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Abstract

Experiences developing a data acquisition system for the
BABAR CP violation experiment located at the Stanford Linear
Accelerator Center are presented. The BABAR detector consists
of multiple independent subdetectors joined with a data acqui-
sition system consisting of a large number of embedded Pow-
erPC single board computers residing in VME crates. The data
acquisition software is layered on the VxWorks real-time oper-
ating system. It is partitionable to allow subsystems (as well as
test stands) to operate independently. Data is assimilated into
events through a combination of shared memory and a high
performance network. This system presents data to a UNIX
farm via a high speed non-blocking ethernet switch at a rate of
2 KHz.

Topics such as bootstrapping and loading 200 processors, NFS
file access for these processors and software development and
deployment are discussed.

I. INTRODUCTION

The BABAR detector was built to study CP violation in the B-
meson system. It is now located in the Interaction Region of

the PEP-II asymmetrice+e- storage ring facility at SLAC. The
design of the detector and its Data Acquisition system (DAQ)
are described in detail elsewhere [1], [2], [3], [4].

 A. The Front End

The system consists of 6 subsystems (Silicon Vertex (SVT),
Drift Chamber (DCH), Cherenkov Ring Imaging (DIRC),

Electromagnetic Calorimeter (EMC), Instrumented Flux
Return (IFR) and Trigger (TRG)) from which data is continu-
ously digitized in so called Front End Elements (FEEs) located
on the detector. Read Out Modules (ROMs) receive data from
up to 32 FEEs over an optical fiber. ROMs send control signals
to their FEEs and can inject signals into the front ends for cali-
bration and data integrity checks over other fibers. The Level 1
trigger is implemented in hardware and uses a small subset of
the detector information (e.g., deposited energy, tracks plus
geometry constraints) to determine which data is to be pro-
cessed by the ROMs for inclusion into events. These pieces are
called eventsegments. The averageL1Acceptrate is around 2
KHz. Software running on the ROMs performs feature extrac-
tion and data compression.

Complete events are built in a hierarchical manner. Eventfrag-
mentsare built up in a ROM from event segments on a per crate
basis. These fragments are then sent to a node in the UNIX
farm where they are built into a complete event. The Level 3
trigger is implemented in software that runs on the farm pro-
cessors. It is applied to these complete events to extract phys-
ics. The resultant rate of events written to the persistent store is
100 Hz.

Table 1 shows data contribution sizes by the various subdetec-
tors (including those of the global (GLT), tracking (TRK) and
energy (ENR) trigger systems). The average data rate from the
detector is 2.35 GB/sec. This is reduced to 65 MB/sec by the
L1 trigger. The L3 trigger cuts this down to 3.2 MB/sec going
to persistent store.

Table 1 Subsystem contributions to the data size

Subdetector
Number
of ROMs

KB/ROM
per Event
(Input)

KB/ROM
per Event
(Output)

Total KB
per Event
(Input)

Total KB
per Event
(Output)

SVT 26 0.33 0.33 8.5 8.5

DCH 4 3.5 1.0 14 4.0

EMC_BRL 80 12 108 960 8.5

EMC_ECP 20 8 70 160 1.5

DIRC 12 1 390 12 4.5

IFR 8 1.1 250 9 2.0

Total 155 -- -- 1176 32.5



 B. The Fast Control and Timing System

The Fast Control and Timing System (FCTS) is responsible for
distributing timing signals synchronous with the bunch cross-
ings in the PEP-II interaction point to the FEEs. It also distrib-
utes such signals as the L1Accept trigger that is received by
both FEEs and ROMs, as well as collecting inhibit (FULL) sig-
nals with which the system is throttled. Additionally, it pro-
vides a messaging path for the data acquisition system.
Messages are accompanied by a 56 bit timestamp derived from
the 476 MHz RF signal of PEP-II. The timestamp accompany-
ing the L1Accept signal is what the Event Builder uses to rec-
ognize event segments coming from disparate ROMs as
belonging together. The FCTS was designed to allow the DAQ
system to be divided into several independentpartitionswhich
can be operated simultaneously. This has proved essential to
the commissioning of subsystems by their respective groups.

