 16316310H and the Oij operators

give dominant contributions to fermion masses, the fermion mass matrices

become

Mu = < H >

2
64

0 C(3) 0

C(5) 0 B

0 B A

3
75 ;

Md = < �H >

2
64 0 C(1) 0

27C(5) E 0

0 1

9
B A

3
75 ;
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Me = < �H >

2
64

0 27C(4) 0

C(2) 3E 1

9
B

0 0 A

3
75 ;

M�c� = < H > �

2
64

0 27(C(3) + C(4) + C(5)) 0

C(2) � 6

25
E 1

9
B

0 0 A

3
75 ; (42)

where A, B, E, and C(i) come from the contribution of the operators O33,

O23, O22, and O
(i)
12 respectively. Again, the numbers shown in Eq. (42) are

Clebsch-Gordan coe�cients. From the mass ratio mu=md, we may estimate

that the ratio C(3)=C(1) � 1=27. Therefore, to realize an experimentally

acceptable fermion mass matrix, as implied from Eq. (42), the breakdown of

the GUT gauge group SO(10)1�SO(10)2�SO(10)3 may take the following

steps

[SO(10)]3 �! SU(5)1 � SU(5)2 � SU(5)3 at < 	Vi >�M

�! SU(3)C � SU(2)L � U(1)Y at v5 �
1

30
M; (43)

where M � 6� 1017 GeV, vD � v10 � v5, and < XS > =v5 �< X 0
S > =v5 �

10�1 are assumed. In this GUT group breaking scenario, the SO(10) �
SO(10)�SO(10) GUT gauge group would �rst be broken down to SU(5)�
SU(5) � SU(5) by the spinorial Higgs �elds 	Vi and

�	Vi, and then breaks

into the embedded diagonal subgroup SU(3)C�SU(2)L�U(1)Y at the GUT

scale MG � v5.

Neutrinos may acquire masses by the same mechanism described in the

previous section. A set of spinorial Higgs �elds with non-vanishing VEVs

along the SU(5)i-preserving directions are necessary for giving Majorana

masses to right handed neutrinos. However, none of the spinorial Higgs �elds

used in constructing the operators Oij can be used in giving a Majorana mass

to right handed � neutrino �� since, otherwise, we would get the Majorana

mass for left handed � neutrino m�� � m2
t=M � 1=6� 10�4eV � m�� ; m�e ,

which is disfavored by recent SuperKamiokande data [19]. Thus a new pair

of spinorial Higgs �elds 	0
V3

and 	0
V3

would be needed to give an acceptable

mass to �c��
c
�

1

M
( �	0

V3
� (126)
a

�	0
V3
)(163�

(126)
a 163): (44)

17



with < 	0
V3
>=< �	0

V3
>� v5.

As before, a non-trivial Majorana mass matrixMR
� for right handed neu-

trinos may be present in the model, and heavily in
uence the Majorana mass

spectrum as well as neutrino mixing angles of left handed neutrinos. We will

not discuss this problem in detail in this paper.

5 Conclusion

Typical SUSY SO(10) GUT models require a variety of rank two tensor

�elds, such as the �elds in 45 and 54 representations, to be phenomenologi-

cally successful. These rank two tensors, when they acquire their VEVs and

break the gauge SO(10) group, also play important roles in implementing the

Dimopoulos-Wilczek mechanism and in deriving experimentally acceptable

Yukawa matrices. However, these representations are complicated, and it is

usually di�cult for all the needed rank two tensor �elds to be generated by

a simple string construction.

In this paper, we have shown that it is possible not only to implement

the DW mechanism but also to provide experimentally acceptable Yukawa

matrices. In our SO(10) � SO(10) and SO(10) � SO(10) � SO(10) GUT

models, without introducing any rank two tensor �elds, the Higgs doublet-

triplet splitting problem is naturally solved with strong suppression of proton

decay when some Higgs �elds of fundamental representations acquiring their

VEVs in Dimopoulos-Wilczek forms. Also, unlike other SO(10) � SO(10)

and SO(10) � SO(10) � SO(10) models in the literatures [6, 7], e�ective

adjoint operators of at least one of the SO(10) gauge group can be formed

when combining the S and one of the Z �elds in our model. This allows us

to construct realistic fermion mass matrices with successful GUT relations

such as top-bottom-tau uni�cation �t = �b = �� , m� = 3ms, and md = 3me.

On the neutrino mass problem, as in conventional SO(10) theories, some

spinorial Higgs �elds in the 16 representation of the corresponding SO(10)i
gauge group are necessary for making e�ective �c�c mass operators. When ac-

quiring VEVs that preserve subgroups SU(5)i for each corresponding SO(10)i,

these spinorial Higgs �elds give superheavy Majorana masses to right handed

neutrinos. Small Majorana masses for left handed neutrinos are thus gen-

erated from see-saw mechanism. However, further understandings on the

neutrino sector will be needed in our models for constructing the mass ma-
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trix for right handed neutrinos, and also for understanding the mass hierar-

chy/splitting as well as the mixing angles among left handed neutrinos.
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	1 	2 	3 	4 	5 	6

(+,+,2,-2) (-,-,2,-1) (-,+,2,-2) (+,+,-1,-2) (-,+,1,-2) (-,+,-2,2)
�	1

�	2
�	3

�	4
�	5

�	6

(-,+,0,0) (+,-,0,-1) (-,+,2,0) (+,+,0,0) (-,+,-2,0) (-,+,1,1)

	7 	8 SX ZX ZB�L ZT3R
(+,+,1,2) (-,+,-1,2) (+,+,3,1) (-,+,0,1) (+,-,0,0) (-,+,0,0)

�	7
�	8 XS 161 162 163

(+,+,-2,1) (-,+,0,1) (+,-,-2,-1) (+,+,-2,0) (+,+,2,2) (+,+,2,0)

X 10H 10H0 10H00

(+,+,-1,2) (+,+,1,0) (+,-,-1,0) (-,-,-2,-1)

Table 1: Fields transforming under the discrete symmetry ZT3R
2 � ZB�L

2 �
Z1
5 � Z2

5 . All �elds are Z
T 0
3R

2 singlets except for the �elds ZT3R and 10H00 .

X B � L T3R Y

u 1 1 0 1/3

�u 1 -1 -1/2 -4/3

d 1 1 0 1/3
�d -3 -1 -1/2 2/3

e -3 -3 0 -1

�e 1 3 1/2 2

� -3 -3 0 -1

�� 5 3 -1/2 0

Table 2: Quantum numbers of the adjoint 45 VEVs on fermion states.
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163
163

10H

(a)

162 163

10H
ΣB-LΣXΣB-LΣX

Ψ2Ψ1 Ψ1 Ψ2

(b)

162 162

10H
ΣX ΣXΣB-L X S

Ψ1 Ψ2Ψ1 Ψ2

(c)

161
162

10H

ΣXΣXΣXΣX
ΣXΣX

Ψ3 Ψ4 Ψ5 Ψ6 Ψ7 Ψ8Ψ3 Ψ4 Ψ5 Ψ6 Ψ7 Ψ8

ΙΙΙΙΙ Ι

(d)

Figure 1: Operators Oij that give Yukawa matrices are formed by exchanging

heavy fermion states.
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SO(10)1 SO(10)2 SO(10)3
SX 10 10

ZX 10 10

ZB�L 10 10

ZT3R 10 10

Z 0
B�L 10 10

Z 0
T3R 10 10

10H 10

100H 10

1000H 10

161 16

162 16

163 16

Table 3: The �eld content of the SO(10)1 � SO(10)2 � SO(10)3 model.
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