 C. Reverse Dataflow

While most of the data flows from the detector toward the per-
sistent store, there is a class of data that must flow in the oppo-
site direction. Items falling in this category are configuration
information, calibration signals, and the downloading of code
and constants. FEEs have been designed to accept a known sig-
nal from the ROMs with which to stimulate the front ends.
Whilst this doesn’t test the detector element or sensor, it does
allow the calibration of the analog data path and determines the
integrity of the data path back to the ROM. Other methods are
used to calibrate the detector elements and sensors.

II. REQUIREMENTS

Early in the planning stages of the experiment it was decided to
use commercial off-the-shelf components where possible and
to try to minimize the number of items that had to be developed
in-house. This philosophy applies to software as well as hard-
ware. The hope was that this would be more cost effective as
well as provide a larger pool of experience and product sup-
port. In practice, it is not always clear that benefits gained from
using commercial products, with their extraneous features
needed to appeal to a wider market and their often short life
cycles due to technology advances, outweigh in-house designs
that are made to fit. Finding that spares are no longer available
a couple years after a system has been implemented can be a
big problem.

 A. Processor Module

9U VME crates were chosen to be the form factor used to
house the data acquisition hardware. PowerPC processors were
chosen for the front end CPUs. There are a number of Single
Board Computer manufacturers that can provide boards that
meet the requirements. Motorola won the bidding competition
with their MVME2306 processor boards [5]. These have 300
MHz 604r PowerPC chips, 32 MB of DRAM, 1+4 MB of flash
memory, a DEC 21140 ethernet interface, a Tundra Universe
PCI/VME bridge, a serial port and two PMC expansion slots.
There is no Level 2 cache on this model.

These boards are embedded in the ROM modules with the
VME connectors directly on the backplane. The front panels
are removed and wiring is added to bring the front panel func-
tions out to the front panel of the ROM. Additionally, a flex-
circuit board is added on the back of the MVME2306 to bring
the serial port and the LAN connector out through the P2 con-
nector onto a custom interface card that plugs into the back
side of the VME crate. The goal was to minimize wiring to the
front panel of the ROM so that indicators and switches (reset
buttons, etc.) would not be obscured, as well as reducing the
number of times that connection have to be broken and remade
when swapping modules. 100 Base Tx Full Duplex is run on
the LAN so there has been some concern about whether the
quality of the signal was significantly degraded by the flex-cir-
cuit and/or P2 connector. This has proven not to be a problem.

 B. RTOS

VxWorks from Wind River Systems [6] was chosen to be the
Real-Time Operating System to be used in the ROMs for
mostly historical reasons. At the time (1996), PowerPC support
for VxWorks was just emerging. This meant that we were on
the cutting edge of making various components of the RTOS
work. What we learned in the process is that VxWorks is much
more suited to working with small quantities of processors,
which is, after all, the model Wind River promotes. In the case
of some 160 processors, the demand on the host and network
was such that all processors never reliably booted from a com-
mon reboot signal (passed as an FCTS message). To solve this
problem, a VxWorks program (as opposed to the Motorola-
installed flash-resident monitor, PPCBug, which requires a
jumper change to invoke) found on the VxWorks net news
group to program the VxWorks kernel into one of the on-board

TRG_GLT 1 0.5 493 0.5 0.5

TRG_TRK 3 3 770 9 2.0

TRG_ENR 1 3 1360 3 1.0

Table 1 Subsystem contributions to the data size

Subdetector
Number
of ROMs

KB/ROM
per Event
(Input)

KB/ROM
per Event
(Output)

Total KB
per Event
(Input)

Total KB
per Event
(Output)

Total 155 -- -- 1176 32.5



flash memories of the MVME2306es was used, under the
assumption that it remains fairly constant. The difficulty that
this solution presents is that while it takes only a short time to
reprogram the flash (~1 minute plus whatever time for verifica-
tion and testing), it requires an outage that must be scheduled.
Outages cause sociological problems and are best avoided.
Another drawback is that it is now more difficult to swap spare
ROMs in since the version of the kernel that the spare contains
in its flash may not be the most up-to-date one. A much better
scheme would be to use a third-party loading technique to
broadcast load the desired kernel (as well as everything else
that needs to be downloaded, e.g., code, constants, etc.) via net-
work multicasting to ROMs in an operator-selected working
set. One can then have some confidence in what the processors
are running. Unfortunately, there have been more pressing
issues preventing us from embarking on this development path.

With the processors booting from flash memory, the boot time
for a large quantity of processors has been reduced from sev-
eral minutes with a long tail (observed to extend to at least 40
minutes) to around ten seconds. The Board Support Package
(BSP) was modified to mount an NFS file system on the host
server near the end of the booting process. This allows a startup
script to be retrieved using the NFS protocol. The startup script
contains the commands to load the data acquisition system
libraries and executables from the NFS partition. This takes an
additional 10 or so seconds. The DAQ software is not burned
into flash as it is currently much more variable than the kernel.

Additional modifications to the kernel and also to the host’s
operating system (Sun Solaris) turned out to be necessary or
there were long booting time tails (minutes and occasionally
booting didn’t complete) even when booting from flash. Items
that fall in this category are increasing the NFS retry count,
increasing the NFS timeout value, increasing the ARP retry
count and avoiding the ARP broadcast protocol to translate an
IP address to an ethernet address by seeding the VxWorks ARP
table with the appropriate information for the host. On the
Solaris server, it was found that the number of threads available
for the NFS and mount daemons had to be increased dramati-
cally from their defaults. The problems were generally due to
all processors in the DAQ system arriving at the same point in
their booting process at the same time and thus overflowing the
host’s ability to handle network requests, or being swamped
themselves due to network traffic from their neighbors.

Only a subset of the users of the front end system modify the
VxWorks kernel configuration. To keep track of the changes
made to the VxWorks kernel, version management provided by
the CVS program [9] is used. To avoid having many copies of
the VxWorks distribution in developers’ directories, only the
changed files are tracked. A shell script creates appropriate soft
links to the VxWorks distribution in the developer’s directory
tree. Kernel developers can thus build their own versions of the
kernel independently. To keep track of what is actually in the
flash, the VxWorks build procedure has been modified to create
a symbol in the kernel with a version code. This code, when
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 Figure 1:  Network layout of the BABAR data acquisition and logging system



converted to a string, is also used as the name of the CVS tag
that identifies a completed development point.

 C. Network

The decisions, and validation of the hardware leading to those
decisions, made to build the LAN network plant are fairly com-
pletely described in [7]. One of the features that was strived for
was scalability of the system so that misestimates of the data
rate and/or size or potential increases in PEP-II luminosity
could be compensated for. To summarize, a Cisco Systems Cat-
alyst 5500 non-blocking ethernet switch is used with 100 Base
Tx, full duplex connections to form the fabric over which event
data is moved from the front end processors to the Level 3 trig-
ger processing farm. The network is in its own subnet so as to
prevent interference from unrelated network traffic and vice
versa. A diagram of the plant is given in figure 1. There are
some 75 Sun Ultra 5s in the Online Farm. Depending on
requirements, more or less of these machines can be allocated
to the Level 3 trigger processing. Currently that number stands
at 32. The remaining Ultra 5s are used for prompt reconstruc-
tion of the data.

There is a gigabit ethernet link from the switch to a Sun Enter-
prise 450 server. This 4 CPU machine serves the file system
and also gives access to the permanent event logging device.
Events are intermediately stored to disk for prompt reconstruc-
tion purposes. Additional processing power is provided by
SLAC Computing Services (SCS) in the form of a farm of Sun
machines consisting of some 200 processors. These processors
are also attached to a Cisco Systems switch. Since approxi-
mately 2 km separates SCS and BABAR, the SCS switch is con-
nected to the DAQ switch with another gigabit ethernet link
running on optical fiber.

 D. Event builder

Events are built from data segments in two stages. First, feature
extracted data segments are moved from data taking ROMs in
the VME crates to the corresponding Slot 1 ROM of the VME
crate. The Slot 1 ROMs build up event fragments from these
segments according to the segments’ FCTS timestamps. A
table of available farm nodes is established at initialization
time. The timestamp is used to form an index into the farm
node table to determine which node is to receive the event frag-
ments. This ensures that all fragments of a given event are sent
to the same farm node. The UNIX select () mechanism is used
to determine when all contributions of an event have arrived,
and to time out those that are missing. Because of the time
ordered nature of event arrival, the event builder recognizes
that when it receives an event fragment that is newer than one it
is waiting on, it can declare the old one lost and proceed with
the processing of the contributions it already has.

Each stage of the event building has buffering associated with
it. The buffering is used to smooth out rate variances. When a
stage’s buffers are used up, it goes into resource wait mode
until the condition causing it is alleviated. If the condition per-
sists long enough, the next stage upstream will run out of buff-
ers and also go into resource wait mode. This process continues

up to the point where the FEEs can no longer buffer new data.
This causes a FULL signal to be asserted back to the Fast Con-
trol and Timing System. Once FULL is asserted, L1Accept
triggers can no longer be generated.

The event builder code has gone through several stages of evo-
lution. The portion of the event builder code that is used in the
online UNIX farm to build events from event fragments can be
used equally well in the Slot 1 ROMs to build event fragments
from event segments. In order to handle the traffic between the
data taking ROMs and their Slot 1 ROMs, a second Cisco Sys-
tems Catalyst 5500 switch has been installed (not shown in fig-
ure 1).

One of the early design decisions was to base the network com-
munication on the TCP/IP protocol stack. Initially, the TCP
protocol was used as the underlying transport for event data. It
provides a reliable communication mechanism with flow con-
trol. However, it was deemed that the price paid for these fea-
tures in the associated CPU overhead on the VxWorks side was
too high. It was felt that the datagram nature of the event
stream is more suited to the UDP protocol so the event builder
was modified to use it. An acknowledgement scheme is used to
make the transport reliable. Packetizing was implemented to
allow segment contributions to be greater than the 32 KB UDP
packet size limit. Datagrams are allowed to grow as large as
200 KB per ROM. However, the dynamics of the system are
such that this can’t happen too frequently or the switch’s buff-
ering will be exceeded and network packets will be dropped.
Due to CPU overhead in the network stack, the maximum
L1Accept rate that can be achieved with this event builder is
1.3 KHz, below the 2 KHz expected for normal data taking. In
order to raise the maximum L1Accept rate that can be handled
by the system, we are in the process of creating a segment level
event builder to work over the VME backplane.

 E. Finite State Machine

The BABAR online system has been built around a finite state
machine. Figure 2 shows the state machine exerciser graphical
user interface (GUI). The state diagram contains some 22 states
for implementing Run Control, Level 1 triggering, calibration,
etc. State transition messages are passed around the system via
the Fast Control and Timing system. One of the big problems
that this presents is how to keep all the consumers of state
information (all ROMs in a partition) synchronized so that they
all have an identical picture of what state the system as a whole
is in. This problem has yet to be solved satisfactorily.

 F. Object Oriented Methodology and C++

The BABAR collaboration adopted object oriented techniques
and the C++ computer language for both online and offline sys-
tems. This practice has also been propagated into the front end
processors. The Solaris native compiler is used for the Sun
platforms and the GCC compiler is used for the PowerPCs. All
features of the language (e.g., exception handling) aren’t avail-
able for the version of GCC that was supplied by Wind River
for use with VxWorks. This causes developers to avoid using



these features on other platforms where they are available to
prevent non-portable code from being produced.

A number of features of the C++ language have proven not to
be as useful as originally anticipated, such as templates and
inlining. It becomes very difficult to maintain independence
between disparate blocks in large systems. As a result, a small,
seemingly innocuous change to a private function or class sec-
tion, can cause a large portion of the system to be recompiled
simply because a header file was modified.

Header files have other unpleasant side effects. Because header
files are often nested, compile time can be increased dramati-
cally as the compiler must open each file and process it as it
encounters it in turn. This leads some programmers to replicate
the desired bit of header file (e.g., a one line macro definition of
a register address) in their code, just to avoid including the file.
While it is not difficult for a computer to keep track of the
header file dependency tree (e.g. viamake, etc.), often the pro-
grammer,a priori, has no idea what the consequences of
including a particular header file into his code are.

 G. RISC programming

Most of the members of the group that is involved with produc-
ing code for the front end processors came with a background

in Motorola 68K and similar processors. It turns out that the
RISC processors are a different ball of wax. One of the differ-
ences that affects the programming method is that the RISC
processor has a clock speed many times the bus speed to mem-
ory, allowing several instructions to be executed between mem-
ory access cycles. This can be used to advantage by rearranging
instructions, avoiding memory references and ensuring that the
data in the data cache is completely used before the cache is
flushed. Processing elements in an array should be done
sequentially in a single pass, for example. Keeping loop sizes
so that they fit within the instruction cache can also improve
performance. Often it is helpful to break up a large loop into
several small ones.

Another point is that RISC processors use prefetch and write
posting techniques to keep pipelines flowing. One has to be
careful when operating on I/O device registers to not allow
things to happen out of sequence. Setting a memoryguarded
attribute can help with this endeavour.

By careful study of compiler assembler output, one learns
tricks on how to make the compiler produce the best code. The
most straight forward way to code something in a high level
language does not necessarily generate efficient object code.
Timing sections of code can help determine the cacheing
effects of the processor. Getting the best performance out of a
piece of code is an iterative process.

The PowerPC has helpful features like bus-snooping to detect
whether other devices accessing memory have modified loca-
tions that it has cached. Atomic operations are carried out
through areservationmechanism. If the reservation is still held
by the processor after the operation, the operation proceeded
atomically. Other entities take away the reservation by access-
ing the address that is the target of the operation. The PowerPC
does not block because a bus master is accessing the address.

 H. Code Management

The Online Dataflow code is part of the BABAR collaboration-
wide software development. As such it started out as “just”
another directory tree that interested parties could check out
from the collaboration-wide CVS repository. Despite much
effort, it has proven impossible to prevent too many interdepen-
dencies to arise between major packages. Thus, changes in one
package can make many other packages need recompilation,
and a lot of time is spent getting back to a coherent state. Dur-
ing the development phase of the code, where one cycles over
making changes and testing frequently, this problem got to be
severe enough that one avoided making changes that would
cause dependent packages to need to be recompiled, thus
impeding development.

In the case of ROM code, this problem arose between the core
transport group and the subsystem groups that supply the fea-
ture extraction code. To solve the problem, the incremental
linker that VxWorks provides is used. The core dataflow code
is compiled into object files that are stored in a global area that
is used by everyone. Subsystem groups no longer create their
own versions of these files. Since the core dataflow group is

 Figure 2:  Finite State Machine exerciser GUI



now in control of what is in these files, they are easier to
update. These files are loaded by the startup script that
VxWorks runs at boot time. After the core files are loaded, an
application startup script is called. This script typically loads
the subsystem feature extraction code. At the conclusion of this
script, the acquisition system code is started.

A similar approach has been taken for dataflow code in the
UNIX domain. Instead of dependent packages linking against
updated versions of the dataflow tree in private areas, the code
is now compiled into shareable images stored in a globally
accessible place. Symbol resolution thus takes place at run
time. This dynamic linking technique ha proven to be a tremen-
dous benefit.

Dynamic version management is another issue to consider. As
the software “plant” grows, more and more packages appear
that are chained together by the data they consume (clients) and
the output others produce (servers). This transfer of outputs to
inputs can happen through data files and it can happen via mes-
saging through network sockets, for example. Changes in the
server easily prevent the client from consuming the data cor-
rectly and vice versa. By including a version number in the
data stream, the client can recognize that it doesn’t know how
to handle the input data and act appropriately instead of pro-
ducing an incorrect result. Incorrect results can lead to hours of
debugging a server program when it is in fact a change to the
client made unbeknownst to the server programmer that pre-
vents the system from working.

III. CONCLUSIONS

The BABAR data acquisition system has been built and is cur-
rently taking data. In the process of its development a number
of stumbling blocks were encountered. Some of these were
adequately resolved while others provide lessons for “the next
time”. Much work remains to be done to improve the system’s
throughput (e.g., the VME event build), and robustness to
adverse and uncommon conditions.
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